
Integrating Ma
Proof Che

Specification aSpecification a

H t S ith J KHampton Smith
Kim Roche
Murali Sitaraman

Joan K
Denison Un

Murali Sitaraman
Clemson University

SAVCBS Wo
SIGSOFT 20SIGSOFT 20

November

ath Units and
ecking for
nd Verificationnd Verification

K Willi F O dKrone
niversity

William F. Ogden
Ohio State University

rkshop 2008
08 / FSE 1608 / FSE 16
9th, 2008

Overview

RESOLVE V ifi ti S t• RESOLVE Verification Syste
• Role of Proof Checker in Ver

• Requirements of a Proof Che

m
ification System

ecker in such a system

2

Overview

RESOLVE V ifi ti S t

o Issues

• RESOLVE Verification System
• Role of Proof Checker in Veri

o Issues
o Solutions

• Requirements of a Proof Che
o Issues
o Solutions

m
ification System

ecker in such a system

2

RESOLVE Verification System

3

RESOLVE

R bl S ft R h• Reusable Software Research
• Integrated Programming, Spe
• Full end-to-end verificationFull end to end verification

o Scalability
o Performance

• Isabelle Backend

cs clemson ecs.clemson.e

h G t Clh Group at Clemson
ecification, and Proof Language

edu/~resolveedu/ resolve

4

Proof Che
Verificatio

eckers in a
on System

5

PROOF OBPROOF OBLIGATIONSLIGATIONS

6

P ditiPrecondition

6

P ditiPrecondition

Postcondition

6

P ditiPrecondition

Postcondition

Invarriant

6

Enhancement for St

E h t Fli i C biliEnhancement Flipping_Capabili

Operation Flip(updates S : StOperation Flip(updates S : St
ensures S = Rev(#S);

end Flipping_Capability;

acks

t f St k T l tty for Stack_Template;

tack);tack);

7

Implementation of F
Realization Obvious_Flipping_Realization

Flipping_Capability of Stack_Templa

Procedure Flip (updates S : Stack);
Var Next_Entry : Entry;
Var S Flipped : Stack;_ pp ;

While (Depth(S) /= 0)
changing S, Next_Entry, S_Flippeg g y
maintaining #S = Rev(S_Flipped
decreasing |S|;

do
Pop(Next_Entry, S);
Push(Next_Entry, S_Flipped);

end;

S :=: S_Flipped;
end Flip;

end Obvious Flipping Realization;end Obvious_Flipping_Realization;

lipping
n for
ate;

ed;
) o S;

8

Verification Conditio

((|S| M D th) d (S (R((|S| <= Max_Depth) and (S = (R
(|??S| /= 0 and ??S = (<?Next_E

=========================

(Rev(?S_Flipped) o ??S) =
(Rev(<?Next_Entry> o ?S_Flipp

on

R (?S Fli d) ??S) dRev(?S_Flipped) o ??S) and
Entry> o ?S))))

====>

ped) o ?S)

9

A little help

10

P ditiPrecondition

Postcondition

Invar

Math Results

riant

11

Precondition

Postcondition

Invariant

Math Results

12

Automated Prover

Precondition

Postcondition

Invariant

Math Results

12

Automated Prover

Precondition

Postcondition

Invariant

Math Results

User Provided Proof +User Provided Proof +
Proof Checker 12

Verification System

"R i i t"Requiring programmers to
engage in a fine level of proof
activity is unlikely to lead toactivity is unlikely to lead to
wide-spread verification
[T]he limitations of automated
theorem proving often require
substantial human
intervention "intervention.

13

Verification System

"R i i t"Requiring programmers to
engage in a fine level of proof
activity is unlikely to lead toactivity is unlikely to lead to
wide-spread verification
[T]he limitations of automated
theorem proving often require
substantial human
intervention "intervention.

Cl di i i b tClear division between
verification conditions and
math resultsmath results.

Rethink the latter as a job for
trained mathematicians.

13

Requirements f
Che

for such a Proof
cker

14

Automated Prover

Precondition

Postcondition

Invariant

Math Results

User Provided Proof +User Provided Proof +
Proof Checker 15

Reusability

P i LProgramming Language

• AbstractionAbstraction
• Modules
• Interfaces
• Readability

P f LProof Language

16

Reusability

P i LProgramming Language

• AbstractionAbstraction
• Modules
• Interfaces
• Readability

P f LProof Language

• AbstractionAbstraction
• Modules
• Interfaces
• Readability

16

Abstraction and Mod

Stack Queue List .

String Theory

dules

..

...

17

Consumers of Theo

P f Ch k• Proof Checker
• Automated Prover
• MathematiciansMathematicians
• Programmers

ries

18

Précis vs. Proof Unit

Header file fHeader file f

ts

for theoriesfor theories.

19

Précis vs. Proof Unit

P é i N t l N b ThPrécis Natural_Number_Theory;
uses Basic_Function_Properties,

Monogenerator_Theory...

Inductive Definition on i : N of
(a : N) + (b) : N is

(i) a + 0 = a;(i) a + 0 = a;
(ii) a + suc(b) = suc(a + b);

Theorem N1:Theorem N1:
Is_Associative(+);

......

end Natural_Number_Theory;

ts

20

Précis vs. Proof Unit

P é i N t l N b ThPrécis Natural_Number_Theory;
uses Basic_Function_Properties,

Monogenerator_Theory...

Inductive Definition on i : N of
(a : N) + (b) : N is

(i) a + 0 = a;(i) a + 0 = a;
(ii) a + suc(b) = suc(a + b);

Theorem N1:Theorem N1:
Is_Associative(+);

......

end Natural_Number_Theory;

ts

P f itProof unit
Natural_Number_Theory_Proofs

for Natural_Number_Theory;
UsesUses ...

Proof of Theorem N1:
Goal for all k m n: NGoal for all k, m, n: N,

k + (m + n) = (k + m) + n;
Definition S1: Powerset(N) =

{n : N for all k m : N{n : N, for all k, m : N,
k + (m + n) = (k + m) + n};

......

20

Automated Prover

Precondition

Postcondition

Invariant

Math Results

User Provided Proof +User Provided Proof +
Proof Checker 21

Popular Proof Check

I b ll [2]Isabelle [2]
lemma assumes AB:

"large A /\ large B"large_A /\ large_B
shows

"large_B /\ large_A"
(is "?B /\ ?A")

using AB
proofproof

assume "?A" "?B"
show ?thesis ..

qed

kers

C [1]Coq [1]
Variables A B C : Prop.

Lemma and_commutative :
(A /\ B) -> (B /\ A).

intro.
elim H.
splitsplit.
exact H1.
exact H0.

Save.

22

Mathematical Proof

S iti k NSupposition k, m: N
Goal k + (m + 0) = (k + m) + 0
k + (m + 0) = k + mk + (m + 0) k + m

k + m = (k + m) + 0

Deduction if k ∈ N and m ∈ N
k + (m + 0) = (k + m) + 0k + (m + 0) = (k + m) + 0

[ZeroAssociativity] For all k: N[y]
k + (m + 0) = (k + m) + 0

0

by (i) of Definition +

by (i) of Definition +
N then

N, for all m: N,

by universal generalization

23

RESOLVE Proof Lan

S iti k NSupposition k, m: N;
Goal k + (m + 0) = (k + m) + 0
k + (m + 0) = k + mk + (m + 0) k + m

k + m = (k + m) + 0

Deduction if k is_in N and m is
k + (m + 0) = (k + m) + 0;k + (m + 0) = (k + m) + 0;

[ZeroAssociativity] For all k: N[y]
k + (m + 0) = (k + m) + 0

nguage

0;

by (i) of Definition +;

by (i) of Definition +;
s_in N then

N, for all m: N,

by universal generalization;

24

Demo

C ll Id tit N dCorollary Identity: a : N and
a + 0 = a;

Proof of Theorem Nothing:Proof of Theorem Nothing:
Supposition k, m: N;

(k + m) + 0 = k + m
by Corollary Identity & equality;by Corollary Identity & equality;

Deduction if k is_in N and
m is_in N then
(k + m) + 0 = k + m;(k + m) + 0 k + m;

QED

25

Demo

C ll Id tit N dCorollary Identity: a : N and
a + 0 = a;

Proof of Theorem Nothing:Proof of Theorem Nothing:
Supposition k, m: N;

(k + m) + 0 = m + 0
by Corollary Identity & equality;by Corollary Identity & equality;

Deduction if k is_in N and
m is_in N then
(k + m) + 0 = k + m;(k + m) + 0 k + m;

QED

E Si l t(10)Error: Simple.mt(10):
Could not apply substitution to the

justified expression.
(k + m) + 0 = m + 0(k + m) + 0 = m + 0

by Corollary Identity & equality;

26

Demo

C ll Id tit N dCorollary Identity: a : N and
a + 0 = a;

Proof of Theorem Nothing:Proof of Theorem Nothing:
Supposition k, m: N;

(k + m) + 0 = k + m
by Corollary Identity & or rule;by Corollary Identity & or rule;

Deduction if k is_in N and
m is_in N then
(k + m) + 0 = k + m;(k + m) + 0 k + m;

QED

Error: Simple mt(10):Error: Simple.mt(10):
Could not apply the rule Or Rule to

the proof expression.
(k + m) + 0 = k + m(k + m) + 0 = k + m

by Corollary Identity & or rule;

27

Conclusions

A l di ti ti i i d• A clearer distinction is required
obligations that we expect to be
prover and those for which we iprover, and those for which we i

• Programmers should not be re

• Robust mathematical library o

• Techniques from programming
to mitigate the complexity of sucg p y

d b t th fd between those proof
dispatched by an automated
ntend to furnish a proofntend to furnish a proof.

equired to provide proofs.

of theories is required.

g languages should be applied
ch theories.

28

References
[1] G. Huet, G. Kahn, and C
Coq Proof Assistant: A TutoCoq oo ss sta t uto
2004, pp. 3-18; 45-47.

[2] T. Nipkow. “A Tutorial In
Isar Proofs,”
http://www.cl.cam.ac.uk/res
belle/doc/isar-overview.pdf

C. Paulin-Mohring, “The
orial.” INRIA, o a ,

ntroduction to Structured

search/hvg/Isabelle/dist/Isa
.

28

