
class Point1 extends Object{
private int _x, _y;

void setX(int x){ _x=x; }
int getX() { return _x; }

void setY(int y){ _y=y; }
int getY() { return _y; }
...

}

class Subject{

private Vector observers;

public Subject() { /* … */}

public void attach(Observer o)

{ observers.add(o); }

public void Notify()

{ /* foreach observer.update() */}
...

}

Composition Graphs: a Foundation for Reasoning about
Aspect-Oriented Composition

- Position Paper -

 István Nagy Mehmet Aksit Lodewijk Bergmans
TRESE Software Engineering group, Faculty of Computer Science, University of Twente

 P.O. Box 217, 7500 AE, Enschede, The Netherlands
+31-53-489 3767

{ nagyist, aksit, bergmans }@cs.utwente.nl

ABSTRACT
Aspect-oriented languages offer new modularization concepts and
composition approaches to provide more flexible solutions for the
separation and integration of concerns. There are significant
differences among aspect-oriented languages, due to the specific
language constructs that they adopt. In this paper, we propose a
common model, called Composition Graph, to represent different
aspect-oriented approaches in a uniform way that can serve as a
basis for the comparison of aspect-oriented languages. We also
present a transformation language which can be used to model
different weaving operations in our model.

1. INTRODUCTION
During the last several years, a considerable number of Aspect-
Oriented Languages (AOLs) has been introduced. Some AOLs
may be particularly suitable to program certain application
categories. We think that in order to compare and evaluate AOLs,
it is important to understand their underlying concepts.

An important characteristic of an AOL is its aspect composition
mechanism. This is the mechanism to incorporate aspects with
other aspects and/or with traditional programming abstractions.

In this paper, we focus on the aspect composition mechanisms of
languages. To this aim, we introduce a generic model, called
Composition Graph (CG), in which different aspect-oriented
composition mechanisms can be expressed uniformly and can be
compared with each other.

The structure of the paper is as follows. Section 2 presents a
simple composition problem through an illustrative example. In
section 3 we provide solutions to the problem in two different
models, namely in AspectJ[1] and HyperJ[2]. Section 4 describes
the approach. Section 5 outlines the notion of Composition
Graphs exemplified by the solutions explained in the previous
section. Section 6 demonstrates how the composition mechanisms
can be represented by graph transformation rules. In section 7 we
discuss some important related work. Finally, section 8 gives a
conclusion and presents future work.

2. An Example Problem
AOLs use several composition techniques, such as method
composition, introductions, merging of different program
elements, etc. combined with new modularization concepts to
cope with the phenomena of tangled code and crosscutting.

In this section, we introduce a method composition problem that
we will use as an instructive example in the subsequent sections.
This example is based on the Observer design pattern [3].

In Figure 1, class Point1 implements a geometrical point with x
and y coordinates as instance variables and get/set as methods.
Class Subject is the part of the Observer pattern that maintains the
list of observers for each subject, using the vector observers. This
class is responsible for the notification of the observers by the
method Notify.

Figure 2 displays a possible enhancement of class Point1, labeled
Point2, to incorporate the subject role using inheritance. This class
has the following responsibilities: a) After the execution of each
method that changes the state of the object, the notification of the
registered observers must take place. This is shown by the lines
(2) and (3). b) This class inherits from class Subject to make the
method Notify accessible for class Point1. As the source shows,

1 Obviously, this is only one possible implementation of the

Observer pattern.

Figure 1. Definition of classes Point and Subject

Figure 2. Adaptation of Point1 to support the Observer
pattern

the adaptation of the subject role results in crosscutting code. To
avoid this problem, other modularization and composition
techniques should be used.

3. Aspect-Oriented Implementation of the
Problem
In this section, we provide a simple aspect-oriented solution to the
previous example both in AspectJ and HyperJ.

3.1 Composition in AspectJ
Figure 3 displays a possible implementation of the composition of
class Point1 with class Subject in AspectJ.
Line (1) implements the language construct introduction. Here,
the superclass of class Point1 is changed from the root class
Object to the pattern defined class Subject. The pointcut
specification shown in line (2) designates the methods setX and
setY. In line (3) an after advice is bound to this pointcut
specification. This means that the code “s.Notify()” specified in
the advice will be performed after the execution of the designated
methods.

Figure 3. Definition of the aspect Notification

This problem could be solved using more sophisticated features of
AspectJ, such as abstract pointcuts [4]. For the sake of simplicity,
however, we consider this solution adequate to explain the
problem.

3.2 Composition in HyperJ
Figure 4 displays a HyperJ control file that implements an
extension of class Point1 to integrate the subject role of the
Observer pattern.
In line (1) we list the classes to be incorporated. The lines
between (2) and (3) represent the concern mapping, where

program entities are assigned to different hyperslices2. Here, class
Point is assigned to the hyperslice Feature.Kernel, while class
Subject is assigned to the hyperslice Feature.Observing. The
hypermodule specification in line (3) consists of two important
parts: identification of the hyperslices (4) that are to be integrated,
and integration relationships (5). These specify the details of the
desired composition. The line marked by (6) shows the general
integration strategy that has to be specified. Finally, the operation
bracket selects the methods to be composed from class Point (7)
and specifies that the method Notify has to be performed after the
execution of these methods (8).

Figure 4. HyperJ control file

4. Our Approach
We explain our approach using the figure at the top of the next
page. In this figure we can distinguish the lower base level and
the meta level; the models at the base level are expressed in terms
of the metamodels. We will discuss the picture from left to right,
roughly corresponding to the general process of creating and
transforming CGs.
On the left side, at the base level a number of boxes is shown
which represent actual programs. Typically these programs can be
represented by source code, byte code or an exchange format such
as XML. Each individual program follows the rule of its
programming language metamodel. The figure shows two
example programming language metamodels: AspectJ and
HyperJ. Our goal is to reason about the semantics of the
programming languages, in particular their composition
mechanisms. However, we choose to do so by considering the
semantics and compositions of actual programs as well, rather
than staying at the meta-level only.
Our approach is based on the application of a single metamodel
which is capable of representing programs from a wide range of
programming languages and paradigms: this is the Composition

2 A more detailed specification of HyperJ can be found in [2].

-hyperspace
hyperspace DemoHyperspace
composable class test.*; (1)

-concerns (2)
class Point1 : Feature.Kernel
class Subject : Feature.Observing

-hypermodules (3)
 hypermodule ObserverDemo

hyperslices: (4)
Feature.Kernel,
Feature.Observing;

relationships: (5)

mergeByName; (6)

bracket "Point1"."set*" (7)
after (8)

 Feature.Observing.Subject.Notify();

 end hypermodule;

aspect Notification{
declare parents:

Point1 extends Subject; (1)

pointcut stateChange(Subject s):
this(s) &&
execution(void Point.set*(..)); (2)

after(Subject s): stateChange(s){ (3)
s.Notify();

}
}

class Point2 extends Subject{ (1)
public void setX(int x)

{ _x=x; Notify();} (2)
public void setY(int y)

{ _y=y; Notify();} (3)
...

}

Edge &
Node Types:
OO model

Edge &
Node Types:
OO model

Program
B_AJ

Program
B_AJ Program

B_HJ
Program

B_AJ

...

Program
A_AJ

Program
A_HJ

Progr.Lang.
e.g. AspectJ

Progr.Lang.
e.g. HyperJ

Edge &
Node Types:

AspectJ

...
Composition

Graph
A_HJ

Edge &
Node Types:

HyperJ

Composition
Graph

Metamodel

Composition
Graph
A_AJ

Edge &
Node Types:
OO model

Composition
Graph
A_OO

Composition
Graph
A_OO

Composition
Graph

Metamodel

Composition
Graph

Metamodel

transformation rules

m
et

a-
le

ve
l

ba
se

-le
ve

l

Graph metamodel (the box appears repeatedly at the top right of
the picture).
For example, imagine two versions of the same program A, each
written in a different programming language (such as AspectJ and
HyperJ): by translating these two programs into Composition
Graph representations (these are the boxes in the middle of the
bottom row of the figure), we can start to compare the structure of
these programs, since they are represented in the same universal
format. The differences between the programming languages are
further visible through the different types of edges and nodes in
each CG.
We expect a number of benefits from these representations of
programs using CGs:

• Since CGs emphasize the (composition) structure and
dependencies of programs, we may use them to reason about
properties such as degrees of coupling and cohesion, e.g. by
defining metrics.

• Since programs in different programming languages can be
easily compared, we may be able to infer properties of the
programming languages (in the form of “programming
language 1 can express problem/program A with less coupling
than programming language 2”). Note that making general
assumptions based on one or a few concrete examples must be
done with great care.

• We believe that the process of representing programs in the
universal format, requiring one to define the composition
structure of the programming language as types of nodes and
edges, will yield increased insight in the workings and
essence of aspect-oriented approaches, perhaps leading to new
or generalized composition mechanisms.

A further step in defining and understanding the semantics of the
composition mechanisms can be made by translating the program
representations into CGs for a generic model: this could be a
‘traditional’ model such as the OO model, or alternatives such as
a generic AOP model. Specifying the translation has several
advantages:
1. It provides us insight into the ability to actually express a

particular functionality, and how composition mechanisms
really work.

2. If the resulting CGs are different, it will be fairly
straightforward to see whether they are equivalent
‘refactorings’ of the same program, or in fact programs with
(slightly) different semantics.

3. Defining general transformation rules, which can transform
any CG in language A towards a CG in language B, is a way
to define the precise semantics of the programming language3.

4. Hence, the essential differences in composition mechanisms
can be observed by looking at the differences between the
transformation rules.

The remainder of this paper will focus on the concept and
representation of composition graphs and transformation rules,
exemplified by the example that we introduced in section 2 and 3.

5. Composition Graphs
Composition Graphs (CGs) are used to represent certain aspects
of programs. They are especially useful to represent the structure
of programs and reason about composition mechanisms.
CGs, like abstract syntax trees (ASTs), denote structural
dependencies between different program units represented in the
program. However, CGs are different from ASTs in several
ways; they do not necessarily represent the full syntax of
languages: certain parts of programs can be compressed into one
node of the graph. CGs can also be used to explicitly represent
certain composition relationships between various program units,
such as classes, methods, advices, hyperslices, etc.

5.1 Structure of Composition Graphs
A Composition Graph consists of a set of nodes, labeled edges
and attributes. Nodes represent the program units, which may be
affected or used by the aspect weaving mechanism of the
language considered. A node can refer to other nodes or attributes
through labeled edges. An attribute refers only to its parent node
and contains information about it.
Figure 5 depicts a part of the CG of class Point1 which was shown
in figure 1. Nodes are illustrated by small circles. The left
uppermost node (1) denotes the whole class. Three attributes –
illustrated by ovals - are connected to this node through the edges

3 Note that the precision of this semantic specification depends on

the level of abstraction of the target language.

name, visibility and meta. In corresponding order the first two
attributes are the name and visibility of the class, while the third
one is a meta-attribute. Each node can have a special edge called
meta that holds meta-information about the type of the node.

Figure 5. Part of class Point represented as a Composition

Graph
The node marked by (1) has two edges that are connected to two
other nodes. The edge with the label member refers to the node
(2), which represents the method setX of class Point. This node
has also some attributes (meta, name, visibility, type of return
value) and relations with the two other nodes: the upper one (4)
corresponds to the argument of the method, while the node
marked by (5) denotes the implementation (body) of the method.
This latter node has a meta attribute and an edge, which is
connected to an assignment statement. This is the only statement
of the method. The edge called superclass refers to a node (3) that
denotes class Object, the superclass of class Point. Due to lack of
space, we have not unfolded this node completely; This node is in
fact a subgraph that has similar structure to the subgraph denoted
by (1).
Note that figure 5 shows only the part of the Composition Graph
of class Point. Other methods are represented like the method
setX, but are not shown.
The same type of representation can be applied for aspect-
oriented languages. Figure 6 illustrates a part of the aspect
Notification as a CG. The node marked by (1) corresponds to the
introduction statement in figure 3. Here, the introduction
statement is represented as a literal. This is a way to hide the
details if necessary. In fact, this node could have been expanded
to several nodes as it is illustrated by the node marked by (4). The
node at (2) illustrates the pointcut specification and also shown in
a compressed form. The node marked by (3) illustrates the advice,
which was shown in line (3) of figure 3.

Figure 6. Part of the aspect Notification shown as a CG

5.2 Setting up Composition Graphs
Composition Graphs can be derived from various software
artifacts, such as programs expressed in different languages (Java,
AspectJ, HyperJ), XML documents and UML models.
As a first step, the files that contain the source code have to be
parsed to build up their syntax tree.
In the next step, the syntax-tree is transformed into an initial CG
by adding the cross-reference relationships as edges where
necessary. For instance, in figure 5 the edge superclass is a
typical cross-reference relationship. In a syntax-tree, the name of
the superclass is an identifier, whereas in the CG, the relation
superclass denotes to the actual representation of that class (see
figure 5). In other words, in CGs every program unit which is
relevant from the point of view of weaving is uniquely
represented.
The third important step is the resolution of the nodes that contain
composition (weaving) specifications. These are represented in
CGs through additional edges and/or nodes. Figure 7 illustrates
the aspect Notification in this way. Three new edges – illustrated
by the broken arrows - are shown in figure 7. Edges marked by
(1) and (2) represent the combination of the after advice with the
methods setX and setY. The edge marked by (3) represents the
introduction, which was shown in figure 3.

Figure 7. CG of the AspectJ program after the third step

Figure 8 shows the CG representation of the hypermodule
ObserverDemo, which was described in figure 4. The edge
marked by (1) is for the mergeByName relationship between the
two hyperslices. The bracket relationship is represented by three
new edges. The first two edges marked by (2) and (3) represent
the combination of the methods setX and setY with the call
Notify(). The third edge marked by (4) denotes the change4 of the
superclass of class Point from the root class Object to the class
Subject of the Observer pattern.

4 Looking at the AST description of the woven classes in HyperJ,

we realized that the bracket relationship also changes the
superclass of the class that contains the bracketed methods to
the class of the ‘bracketer’ method if the two classes have not
been equated previously. The weaver has to enforce this
inheritance so that the method Notify can be accessed from the
class Point.

For a given language specification, there is a closed set of types
of edges and nodes. For example, in case of Java we define a fix
set of edges and nodes, which represent the conventional object-
oriented relationships. In case of AspectJ or HyperJ, we define
nodes and edges, which represent the modules and composition
constructs of these languages.

Figure 8. CG of the HyperJ program after the third step

Although languages may require specific kinds of nodes and
edges, they are all expressed using the same CG notation. This is
the key property in evaluating and comparing different AOLs.
We would like to uniformly interpret the CGs representing
programs expressed in different languages. For this purpose, we
transform the CGs that represent the aspect-oriented programs, to
the CGs that represent the object-oriented implementations of
these programs. We therefore transform every AOL specific edge
and node to the equivalent object-oriented edge and node.
Figure 9 illustrates after the transformation a part of the CG that
represented the introduction statement at (3) in figure 7. As a
result of the transformation, a new edge named superclass has

been created between the class Point and Subject, while the edge
parent-extends and the original superclass edge have been
deleted.

Figure 9. Transformation of the introduction statement

The result graph of the transformation of the after advice,
illustrated at (1) and (2) in figure 7, is shown in figure 10. Only a
new call statement has been attached to the body of the methods
setX and setY. However, this method has no return value and we
had to handle only one exit point inside the implementation of the
methods. If an after advice is combined with an execution
pointcut designator and the designated method has several return
statements then we have to see after another solution that handles
each exit point.

Figure 10. Method setX after the transformation

Note that the result graph of the transformation itself does not
provide too much information for us. However, if we contrast the
source graph of the transformation with the result graph in respect
to the related edges and nodes we can see how the composition
mechanisms of different languages differ from each other. For
example, we can recognize that only one composition structure of
an aspect-oriented language is able to implement a complex
composition problem, which results in at least three or more

standard object-oriented relationships, while another aspect-
oriented language needs at least two or more composition
structure in order to achieve the same realization.
We propose a transformation language to formulate the
transformation processes that practically correspond to the
weaving operations.

6. TRANSFORMATION LANGUAGE
In this section we outline a transformation language by which we
can describe how the result graphs can be obtained from the
source graphs.

6.1 Selecting Graph Fragments
To transform a set of edges and nodes of a graph into another set
of edges and nodes first we have to be able to designate certain
nodes and edges in the graph that serve as an input of the
transformation. We experienced that aspect-oriented language
abstractions are typically represented by multiple nodes and edges
in Composition Graphs. Therefore, we initiate a query-based
technique to select multiple nodes from CGs based on their
relationships.

The queries employ formulas of predicate logic with free
variables. We used set notation to highlight the free variables. The
general form of a query expression, similarly to the tuple
relational calculus, is

{t | P(t)}

where t is a free variable and P is a predicate. The variables can
be quantified: ∃(there exist), ∀(for all). In our model predicates
are parameterized propositions that formulate statements whether
an edge between a node and an attribute (or between two nodes)
exists or not in the CG. The skeletons of the propositions look like
these: node.edge=value and node.edge→node. Predicates can be
composed of other predicates by using logical connectives. The
result of the query is a set of references to the nodes that satisfies
the predicate if they are substituted with the free variables.

As a simple example, let us see the following query expression:

{ X | X.meta = class AND X.name = Point }

This query will select each node that has a meta edge referring to
the attribute class and a name edge referring to the attribute Point
In other words, the result of this query is a set of references to
such nodes that denote classes with the name Point (e.g. two
classes with the same name can be placed in different packages or
hyperslices).

A more complex example is the following:

 {Y | Y.name=setx AND ∃X∃Z(X.member→Y AND
 X.superclass→Z AND Z.name = Subject)}

This query will designate each method with the name setX placed
in a class that inherits from the class Subject.

By default, the query is executed against the whole graph. There
are situations, however, where the scope of the query should be
narrowed to only one or more subgraphs of the complete graph.
For this purpose, we use scoping expressions that determine a set
of subgraphs in order to narrow the scope of the query.

Point
Object

name

superclass <deleted>

name

class meta

meta class

member

Subjectname

class

member

meta

parent-extends <deleted>
superclass <new>

The general form of a scoping expression is

 <N1, E1> [on <N2, E2> on … on <Nn, En>]

where N is a query expression and E is a set of labels of edges
from the original graph. Nodes selected by N denote the root
nodes of the subgraphs, while labels in E indicate those edges
only which are allowed to connect the nodes in the subgraphs.
Scoping expressions can be defined recursively on other scoping
expressions.

As a simple example, let us see the following scoping expression:

 <{ N | N.meta = method AND N.name = foo }, {statement}>

In this example the node that corresponds to the method foo will
be the root node of the subgraph and the nodes in this subgraph
can be connected through only one type of edge that has the label
statement.

An application of this scoping expression is shown by the
following example:

 {RS | RS.meta = return-statement} on

 <{ N | N.meta = method AND N.name = foo }, {statement}>

In this example a query expression is combined with the previous
scoping expression that selects every return statement from each
method called foo in the whole CG.

Based on the structure of CGs not only different types of program
units but also program statements, such as calls, field
reading/writing, etc. can be designated in an elegant manner.

6.2 Transformation Rules
The general form of a transformation rule is
 {Identifying pattern}
 {Context pattern} > Transformation Statement
where the identifying pattern and context pattern are query
expressions, and the transformation statement is the application of
a modification type on the nodes selected by the identifying and
context pattern. Typical modification types are adding a node or
edge to a graph, removing a node or edge from a graph, changing
an edge to another one, etc. The identifying pattern identifies
those edges that should be eliminated from the CG by the
transformation. Sometimes, in the context of the identifying
pattern, additional nodes and edges have to be used as input of the
transformation. The context pattern designates these ones. The
identifying pattern therefore can be regarded as a part of the
context pattern.
The following example shows a simple transformation rule:

 {X,Y | X.parent-extends→Y} (1)

{} > Change(Y.superclass→X) (2)
The query expression (1) designates a set of pairs of nodes which
are connected via a parent-extends edge with each other. The
transformation statement (2) changes the edge parent-extends
between each pair of nodes to the edge superclass. Figure 9
illustrates the application of this transformation rule. We did not
have to select additional nodes and edges for the transformation,
thus, the place of the context pattern left empty.

The transformation rule which is intended to eliminate the after
edges in figure 7, at (1) and (2) looks like this (the woven
methods have only one exit point, no return value):

(1) {X,Y | X.after→Y}

(2) { MB, S | Y.body→MB AND ∃A∃B(X.member→A AND

A.meta=advice AND A.body→B AND B.statement→S
)}

(3) > AppendAfter(MB.statement→S)
The identifying pattern (1) selects pairs of nodes connected
through the edge after. The context pattern (2) selects the node
that denotes the body of the method (MB), and the nodes that
denote the statements in the advice (S). The transformation
statement (3) appends these latter nodes to the former one.

Naturally, there may be nodes and edges that cannot be directly
transformed into the desired form of graph in only one step. In
this case a sequence of transformation rules has to be applied in
order to achieve the CG with the proper characteristics. For
example, merging two hyperslices typically requires the
application of more than one transformation rule. On the top level
the merge relationship is denoted by only one edge between the
two hyperslices. In the first transformation step this edge is
processed and a new merge edge is created between each pair of
nodes that denote the units of these hyperslices. If some of these
units are classes than the merge edge between those classes has to
be processed again; in this way, the merge relationships are
pushed down to the level of methods of those classes. This
process ends up with the merging of methods.

This latter process is known as derivation sequence in the
terminology of graph transformation systems. We actually found
that this graph transformation language falls into the category of
algebraic graph transformation approaches [5].

7. RELATED WORK
In [6], the authors propose a framework by which the core
semantics of five aspect-oriented tools, namely AspectJ,
DemeterJ, HyperJ, Open Classes, QJBrowser, can be modeled in
terms of nine properties. These properties cover, among others,
the language the input programs are written in, how the input
languages indentify join points and how the input languages
contribute to the semantics at the join points. The authors also
provide a definition for the term crosscutting in terms of the
model. However, they had difficulties to achieve a common
weaver structure for all five models. Without a common
representation the evaluation of AOP languages is difficult. In our
approach we will try to provide a more generic model that can
help to understand the composition mechanism of these
languages.
Assman in [7] presents a GRS-based (Graph Rewrite System)
aspect-oriented programming approach, in which aspects,
joinpoints and weaving have well-defined and precise semantics
in terms of graph-rewriting. In GRS-based aspect-oriented
programming aspect composition operators correspond to graph
rewrite rules, weavings are direct derivations, and weaved
programs are normal forms of the rewrite systems. In accordance
with this approach we use a common graph transformation system
to model the different types of composition mechanisms of the

existing aspect-oriented languages in a uniform way. However, in
our work we focus on the evaluation of the aspect-oriented
languages and we regard the graph notation only as a means that
helps to reason on the composition mechanisms.
QJBrowser [8] is a code exploration tool by which various
program elements can be extracted from a source model and
presented in a hierarchical view. A selection criterion determines
what elements should be extracted from the program. This
criterion is defined as a query in terms of first order predicates.
The query is executed against the source model and results in the
tuples of the selected properties. In our approach we use a similar
technique to select certain nodes of the CGs.
Mens in [9] presents conditional graph rewriting as a domain-
independent, formal approach for managing unanticipated
software evolution. He proposes labeled typed nested graphs to
represent complex software artifacts and graph rewriting to
control the evolution of these artifacts. Similarly, we would like
to use CGs as a domain independent formalism to model different
program units and graph transformation as a formalism to
describe weaving operations.

8. CONCLUSION & FUTURE WORK
In this paper, we have introduced the concept of Composition
Graphs as a means for reasoning about (aspect-oriented)
composition. We have illustrated how CGs can be used to
represent a simple example program, expressed in Java, AspectJ
and HyperJ, respectively. Subsequently, we demonstrated how
composition (or weaving) mechanisms can be represented by
transformation rules upon CGs.

This paper aims at laying the foundation for further work in
reasoning about composition mechanisms.

• We may use CGs to reason about properties such as degrees
of coupling and cohesion, e.g. by defining metrics.

• We believe that we can define the semantics of composition
mechanisms effectively by specifying general transformation
rules, which can transform any CG in language A towards a
CG in language B. Hence, the essential differences in
composition mechanisms can be observed by looking at the
differences between the transformation rules.

• We expect that the application of CGs to represent a variety
of programs in different AOLs will yield increased insight in
the workings and essence of aspect-oriented approaches,
perhaps leading to new or generalized composition
mechanisms.

Although we have already gained some experience in modeling
programs in different AOP languages as CGs, there are still
several issues left to be addressed as future work. First of all, we

have to refine the structure of the graphs in case of each language.
In other words, we want to enrich the set of types of nodes and
edges that represent AO composition structures. Besides, the
transformation rules also have to be specified in order to reason
about the corresponding composition mechanism.
Further issues that we plan to address shortly:

• Improving the representation/visualization of the CGs

• Address the ability to model both static composition and
runtime composition.

• Define metrics to judge certain characteristics and quality
attributes of programs represented as CGs.

• Analysis and comparison of existing composition mechanisms
and identification of new composition mechanisms

We intend to explore the application of transformation rules to
create code generators.

9. REFERENCES
[1] Kiczales, G. et al., An overview of AspectJ, in Proceeding

ECOOP 2001, LNCS 2072, J.L. Knudsen, Editor. 2001,
Springer-Verlag: Berlin. pp. 327-353.

[2] Ossher, H. and P. Tarr, Hyper/J: Multi-dimensional
separation of concerns for Java, in Proceeding 23rd
International Conference on Software Engineering. 2001,
IEEE Computer Society. Pp. 729-730.

[3] Gamma, E. et al., Design Patterns: elements of reusable
object-oriented software. 1995, Addison-Wesley.

[4] Hannemann, J. and G. Kiczales, Design pattern
implementation in Java and AspectJ, in Proceeding OOPSLA
’02. 2002, ACM SIGPLAN Notices.

[5] Rozenberg, G. (ed.), Handbook of Graph Grammars and
Computing by Graph Transformation, vol. 1., 1997, World
Scientific.

[6] Masuhara, H. and G. Kiczales, A Modeling Framework for
Aspect-Oriented Mechanism, in Proceeding ECOOP ’03.
2003.

[7] Assman, U. and A. Ludwig, Aspect Weaving by Graph
Rewriting, 1999, Generative Component-Based Software
Engineering (GCSE), p. 24-36.

[8] Rajagolopan, R. and K.D. Volder, QJBrowser: A Query-
Based Approach to Explore Crosscuting Concerns. 2002,
submitted for publication.

[9] Mens, T., Conditional Graph Rewriting as a Domain-
Independent Formalism for Software Evolution. 2000,
Lecture Notes in Computer Science, Springer-Verlag.

