Component-based design in Tako

(a case study)

Arun Sudhir ¢ Gregory Kulczycki ¢ Jyotindra Vasudeo

Gregory Kulczycki

Gregory Kulczycki

Arun Sudhir

Gregory Kulczycki

Arun Sudhir

Jyotindra Vasudeo

Virginia Tech.

: (‘\

Falls Church, VA |

Component-based design in Tako

(a case study)

(1) What is Tako?

(2) What is Tako design?

(1) What is Tako?

Tako = Java + Resolve

- What is Resolve?

integrated

programming & specification

language

full formal verification

(full = heavyweight)

‘Statically prove...

CODE is correct w.r.t. SPEC

Verifying Compiler

- Grand Challenge

Tony Hoare, 2003

Resolve and language design

Make things as simple as possible...

but no simpler.

- = Albert Einstein

Simplicity in
Reasoning

Sophisticated
Language
Features

no pointers

no inheritance

'NO concurrency

pointers

inheritance

concurrency

(but disciplined)

Pointers

Pointers = References

= Aliasing

{x=true}

y := false

hsx“'l"{EX[-777:}

aliased
toy?

reference copying = aliasing

object copying = expensive

before

Using Resolve/C++

Joe Hollingsworth et al, 2000

100,000

lines of code

swapping/copying-based

pointer-based j

- What is Resolve?

(1) Goal - full verification

(2) Language - swapping

(1) What is Tako?

Tako = Java + Resolve

sex-appeal

sex-appeal

popular

sex-appeal

popular

not logical

sex-appeal

popular

not logical

sex-appeal EEE . FEL s R l idealist

popular s | . rational
B
*. 4‘-A'
. A

’ ’\

not logical

sex-appeal EEE . FEL s R l idealist

popular s | . rational

o \._ — °
not logical \ i S il know-it-all
N

4

-
.«
-

’ ’\

sex-appeal

popular

not logical

idealist
rational

know-it-all

Tako is a compromise

Why Tako?

(1) Teach formal reasoning

(2) Simplify informalh reasoning

P = <\|1, P> |
Pre-state: qg=<%¥Y, 7, \W,A>

P:=q;
g.enqueue(t);
t.clear(); [[initialize t to @

Post-state:

Percent Correct

Reference

Average Time

(to answer correctly)

Reference

Future for swapping-based 0O?

Our case study

Parser Game World

' - “open the box”

Parser

Parser: Tako = Java

Game World

Tree of
Game
Objects

Indexed Tree

Model

G= (V7 E)
rank(v)
ROOT, CSR € V
contents(v)

Constraints

acyclic .
consistent rank

insert(DEN, den_obj)

moveSubtreeToCursor(Tom)

Game World

Tree of
Game
Objects

moveObjectintoSecond(oBJ1, 0BJ2)

moveObjectBeforeSecond(oBJ1, 0BJ2)
updateObjectProperty(oBJ, PROP)

objectHasProperty(oBJ, PROP)

setObjectProperty
(BOX, OPEN)

setObjectProperty
(BOX, OPEN)

setObjectProperty
(BOX, OPEN)

v
d
s
c
W
=
=
S
d
v
e
o
v
Y d
U

‘1. Create dummy node
‘/.\’ 2.Gototarget

) 000
g

‘1. Create dummy node
‘/.\’ 2.Gototarget

/ ‘ ‘ 3.Swap node out -
D D .
0 20

Q ‘1. Create dummy node
./.\’ 2. Go to target ‘ %

‘ ‘ 3. Swap node out
4. Modify node

‘1. Create dummy node

2. Go to target
3. Swap node out

4. Modify node

5. Swap node in

‘1. Create dummy node

2. Go to target
3. Swap node out

4. Modify node

5. Swap node in

> look
You see a tray containing a dish

(containing rice and peas) and
a fork. ‘

1. getFormattedList

2. getSubtree | insertSubtree
3. getTreeExplorer (read only iterator)

4. advance [enter [swapNodes

value-based components

‘ treej Iistj

Indexed

Tree

What did we learn?

(1) Algorithms - similar to Java

(2) Data structures — difference
(a) updates - swap in/out
(b) strong ownership

Questions?

alias avoidance

[“ o |
think “unique references”

«— @

Obama-Palin

McCain-Biden j

4 cm >(
flere d 7, &
Ocular Trauma - bv Wade Clarke ©2005 |

the simplest answer is not always correct

