Understanding AOP through the Study of Interpreters

Robert E. Filman
Research Institute for Advanced Computer Science
NASA Ames Research Center, MS 269-2
Moffett Field, CA 94035

rfilman@mail.arc.nasa.gov

ABSTRACT

I return to the question of what distinguishes AOP lan-
guages by considering how the interpreters of AOP lan-
guages differ from conventional interpreters. Key elements
for static transformation are seen to be redefinition of the
set and lookup operators in the interpretation of the lan-
guage. This analysis also yields a definition of crosscutting
in terms of interlacing of interpreter actions.

1. INTRODUCTION

I return to the question of what distinguishes AOP lan-
guages from others [12, 14].

A good way of understanding a programming language is by
studying its interpreter [17]. This motif has been recently
emphasized in recent work by Masuhara and Kiczales [21],
and is a theme of the work on the Aspect Sandbox [22,
30]. This position paper suggests studying the foundations
of Aspect-Oriented Languages by considering what changes
have to be made to conventional language interpreters to get
aspect behaviors.

Interpreters express meaning. Compilers can be understood
as optimizations that enable more efficient renderings of the
work of interpreters, without changing the underlying mean-
ing of programs. A compiler that builds a “new program”
from several fragments can be understood as a substitute for
the dynamic, run-time building of that new program from
fragments. Thus, while compilation techniques for AOP
(e.g., partial evaluation as weaving [22]) are quite worth-
while activities, they do address the question of the nature
of AOP.

2. A GENERIC INTERPRETER

Consider the pseudo-code for interpreter for A Generic Pro-
gramming Language (AGPL) in Figure 1. This is a “mean-
ing” function over an “expression” (an object in expression
space), and an “environment,” a structure that maps names
to values, perhaps with a characterization of what kind of

61

mapping is of interest (e.g., variables vs. functions). The
pseudo-code includes only enough detail to convey the ideas
I’'m trying to express.

Of course, a real implementation would need implementa-
tions of the helper functions. In general, the helper functions
on environments—lookup, set, and extend—can be manip-
ulated to create a large variety of different language fea-
tures. The most straightforward implementation makes an
environment a set of symbol-value pairs (a map from sym-
bols to values) joined to a pointer to a parent environment.
Lookup finds the pair of the appropriate symbol, (perhaps
chaining through the parent environments in its search), re-
turning its value; set finds the pair and changes its value
field; and extend builds a new map with some initial val-
ues whose parent is the environment being extended. In
this model, lookup and set are “reference assignment” pairs:
they act like elements setting and retrieving the value of a
location. Programming languages vary by their use of chain-
ing in environments. Most languages have some notions of
global environment (a parent of or shared by all elements)
and of constant elements (ones that don’t change, such as a
global function being assigned to a particular value.) Some
languages may use the name being looked up or set as a
structured object that guides the search in the environment
space. More formal approaches would substitute a monad
for the state expressed in the environment, but that level of
formality would only obscure the discussion here.

I have provided set and lookup types (e.g., VARIABLE and
FUNCTION) so that the implementations of set and lookup
can be manipulated to separate things such as the function
and variable space (as in Common Lisp [26]) or to conflate
them (as in Scheme ([5]). By providing a richer notion of
“set,” one can create languages that export and restrict vis-
ibility; by providing a richer notion of “lookup” one can get
inheritance. Most appropriate for doing independently cre-
ated aspects (as opposed to aspects merely defined in the
same “file”) is the idea that certain varieties of environ-
ment.set change or extend some root (or at least non-leaf)
environment.

Focusing on set and lookup corresponds to the importance
of naming in practical programming languages. Much of the
art of programming language design is the rules for associat-
ing names with meanings and groupings, and the visibility
of these names; much of the act of programming is invoking
named entities, dynamically associating names with values,
and retrieving the values of names.



/* Compute the meaning of an expression, exp, given a environment, env

<0> I cheat by using the stack of the machine interpreting meaning as the stack for meaning. A richer (and perhaps more appropriate)
system can be build by maintaining our own stack, allowing searches within that stack for elements like catch/throw and dynamic
calling scope.
<1> The meaning of a literal expression is the constant of the expression. Numerals, strings, and quoted expressions are literals.
<2> If exp is a variable, look up its meaning in the environment with respect to variable lookup.
<3> If exp is a primitive operator (one that executes on the underlying machine, like “plus” or “print,”) evaluate the meanings of its
arguments in the current environment, assemble them into a “value list,” and invoke the primitive operator on that list.
<4> If exp is some form of language-explicit interpreter control (like an “if” or “switch” statement), compute the meaning of the
condition of the expression, and then return the meaning of the appropriate choice element (like the “else part” or the “default
case.”)
<5> If exp is an assignment statement, change the environment appropriately. The assignmentType covers the varieties of assignments
one might want to make—for example, assigning to a variable, defining a local function, defining the fields of a record, or defining
a new global function.
<6> Call a function. Find the body associated with that function. Build a new environment, based on the original environment and
perhaps some environmental information of the definition itself, which binds the formals of the called function to the values of the
actual parameters, and compute the meaning of the body in this new environment. I could have generalized this a bit beyond call
by value, but it’s not worth the trouble for the ideas I'm trying to convey.
*/
meaning (exp, env) = /* <0> */
typecase (exp)
literal (exp) -> exp.literalValue /* <1> */
variable (exp) -> env.lookup (exp.variableName, °’VARIABLE) /% <2> %/
primop (exp) -> apply (exp.primop, meaninglist (exp.args, env)) /* <3> */
conditional (exp) -> meaning (exp.conditionChoice (meaning (exp.condition, env)), env) /* <4> */
assignment (exp) -> env.set (exp.variableName, meaning(exp.value, env), exp.assignmentType) /* <5> x/
funcall (exp) -> let definition = env.lookup (exp.functor, ’FUNCTION) /* <6> */

in meaning (definition.body,
env.extend (definition.formals,

definition.environment,
meaninglist (exp.args, env)))

Figure 1: AGPL interpreter

3. CROSSCUTTING AND BLAME

One can assign credit (or blame) to every external action
(a primop) or manipulation in the interpreter. Each action
in the interpreter is associated with a particular expression,
the most immediate cause for that action. One can divide
expressions into “modules.” In general, actions follow the
structure of expressions, and actions tend to proceed within
a module. T call this overall notion of the corresponding
continuity in the expression space and the action sequence
locality.

We have crosscutting when sequences of actions intermix
from different modules. In conventional languages crosscut-
ting arises most often as explicit invocation: an expression
in one module names an entry of another module, and the
system transfers control to that other module. Some conven-
tional languages allow other crosscutting mechanisms. For
example, in languages with function pointers or dynamic
binding, the value of a dynamic environmental element can
be used as an expression for further evaluation. Inheri-
tance mechanisms also combine the code of several mod-
ules (equivalent to modifying the lookup function to search
parent environments). In some languages, type declarations
can have the effect of remotely modifying behavior. (Such
mechanisms lie between the explicit invocation of a Fortran
subroutine call and AOP.) Exception generation and han-
dling can cause jumps in the execution sequence. One can
also define the system in a “feature specific” manner, so
that user-supplied code always runs in some specific circum-
stance. These latter mechanisms cause crosscutting.

62

The novelty of AOP is that the crosscutting mechanisms are
implicit (oblivious) and general-purpose. That is, examina-
tion of the source code doesn’t indicate that the crosscutting
takes place. Instead, some external mechanism performs the
surgery on the execution process. Modern AOP demands
that the crosscutting mechanism be “general purpose,” al-
lowing modifying any code with respect to the structure
of that code, not just a particular semantics. (This con-
trasts with some of the earlier special-purpose “aspect” lan-
guages [20].) Thus, a system that allows the user to define,
say, “security code” to be invoked in particular contexts is
a framework, not an AOP language.

4. MODIFYING THE INTERPRETER

The purpose of this exercise is to ask what does one have
to do to make AGPL aspect-oriented? Here we are con-
cerned with general aspect behavior, not a hook for solving
a particular problem. That is, we want to be able to invoke
arbitrary user code at joint points, not merely a selection
from some predefined or parameterized behaviors.

We first note that modifying the interpreter for the spe-
cific requirements of a particular aspect language can always
yield any (implementable) aspect language. Most generally
this is true because any implemented aspect language has
an interpreter. More specifically, every aspect language de-
fines certain elements or events as joint points, places where
it is possible to associate aspect behavior with the underly-
ing code. We can change the interpreter to pause at every
such join point and consult the (perhaps dynamic) dictio-
nary of current aspects to see which apply. (And, as many



have observed, “Anything you can do I can do meta”—in
a meta-interpreter architecture, we can delay to the meta
level the decision about whether each execution point is a
join point [4, 27].) Given a rich enough language for describ-
ing the desired aspect conditions, determining the places
that need modification (effectively, the shadow points in the
program or the execution points of such shadows in the in-
terpreter) may be an interesting problem [15, 22].

The problem with such an analysis is that changing the body
of the interpreter is the way to implement any conceivable
language. We’d prefer to restrict the changes to more neatly
describe the aspect space. More specifically, the problem is
not so much describing mechanisms to implement aspect
languages but, ideally, mechanisms that implement only as-
pect languages, or, more realistically, mechanisms whose pa-
rameterization approximates the space of aspect languages.

4.1 Advising a function

More than one research group has provided its interpreta-
tion of how best to implement AOP. Perhaps the most prim-
itive mechanism, common to most approaches is “advice”
(wrapping) [28]. With advice, the definition of a function
is embedded inside other behavior, which can execute be-
fore, after, or around the original function. Systems that
allow wrapping include Composition Filters [3], OIF [13],
AspectJ [18], and JAC [25]. A structurally consistent way
to get advice is to change the definition of functions to in-
clude advice. To advise a single function F' with advice A,
creating A(F'), we could find the pair that joins F' to its
definition, and replace its value by A(F).

More commonly, we want to advise not one function, but
an entire set of them, particularly the ones that pass some
predicate test. That is, we want to quantify over the func-
tion space. An AOP system can be built with either an
open-world or closed-world assumption. Closed world sys-
tems know at the start of execution all the code that might
run in the system. Thus, a closed-world system could im-
plement quantified advice by finding all the function def-
initions and redefining the ones that need the advice. An
open-world system can dynamically acquire new code. In an
open-world system, we also need to modify environment.set
so that function definition and redefinition work with the
advice mechanism—defining or redefining an advice-worthy
function, must make the setting include the advice.

Note that there is also a natural symmetry between set and
lookup. Anything one imagines doing at “set” time can be
done at “lookup” time, so long as sufficient information is
retained to perform the action.

4.2 Advising a field

Some AOP approaches (e.g., Hyper/J [24]) treat object fields
as combinations of other elements. For example, one has the
ability to externally state that field f in object r is to be
the same as field f’ in object ' when r and r’ are regarded
as parts of the definition of the same object, or that f in
r and f in v’ are not the same, even when r is merged
with r’. Treating a variable as a combination of other ele-
ments in some sense, is symmetric to the functional advice
problem. With functional advice, we are working in func-
tion space and know only a few combinators (e.g., before,
after, and around), though others are easy to imagine (for

63

example, consider mixins in Flavors [23]). With variables,
we’re working in variable space, and can think of a variety
of combinators—for example, the “same as” and “different”
examples, above, “union” for set-valued fields, “append” for
sequence valued ones, and so forth.

4.3 Program transformation

Several authors have argued for doing AOP by program
transformation [6, 11, 15, 16, 19]. From the point of view of
an interpreter, program transformation can be realized by
performing the transformation steps as part of the function
definition process. (This is, of course, a somewhat heavy-
handed interpretation of transformation.)

4.4 Frameworks

Frameworks (e.g., [8]) combine functional wrapping with
wrappers specific to framework decision points. This can
be seen as a structured step in function assignment. How-
ever, frameworks more naturally resemble modifying the in-
terpreter to the special case doing additional behavior on
function calling.

4.5 Field and method insertion

Some AOP approaches (e.g., [18]) allow the introduction of
additional fields and methods. Once again, these are exam-
ples of changing the semantics of environment setting.

4.6 Dynamic flow

There have been several proposals for aspects that pay at-
tention to the dynamic behavior of program execution. For
example, aspect invocation in AspectJ can be predicated
on what’s in the calling history (cflow) [18]. At the first
FOAL workshop, we argued for generally treating AOP as
generically reacting to execution events [15], a theme also
expressed by others [7, 10, 9, 16, 29]. The effects of such
proposals are more problematic for interpreter transforma-
tion. Cflow can be accommodated if we create our own stack
for the interpreter, rather than using the implicit stack of
the system executing the interpreter and search that stack at
appropriate join points. Alternatively we could change the
definitions of functions to leave appropriate markers lying
around to be recognized at the right instants. These require
some structural changes to the interpreter. Similarly, event
reaction can be seen to be requiring pervasive interpreter
change.

5. CLOSING REMARKS

In this position paper, I’ve explored the idea that the changes
required in “ordinary” interpreters to realize AOP languages
reveals elements about the essence of AOP languages. Many
(particularly the static varieties) of AOP mechanisms can be
seen as redefinition of the storage or retrieval actions in the
interpreter, often at record and method definition time. Join
point definitions that span multiple locations require the def-
inition, storage or retrieval mechanisms to “quantify” over
the space of candidate points. I've also defined crosscutting
in terms of the mixture of modules causing actions to exe-
cute, and identified AOP with that crosscutting that lacks
explicit or implicit mention in the module code.

6. REFERENCES

[1] Workshop on Advanced Separation of Concerns
(ECOOP 2001), June 2001.



2]

3]

7]

[9]

[10]

[11]

[13]

[14]

FOAL 2002: Foundations of Aspect-Oriented
Langauges (AOSD-2002), Mar. 2002.

L. Bergmans and M. Aksit. Composing crosscutting
concerns using composition filters. Comm. ACM,
44(10):51-57, Oct. 2001.

N. M. N. Bouragadi-Saddanii and T. Ledoux. How to
weave? In Workshop on Advanced Separation of
Concerns (ECOOP 2001) [1].

W. Clinger and J. Rees. Revised4 report on the
algorithmic programming language scheme. LiSP
Pointers, 4(3), 1991.

G. A. Cohen. Recombing concerns: Experience with
transformation. In Workshop on Multi- Dimensional
Separation of Concerns (OOPSLA 1999), Nov. 1999.

T. Colcombet and P. Fradet. Enforcing trace
properties by program transformation. In Proc. 27th
ACM Symp. on Principles of Programming Languages,
pages 54-66, Jan. 2000.

C. A. Constantinides, T. Elrad, and M. Fayad.
Extending the object model to provide explicit
support for crosscutting concerns. Software Practice
and Ezxperience, 32(7):703-734, May 2002.

K. De Volder, J. Brichau, K. Mens, and T. D’Hondt.
Logic meta-programming, a framework for
domain-specific aspect programming languages.
http://www.cs.ubc.ca/kdvolder/binaries/cacm-aop-
paper.pdf.

K. De Volder and T. D’Hondt. Aspect-oriented logic
meta programming. In P. Cointe, editor, Meta-Level
Architectures and Reflection, 2nd International
Conference on Reflection, volume 1616 of LNCS,
pages 250-272. Springer Verlag, 1999.

K. De Volder, T. Tourwé, and J. Brichau. Logic meta
programming as a tool for separation of concerns. In

Workshop on Aspects and Dimensions of Concerns
(ECOOP 2000), June 2000.

R. E. Filman. What is aspect-oriented programming,
revisited. In Workshop on Advanced Separation of
Concerns (ECOOP 2001) [1].

R. E. Filman, S. Barrett, D. D. Lee, and T. Linden.
Inserting ilities by controlling communications.
Comm. ACM, 45(1):116-122, Jan. 2002.

R. E. Filman and D. P. Friedman. Aspect-oriented
programming is quantification and obliviousness. In

Workshop on Advanced Separation of Concerns
(OOPSLA 2000), Oct. 2000.

R. E. Filman and K. Havelund. Source-code
instrumentation and quantification of events. In
AOSD-FOALO2 [2], pages 45—49.

P. Fradet and M. Siidholt. AOP: Towards a generic
framework using program transformation and
analysis. In Workshop on Aspect Oriented
Programming (ECOOP 1998), June 1998.

64

(17]

20]

(21]

(22]

(25]

(26]

27]

28]

29]

30]

D. P. Friedman, C. T. Haynes, and M. Wand.
Essentials of programming languages (2nd ed.).
Massachusetts Institute of Technology, 2001.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. Getting started with
AspectJ. Comm. ACM, 44(10):59-65, Oct. 2001.

G. Kniesel, P. Costanza, and M. Austermann.
JMangler—a framework for load-time transformation
of Java class files. In First IEEE Int’l Workshop on
Source Code Analysis and Manipulation (SCAM
2001), Nov. 2001.

C. V. Lopes. D: A Language Framework for
Distributed Programming. PhD thesis, College of
Computer Science, Northeastern University, 1997.

H. Masuhara and G. Kiczales. A modeling framework
for aspect-oriented mechanisms; draft.
http://www.cs.ubc.ca/

H. Masuhara, G. Kiczales, and C. Dutchyn.
Compilation semantics of aspect-oriented programs. In
AOSD-FOALO? [2], pages 17-26.

D. A. Moon. Object-oriented programming with
flavors. In Proc. ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications,
pages 1-8. ACM Press, Nov. 1986.

H. Ossher and P. Tarr. The shape of things to come:
Using multi-dimensional separation of concerns with
Hyper/J to (re)shape evolving software. Comm. ACM,
44(10):43-50, Oct. 2001.

R. Pawlak, L. Seinturier, L. Duchien, and G. Florin.
JAC: A flexible solution for aspect-oriented
programming in Java. In A. Yonezawa and

S. Matsuoka, editors, Metalevel Architectures and
Separation of Crosscutting Concerns 3rd Int’l Conf.
(Reflection 2001), LNCS 2192, pages 1-24.
Springer-Verlag, Sept. 2001.

G. Steele Jr. Common Lisp: The Language, 2nd
Edition. Digital Press, Bedford, Massachusetts, 1990.

G. T. Sullivan. Aspect-oriented programming using
reflection and meta-object protocols. Comm. ACM,
44(10):95-97, Oct. 2001.

W. Teitelman and L. Masinter. The Interlisp
programming environment. Computer, 14(4):25-34,
Apr. 1981.

R. J. Walker and G. C. Murphy. Joinpoints as ordered
events: Towards applying implicit context to
aspect-orientation. In Workshop on Advanced

Separation of Concerns in Software Engineering
(ICSE 2001), May 2001.

M. Wand, G. Kiczales, and C. Dutchyn. A semantics
for advice and dynamic join points in aspect-oriented
programming. In AOSD-FOALOQ2 [2], pages 1-8.



