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ABSTRACT

Aspect-oriented programming offers greater modularity to
the programmer, but it is not yet clear how best to rea-
son about an aspect-oriented program in a modular way.
We propose a translation of aspect-oriented programs into
alternating transition systems (ATSs), which provide a de-
cidable formal specification language, alternating-time logic,
that allows us to specify which component is responsible for
enforcing certain properties. We develop rules for composi-
tional reasoning using these translations.

1. INTRODUCTION

It is an observed problem [5] with aspect-oriented program-
ming that, while aspects do provide additional modularity
of development, it is not yet well established how to reason
about aspect-based programs in a modular way. Such com-
positional reasoning allows aspects to be not only designed
in isolation, but also formally verified. Such formal veri-
fication is useful for tractably proving correctness of large
programs, since the task can be decomposed, and also for
promoting re-use of aspects.

Compositional reasoning in concurrent programming is a
well-understood (though difficult) problem. Modules of con-
current programs can be verified separately through assume-
guarantee reasoning [7]. The question we pose at the outset
is: how much of this knowledge can be reused for composi-
tional reasoning about aspects?

To begin answering this question, we propose a semantics
of aspect-oriented programs based on alternating transition
systems (ATSs), a variety of state-machine model which ex-
plicitly represents how multiple components work together
to change the system’s state, each only having partial con-
trol. In our model, we treat aspects as concurrent compo-

nents which have the authority, at certain points, to take
control and modify program state, possibly returning at
a different point. The possible points of return are con-
strained, but allow for an aspect either to return control
where it took it, or to skip a statement. This semantics is a
direct translation from code into a low-level state machine
model, but it should be the same as a code-weaver-based se-
mantics [8], where the aspect code is woven into the source
code, and then translated; with the additional information
of the allocation of respounsibilities to components (system
and aspect). We are not proposing any new constructs for
aspect languages, but rather an approach to automated com-
positional analysis of existing languages.

Compositional reasoning for concurrent systems often pro-
ceeds as follows: there are two communicating components,
P and Q. We show first that P placed in composition with a
suitable abstraction of () is correct; then, that @) in compo-
sition with an abstraction of P is also correct. In this way,
we avoid constructing the full state-space of P || @, which
may not be possible in the available memory; we pay the
cost of having to construct and verify the abstractions.

We argue that this model is general enough to allow us to
represent complicated interactions of components to deter-
mine state transitions, and yet remain amenable to the ex-
isting methods of analysis of alternating transition systems,
such as model-checking [1] and refinement checking [2]; as
well as any new techniques which aspect verification may
make necessary.

The contribution of this paper is a translation from a sim-
ple aspect language into the ATS formalism, which allows
assume-guarantee reasoning, and a discussion of how this
translation may be used to show that an aspect modifies
a program correctly. The aspect language is similar to the
fragment of AspectJ [8] which only deals with advice to run-
ning code, and not with modifications of the class hierarchy.
We explain the proposed technique on an example, giving
definitions as needed, and suggest two compositional proof
rules for analysis of aspect-oriented programs.

2. EXAMPLE

As an example aspect, we take precondition-checking. A
program module makes use of a Point class; some class



(a) (b)

pointcut mp(x, y):

call (Point.movePoint)
&& args(x,y)

po: while (!button);
p1: pt.movePoint(x,y)

over mp(x,y):

p2: goto po a1: if (x>=0, y>=0)
as: continue
a3: else
as: skipover

Figure 1: (a): code using movePoint, (b): code for
the precondition-checking aspect.

methods have preconditions, and if they are called with-
out the precondition holding, their behavior is undefined.
We take movePoint as one such method, following [5]; its
precondition is that the coordinates given are non-negative.
An aspect is defined which inserts checks of this precondi-
tion before any call to movePoint. The aspect skips over
the call if the precondition is not met. It is assumed that
movePoint is provably correct: that is, if it is invoked under
the right conditions, it terminates with its postconditions
satisfied.

The program is shown in Figure 1(a). Its user interface
contains a canvas, two numeric text fields in which the user
can fill in # and y coordinates, and a button to move an
image to the specified location on the canvas. The program
only ever reads the text fields, it does not write to them;
and so their contents are determined by the environment
alone. All other state is determined by the program. For
this aspect to be correct, the combination of the aspect with
the program must have the following properties:

e if the program calls movePoint with the proper precon-
dition, the postcondition will be satisfied at the first
program point after the invocation of movePoint; this
was true before aspect imposition, and should still be
true after the aspect is added

e the aspect should prevent movePoint from being called
with bad parameters

Additionally, the problem of aspect interaction should also
be addressed: there may be other aspects which run before,
or after, or even during the precondition-guarantee aspect.
The problem of formally representing the assumptions on
other aspects under which the aspect continues to behave
as specified seems similar to the problem of representing
the system assumptions under which the aspect of interest
behaves properly, but considerably more subtle. Though
interaction of aspects is an important consideration, this
preliminary work does not as yet deal with it.

3. ALTERNATING TRANSITION SYSTEM
SEMANTICS

In this section, we give a sketch of the proposed semantics,
using the movePoint example to illustrate it. The seman-
tics is in most respects a standard operational semantics for
an imperative language [9], only enriched with information
about how individual agents (the system, the environment,

and the aspect) control the state transitions. We refer the
reader to the stated references for a formal treatment, and
illustrate all definitions using the example.

Informally, an alternating transition system is a state ma-
chine where multiple agents each have partial control over
the transition relation. Thus, in a single state, each agent
may not be able to definitively choose a successor, but rather
a set of possible successors: the actual state chosen from that
set is contingent upon how the other agents choose. Thus,
in a sense, the agents play a game to control the behaviour
of the system. We say that an agent has a capability if it
has a strategy to keep the behaviour within a certain set
where every possible execution has some desired property;
these capabilities will be expressed in alternating-time logic,
to be described more in Section 4.

DEFINITION 3.1  (ALTERNATING TRANSITION SYSTEMS).
An alternating transition system is a tuple A = (Q, S, P, L, R)
where:

Q is a finite set of agents;

S is a set of states;

P is a set of atomic propositions;

o L: S — 2P is a function labelling states with sets of
atomic propositions;

o R:Sx 022 is the transition relation;

At each state s, every agent a € S chooses one set of possible
successors T, € R(s,a); the intersection (,cq Ta must be a
singleton, which is the chosen successor.

We look again at the program-aspect composition of Fig-
ure 1. At any point in execution, the environment has par-
tial control over the evolution of system state: it may change
the text fields and the button, but update of the program
counter and the canvas is up to the system. Thus, when the
environment moves at a state, it chooses a set of successors:
for instance, it can choose the set of all states where z is 5
and y is 3 as successors, but it cannot choose one uniquely,
because the system has control over the program counter
and the canvas. Symmetrically, the system chooses a set de-
termined by its choices; the intersection of these two (along
with the aspect’s actions) produces a unique successor.

To represent ATSs visually, we use state diagrams annotated
with decision nodes between states. The states are labelled
circles, and the decision nodes are small squares with the
name of the agent making the decision. Note that the de-
cision points between states are arranged in a sequence for
the sake of visual clarity, but that in fact all decisions are
made simultaneously by the agents, none having knowledge
of what the other agents are choosing. A fragment of the
ATS translation for the system/aspect composition of Fig-
ure 1 is shown in Figure 3. Solid circles are states where the
program is active, dashed circles are states where the aspect
is active. A starred transition between two states indicates
that it is reachable by collaboration of all three agents.
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Figure 2: Fragment of the ATS translation

The states are labelled with the program point (either in
the program or the aspect: while one is active, the other is
assumed to be suspended), followed by a list of the proposi-
tional variables holding in that state. These are abstractions
of the concrete program state, defined as follows:

Abstract | Description Definition

Variable

r Precondition holds | (x > 0) A (y > 0)

b Button pressed button=true

0 Postcondition holds | (pt.x=x) A (pt.y=y)

At the root, the program is at po with a valid input. The en-
vironment can choose to either enter valid input again, enter
invalid input, or press the button. If the button is pressed,
the system attempts to advance the program counter to p;
however, the aspect is able to interrupts it, moving to ao.
Since the input is still valid, the aspect executes continue,
which returns control to the system at pi1, allowing it to ex-
ecute movePoint; since the aspect has no power to interrupt
once the call has actually been reached, the system is able
to reach ps with the postcondition satisfied.

However, in the middle subtree, we see what happens when
the environment invalidates the input, and then presses the
button; the aspect takes control, but since the input is not
valid it executes skipover, returning control at p» without
allowing the program to execute movePoint. From the sys-
tem’s perspective, the aspect could have chosen to allow this
transition: this possibility is indicated by a dotted transi-
tion. The aspect thus has the capability of preventing p1 Ab
being true while r is false.

This translation is simplified, and does not take into account
the possibility of other aspects taking control both before

and after the guarantee aspect. Since the ATSs are com-
piled from code, the control-flow of the code is represented
using a program counter variable; however, if ATSs are used
in high-level modelling (aspect-oriented design), then this
can be dispensed with. Formal support for such design is
another goal of this work. It is not necessary for the model
to be finite-state, as it is here, but finiteness is a sufficient
condition for model-checking to be decidable.

4. REASONING WITH ASPECTS

In this section we discuss formal specification in alternating-
time logic, and compositional reasoning about ATS transla-
tions of aspect-oriented programs.

4.1 Specification

The aspect we describe is introduced in order to guarantee
a simple temporal safety property: it is never possible to
reach a state which is a call to movePoint (p; in Figure 1)
while the precondition is violated. This is a property which
should hold in all executions of the system, regardless of
nondeterministic choices.

A classical state machine model allows us to quantify over
possible executions using temporal logic [4]. Is there an ex-
ecution where the point is never moved? Certainly, the user
need never press the button. Does the point pass through
(2,3) in every execution? No: there are sequences of inputs
which prevent this. An ATS model encodes not only this
information, but also which agents co-operate to create an
execution. In this case, both of the executions we have dis-
cussed are enforced by the environment alone: it is able to
prevent the point from ever moving, while the system must
move the point whenever the button is pressed.

We say that the environment has a strategy — a way to re-
solve the choices available to it — which prevents the point
from moving. At any given time step in the program, the
environment never has control over the entire program state:
only the two fields and the button. How the rest of the state
evolves is up to the system. However, with the system spec-
ified as it is, this limited control suffices for the environment
to keep the point still. It is often desirable to show that
environment properties are preserved [3].

DEFINITION 4.1  (STRATEGIES AND PATHS). Given an
ATS (,S,P,L, R), a strategy for agent a € § is a map
fo: St =25, such that for allw e S* and s € S,
fa(ws) € R(s,a).

The choice of a strategy by an agent constrains the possible
exzecutions. Given a strategy f, 7 € 25% is the set of all
infinite paths which the remaining agents are able to choose.

Alternating-time logic is defined with respect to strategies
and the paths they determine. For example, given a formula

©p:

e s |= (a)Xy if a has a strategy f such that for all paths
st...inmp tE@

e s = (a)Fy if a has a strategy f such that for all paths
stot1 ... in 7y, there is an ¢ such that ¢; = ¢



The purpose of adding the precondition-guarantee aspect is
to impose a new property which did not hold before: that
the environment cannot cause movePoint to be called with-
out the precondition holding. It may still press the button,
but the aspect alters the system’s response, skipping over
the call to movePoint if the precondition is violated!. At
the same time, the aspect should not prevent movePoint
from being called if the precondition does hold. An aspect’s
specification, then, as has been observed [12], is twofold: it
has new properties that it must guarantee, and old proper-
ties that it must preserve. Both are dependent upon being
used according to a contract.

We are transforming the system’s code to meet the specifi-
cation. To encode at the state-machine level the fact that
we are doing this with an aspect rather than a code patch
— that is, for modularity and maintanability rather than
correctness — we represent this modification as the actions
of another agent (the aspect) which is able to seize control
of the system’s program-counter at certain points, execute
some code, and then return control.

4.2 Compositional Reasoning

How, then, do we show that the aspect meets both parts
of its specification? The simplest approach to verifying a
program is to create a formal model of the entire program,
and prove it meets its specification. In general this is not
feasible for two reasons: first, a state-machine translation
grows exponentially in size with the number of variables, and
rapidly becomes far too large for available memory; second,
the reasoning task becomes forbiddingly complicated and
cannot be decomposed or distributed in any way.

So it has been held that reasoning should be modular: and
the most straightforward way to make reasoning modular is
to follow the modular structure of the program. That is,
given modules X and Y, which interact in a given way, we
prove that if X behaves according to specification, so will
Y; and if Y behaves according to specification, so will X.
This is compositional, modular or assume-guarantee [10, 7]
reasoning.

Since aspects form an alternative decomposition, it seems
desirable to do reasoning that follows the aspect structure
of a program. Not only would this facilitate reasoning about
aspect-oriented programs, it would also promote more flex-
ibile compositional reasoning in general, providing alterna-
tive decompositions which might be more amenable to proof.
Our goal,then, is to develop compositional proof rules for
aspect-oriented programs. The remainder of this section
presents two such proposed rules.

4.2.1 Imposition Rule

Let M be the module, and F (for ‘feature’) be the aspect;
they are attached using a binding ¢ which identifies join-
points in M with F’s pointcuts (in our example, the calls to
movePoint make up the pointcut MP). Consider first one half
of the compositional reasoning task: assuming M is correct,
and c is the correct binding, we wish to show that F' must

'If the Point class were not a black box, an aspect could
instead insert precondition-checking code at the beginning
of movePoint, changing the class specification.

po:  goto pp O goto py
pi: beforeJP

ps:  pt.movePoint(x,y)
ps: afterJP

pi:  goto py

Figure 3: Abstraction A of the program M: O in-
dicates a nondeterministic choice

have the desired effect. That is, we wish to analyze F in
isolation. However, since it is a controller which reacts to
its environment — the program-counter changes of a module
— it is, by itself, an open system, and needs to be closed with
some model of its environment.

This model should be considerably simpler than M itself,
since most of the behavior of M is of no interest to the as-
pect — only the entering and leaving of join-points. Such an
abstraction Aas is shown in Figure 3; it is not much simpler
than the program, but button has been abstracted away as
irrelevant to the aspect’s correctness. All that matters is
that the abstraction calls movePoint some number of times
with varying values of z and y.

Given this abstraction, we construct its composition Ac (A, F);

note that the composition C' must be abstracted as well —
since the pointcuts remain the same, but the join-points
in a pointcut are different in M and Ap;. The important
property of this composition is that it preserves all the ca-
pabilities of F': the system is abstracted, but F’s behaviors
are neither expanded nor constrained. More formally, we say
that Ac(Awm, F) is an S-abstraction of C(M, F)F, which we
write:

AC(AM7 F) <s C(M: F)
and that the aspect has the same capabilities (is A-equivalent):
Ac(Am, F) <s C(M, AF)

We refer to this composition as the abstract aspect, to follow
the terminology of AspectJ; but note that it is not the aspect
which was been abstracted!

Recall that the new property we wish to demonstrate is that
the environment can be prevented from calling movePoint
when the precondition is unsatisfied; that is, that the sys-
tem and aspect together can prevent the call whatever the
environment does. If we can demonstrate this for the ab-
stract aspect, and show that it the abstract aspect has all
of the system and aspect capabilities of the full composi-
tion, we can conclude that the full composition meets its
specification.

Thus we state our first compositional reasoning rule, which
we’ll call the Imposition Rule, used to prove that an aspect
guarantees a capability (S, A)y of S and A:

Ac(Am, F) = (S, AYp  Ac(Am, F) <(s.4; C(M, F)
C(M,F) (S, Ay

That is, if the abstract aspect meets the specification and it
is an S, A-abstraction of the full composition with respect to
S, then the full composition also meets the specification. By
construction, the abstract aspect is A-equivalent to the full




composition, and an S-abstraction, so the remaining obli-
gations are to show that it is an S, A-abstraction (which is
not necessarily implied by being both an S and A abstrac-
tion [2]), and that (S, A)y holds in the abstract aspect.

To sum up, the Imposition Rule enables us to verify an
abstract aspect, and show that the verification holds in the
full composition by proving the abstraction relation between
the abstract aspect and the full composition.

4.2.2 Preservation Rule

Of course, we also wish to show that the aspect preserves
some of the existing properties of the base program. We
take a similar approach: composing the module with an ab-
straction of the aspect, checking the desired property on this
composition (which we dub the program-in-contezt), and us-
ing the abstraction relation to conclude that the property
holds in the full composition, without actually needing to
construct and analyze it.

The intuition behind the program-in-context is that it is
the program in a very general aspect-oriented runtime envi-
ronment, with the join-points fixed. At any join-point, the
aspect may choose to interrupt, take control, and return to
any allowable program point, possibly with some changes
to program state. The program-in-context is not equivalent
to the unmodified program: some capabilities of the system
are likely to be broken by the imposition of the aspect.

The program-in-context C(M, Ar) for our example is a com-
position of the base program with the following abstraction:

over mp(x,y) {
continue [] skipover;

}

In other words, it is an A-abstraction of the full composition.
Note that this embodies two additional assumptions: the
aspect does not modify any state readable to the program,
and that it only inserts before and over advice — never after.
These assumptions are necessary for the program-in-context
to preserve the desired property.

Part of the ATS for the program-in-context appears in Fig-
ure 4. In the unmodified system, whenever the PC is at
line p; with the precondition satisfied, the postcondition is
satisfied at the next step. This system capability is stated
in ATL as:

(S)pr Ar = Xo

We must check the program-in-context to see that this sys-
tem capability is also preserved there. Looking at 4, we see
that although the aspect can prevent the system getting to
p1, once it is there it can execute movePoint and satisfy the
precondition.

So we state the Preservation Rule: if system capability (S)p
holds in the program-in-context M || Ar, and the program-
in-context is an S-abstraction of the full composition, then
we can conclude that (S)p holds in the full composition:

Figure 4: Fragment of ATS for program-in-context

C(M,Ar) E(S)p C(M,Ar) <s C(M, F)
C(M,F) = (S)¢

5. RELATED WORK

Researchers studying the feature interaction problem have
encountered similar issues, since features often have simi-
larly cross-cutting effects. Ryan et al. [11] have developed a
feature construct for state-based modeling languages; their
features are expressed at the state-machine level of abstrac-
tion rather than the program-code level. They have also [3]
used an alternating transition system framework to prove
that imposition of a feature maintains desirable properties
of a system, even though it is a non-monotonic composition
in general. The difference is that in their formalization, each
module is represented by an agent; this allows for reasoning
about capabilities of agents before and after feature impo-
sition, but does not allow for the distinction of base and
feature as separate agents, and thus does not lead to the
kind of modular reasoning we wish to do.

Clifton and Leavens [5] address modular reasoning with as-
pects, and suggest two types of explicit contracts: observers
and assistants. An observer is an aspect which does not
change the existing specification of any module it is attached
to; it only ever changes its own state. That is to say, the
capabilities of the module by itself are identical to the ca-
pabilities of the composition of module and observer; only
the aspect gains new capabilities. Assistants may modify
system capability.

Fisler and Krishnamurti et al. [6] also use a state-based
model of feature composition, and aim towards composi-
tional reasoning. They have an effective decision procedure
for proving that a feature preserves and guarantees proper-
ties without needing to construct the full state space; how-
ever, they do not consider the situation where a feature can
disable a transition of the system it modifies.



We are not aware of any work which formalizes, in a general
way, the weaving of aspects in general, dealing with cases
like weaving of class hierarchies or data-flow graphs that are
not handled by the proposed method.

6. CONCLUSION AND FUTURE WORK

We have discussed a proposed approach to modular reason-
ing with aspects. This approach is a variety of assume-
guarantee reasoning, using an alternating transition system
model, with alternating temporal logic [1] as a specifica-
tion language. We have illustrated the fundamentals of this
approach on an example, demonstrating how the proposed
formalism enables compositional reasoning.

This work is in its early stages, and there is much to be
done. Proving the necessary abstraction relations is the
difficult part of the approach, and this must be shown to
be scalable and relatively automatable. Further, the decid-
ability of the analysis depends on a finite-state model, and
so abstractions of the state-space are necessary to make a
general program finite-state; any interactions between these
abstractions and those of the proposed compositional rules
must also be considered.
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