Integrating Math Units and Proof Checking for Specification and Verification

Hampton Smith
Kim Roche
Murali Sitaraman
Clemson University

Joan Krone
Denison University

William F. Ogden
Ohio State University

SAVCBS Workshop 2008 SIGSOFT 2008 / FSE 16 November 9th, 2008

Overview

- RESOLVE Verification System
- Role of Proof Checker in Verification System
- Requirements of a Proof Checker in such a system

Overview

- RESOLVE Verification System
- Role of Proof Checker in Verification System
o Issues
o Solutions
- Requirements of a Proof Checker in such a system
o Issues
o Solutions

RESOLVE Verification System

RESOLVE

- Reusable Software Research Group at Clemson
- Integrated Programming, Specification, and Proof Language
- Full end-to-end verification
- Scalability
- Performance
- Isabelle Backend

cs.clemson.edu/~resolve

Proof Checkers in a Verification System

PROOF OBLIGATIONS

Precondition

Postcondition

Precondition

Postcondition

Invariant

Enhancement for Stacks

Enhancement Flipping_Capability for Stack_Template;
Operation Flip(updates S : Stack); ensures S = Rev(\#S);
end Flipping_Capability;

Implementation of Flipping

Realization Obvious_Flipping_Realization for
Flipping_Capability of Stack_Template;
Procedure Flip (updates S : Stack);
Var Next_Entry : Entry;
Var S_Flipped : Stack;
While (Depth (S) /= 0)
changing S, Next_Entry, S_Flipped; maintaining \#S = Rev(S_Flipped) o S; decreasing $|S| ;$
do
Pop(Next_Entry, S);
Push(Next_Entry, S_Flipped);
end;
S :=: S_Flipped;
end Flip;
end Obvious_Flipping_Realization;

Verification Condition

((|S| <= Max_Depth) and (S = (Rev(?S_Flipped) o ??S) and (|??S| /= 0 and ??S = (<?Next_Entry> 0 ?S))))
=============================->
(Rev(?S_Flipped) o ??S) =
(Rev(<?Next_Entry> o ?S_Flipped) o ?S)

A little help

Theorem 1;
$\forall \alpha: \operatorname{Str}(\mathrm{E}), \forall \mathrm{X}: \mathrm{E},(\alpha \bullet<\mathrm{x}>)^{\mathrm{Rev}}=\left(<\mathrm{x}>\bullet \alpha^{\mathrm{Rev}}\right)$

Theorem 2:
Is_Associative(•)

Precondition

Math Results

Postcondition

Invariant

Math Results

Automated Prover

Automated Prover

Verification System

"Requiring programmers to engage in a fine level of proof activity is unlikely to lead to wide-spread verification [T]he limitations of automated theorem proving often require substantial human intervention."

Verification System

"Requiring programmers to engage in a fine level of proof activity is unlikely to lead to wide-spread verification [T]he limitations of automated theorem proving often require substantial human intervention."

Clear division between verification conditions and math results.

Rethink the latter as a job for trained mathematicians.

Requirements for such a Proof Checker

Automated Prover

Reusability

Programming Language

Proof Language

- Abstraction
- Modules
- Interfaces
- Readability

Reusability

Programming Language

- Abstraction
- Modules
- Interfaces
- Readability

Proof Language

- Abstraction
- Modules
- Interfaces
- Readability

Abstraction and Modules

Consumers of Theories

- Proof Checker
- Automated Prover
- Mathematicians
- Programmers

Précis vs. Proof Units

Header file for theories.

Précis vs. Proof Units

Précis Natural_Number_Theory; uses Basic_Function_Properties, Monogenerator_Theory...

Inductive Definition on $\mathrm{i}: \mathrm{N}$ of
(a:N)+(b):N is
(i) $a+0=a$;
(ii) $a+\operatorname{suc}(b)=\operatorname{suc}(a+b)$;

Theorem N1:
Is_Associative(+);
end Natural_Number_Theory;

Précis vs. Proof Units

Précis Natural_Number_Theory; uses Basic_Function_Properties, Monogenerator_Theory...

Inductive Definition on $\mathrm{i}: \mathrm{N}$ of (a:N)+(b):N is
(i) $a+0=a ;$
(ii) $a+\operatorname{suc}(b)=\operatorname{suc}(a+b)$;

Theorem N1:
Is_Associative(+);

Proof unit

Natural_Number_Theory_Proofs for Natural_Number_Theory; Uses ...

Proof of Theorem N1:

 Goal for all $\mathrm{k}, \mathrm{m}, \mathrm{n}: \mathrm{N}$, $k+(m+n)=(k+m)+n ;$ Definition S1: Powerset(N) = $\{n: N$, for all $k, m: N$, $\mathrm{k}+(\mathrm{m}+\mathrm{n})=(\mathrm{k}+\mathrm{m})+\mathrm{n}\} ;$end Natural_Number_Theory;

Automated Prover

Popular Proof Checkers

Isabelle [2]
lemma assumes $A B$:
"large_A \wedge large_B" shows
"large_B \wedge large_A"
(is "? $\mathrm{B} \wedge$? A ")
using $A B$
proof
assume "?A" "?B" show ?thesis .. qed

Coq [1]
Variables A B C : Prop.
Lemma and_commutative :
$(A \wedge B)->(B \wedge A)$.
intro.
elim H.
split.
exact H1.
exact HO.
Save.

Mathematical Proof

Supposition k, m: N
Goal $k+(m+0)=(k+m)+0$
$k+(m+0)=k+m$

$$
k+m=(k+m)+0
$$

by (i) of Definition +
by (i) of Definition +

Deduction if $\mathrm{k} \in \mathrm{N}$ and $\mathrm{m} \in \mathrm{N}$ then

$$
k+(m+0)=(k+m)+0
$$

[ZeroAssociativity] For all k: N, for all m: N,

$$
k+(m+0)=(k+m)+0
$$

by universal generalization

RESOLVE Proof Language

Supposition k, m: N;
Goal $k+(m+0)=(k+m)+0$;
$k+(m+0)=k+m$
by (i) of Definition +;
$k+m=(k+m)+0$
by (i) of Definition +;
Deduction if k is_in N and m is_in N then

$$
k+(m+0)=\overline{(k+m)+0 ; ~}
$$

[ZeroAssociativity] For all k: N, for all m: N,

$$
k+(m+0)=(k+m)+0
$$

by universal generalization;

Demo

Corollary Identity: a : N and

$$
a+0=a ;
$$

Proof of Theorem Nothing:
Supposition k, m: N;
$(k+m)+0=k+m$
by Corollary Identity \& equality;
Deduction if k is_in N and
m is_in N then
$(k+m)+0=k+m ;$
QED

Demo

Corollary Identity: a : N and
$\mathrm{a}+0=\mathrm{a}$;
Proof of Theorem Nothing:
Supposition k, m: N;
$(k+m)+0=m+0$
by Corollary Identity \& equality;
Deduction if k is_in N and
m is_in N then
$(k+m)+0=k+m ;$
QED

Error: Simple.mt(10):
Could not apply substitution to the justified expression.
$(k+m)+0=m+0$
by Corollary Identity \& equality;

Demo

Corollary Identity: a : N and

$$
a+0=a ;
$$

Proof of Theorem Nothing:
Supposition k, m : N ;
$(k+m)+0=k+m$
by Corollary Identity \& or rule;
Deduction if k is_in N and
m is_in N then
$(k+m)+0=k+m ;$
QED

Error: Simple.mt(10):
Could not apply the rule Or Rule to the proof expression.

$$
\begin{aligned}
& (k+m)+0=k+m \\
& \text { by Corollary Identity \& or rule; }
\end{aligned}
$$

Conclusions

- A clearer distinction is required between those proof obligations that we expect to be dispatched by an automated prover, and those for which we intend to furnish a proof.
- Programmers should not be required to provide proofs.
- Robust mathematical library of theories is required.
- Techniques from programming languages should be applied to mitigate the complexity of such theories.

References

[1] G. Huet, G. Kahn, and C. Paulin-Mohring, "The Coq Proof Assistant: A Tutorial." INRIA, 2004, pp. 3-18; 45-47.
[2] T. Nipkow. "A Tutorial Introduction to Structured Isar Proofs," http://www.cl.cam.ac.uk/research/hvg/lsabelle/dist/lsa belle/doc/isar-overview.pdf.

