
TinyC 2: Towards building a dynamic weaving aspect
language for C ∗

Charles Zhang and Hans-Arno Jacobsen
Department of Electrical and Computer

Engineering
and Department of Computer Science

University of Toronto
10 King’s College Circle

Toronto, Ontario, Canada

{czhang,jacobsen}@eecg.toronto.edu

ABSTRACT
The runtime behaviors of software systems are often subject
to alteration or intervention after their development cycles
for various reasons such as performance profiling, debug-
ging, code specialization, and more. There are two separate
domains related to the instrumentation of software systems,
one being various performance measurement and instrumen-
tation tools, the other the new aspect oriented programming
(AOP) paradigm. This paper describes TinyC2 language, a
language approach which experiments with the idea of im-
plementing an aspect oriented language based upon existing
system instrumentation techniques. Like other aspect ori-
ented languages, TinyC2 uses new language constructs to
allow programmers to intentionally compose systems in the
dimensions of both components and aspects. In this paper,
we discuss both the grammatical features and the compiler
architecture of the TinyC2 language. Through the TinyC2

implementation, we demonstrate that a language approach
can well bridge the gap between the AOP paradigm and
the existing system instrumentation technologies. It greatly
simplifies code instrumentation effort and provides runtime
optimization at the application level.

Keywords
Aspect Oriented Programming, Compiler, Dynamic Instru-
mentation, Dynamic Weaving, Source-to-source translation
Proceedings

1. INTRODUCTION
Programming methodologies have evolved from direct machine-
level coding to object-oriented programming. Good modu-
larization capability in the programming language design

∗In: Foundation of Aspect Oriented Languages Workshop in
conjunction with 2nd AOSD Conference 2003, Boston, MA.

allows software architects to successfully tackle two issues:
the ever growing complexity of software systems and the
increasing diversity and volatility of the execution environ-
ment. Besides improving language designs, there has also
been extensive work on finding better compiling techniques
to provide effective adaptations for software systems and
to efficiently support a wide spectrum of hardware plat-
form and computing resources [6, 5] that change dynam-
ically. However, compiler-based program adaptation and
optimization techniques are powerful but limited if the op-
timization involves changing the functional behavior of the
system. These optimization tasks include adaptations to
many domain specific characteristics, such as state valida-
tion conditions, synchronization strategies, logging strate-
gies, and many others. It is very difficult to build compilers
to make such application level decisions flexibly.

To overcome this difficulty, it becomes necessary to perform
post-development transformation to large software systems
according to specific usage scenarios. The post-development
transformation mainly includes modifications made to soft-
ware systems after their development cycles. A major stream
of manipulation techniques includes tools that provide source-
code level instrumentation, as in SvPablo1, and post-
compilation instrumentation techniques as in jContractor2

and Vulcan [4]. Dyninst [7] and the Paradyn3 performance
tools provide runtime instrumentation to C/C++ systems.
Another stream of program manipulation techniques mainly
belong to the aspect oriented programming paradigms [9],
where “instrumentation” has the first-class status in the lan-
guage design and can be used to compose system functional-
ity. AOP advocates composing systems using different sets
of models and leaving the integration work to the AOP com-
piler which is also referred to as the aspect weaver.

Code instrumentation techniques and aspect oriented pro-
gramming are two fields that are developed independently.
We think that those two domains are fundamentally com-

1SvPablo: A Graphical Source Code Browser for Perfor-
mance Tuning and Visualization http://www-pablo.cs.
uiuc.edu/Project/SVPablo/SvPabloOverview.htm
2Java Implementation of Design By Contract for the Java
Language http://jcontractor.sourceforge.net/
3Paradyn. http://www.cs.wisc.edu/~paradyn/

25

patible as they both perform a certain type of after-the-
fact transformation to the existing software systems. An as-
pect oriented language provides a more powerful approach
in terms of methodology. We think that the various code
instrumentation techniques can be treated as means to real-
izing the methodology in practice. The main motivation of
our work is to experiment with such ideas by developing an
aspect language using existing code instrumentation tech-
niques. The advantage of using a hybrid language is two-
fold. Firstly, a hybrid language design which decouples the
language semantics from the backend implementation plat-
form can increase the configurability and the adaptability of
the aspect language. The compiler is able to readily take ad-
vantage of the advances in the code instrumentation domain
by selecting different lower-level implementation strategies
to instrument the system, i.e. to weave aspects, under dif-
ferent circumstances. Secondly, since a language provides a
high level abstraction of the instrumentation semantics, it is
easy to understand, to change, and to maintain the instru-
mentation code. This technique is also applied in [3] and
[8].

The second motivation of our work is that for most of the
AOP languages today, including AspectJ4, Hyper/J5, As-
pectC6 and AspectC++7, the transformation of programs is
done statically either at the source-code level or at the byte-
code level. To maximize the benefit of multi-dimensional
programming, it is desirable to have the support for dynamic
transformation since a lot of platform specific parameters
are not available until runtime. HandiWrap [1] is a runtime
weaving aspect language for Java. In the C/C++ program-
ming domain, we are not aware of any previous work in
aspect languages that provide dynamic weaving. The run-
time weaving property is directly supported by the Dyninst
library. We are interested to see how an aspect oriented
language can take advantages of platforms like Dyninst in
supporting dynamic adaptations.

We have developed the TinyC2 language, which is a proto-
type aspect language. The language is designed to be an
extension of the C language with new language constructs
to enable the composition of aspect programs. This is also a
common language design approach used in AspectJ and As-
pectC++. The compiler of TinyC2 is essentially a source-to-
source translator that translates C statements to the API in-
structions of the target instrumentation tool. We construct
the compiler to be independent of any particular instrumen-
tation techniques, thus, give the compiler the flexibility of
switching to different instrumentation tools. Currently, we
have implemented support for the Dyninst runtime instru-
mentation platform. Due to the runtime instrumentation
nature of Dyninst, TinyC2 can be treated as the runtime
weaving aspect language.

The rest of the paper is organized as follows: Section 2
presents the related work regarding aspect oriented language
designs. Section 3 presents a detailed description of the new
language features of TinyC2. The architecture of the com-

4AspectJ http://www.aspectj.org
5HyperJ http://www.alphaworks.ibm.com/tech/hyperj
6AspectC http://www.cs.ubc.ca/labs/spl/projects/
aspectc.html
7AspectC++ http://www.aspectc.org

piler is also discussed in this section. Section 4 uses three
case studies to demonstrate the effectiveness of the dynamic
weaving nature of TinyC2 in addressing runtime crosscut-
ting concerns. Section 5 presents runtime characteristics of
TinyC2. Section 6 concludes the paper.

2. RELATED WORK
There are a number of aspect oriented programming lan-
guages in C and Java flavours. AspectJ adds an aspect
oriented extension to the Java programming language. As-
pects are AspectJ’s units of modularity. They are defined
in terms of pointcuts, advice, and introductions. By adding
these simple constructs, AspectJ enables the clean modu-
larization of crosscutting concerns such as synchronization,
context-sensitive behavior, and multi-object protocols.

Hyper/J is developed by IBM. It also supports multi-
dimensional separation of concerns for Java. It provides the
ability to identify concerns, specifies modules in terms of
those concerns, and synthesizes systems and components by
integrating those modules. It operates on standard Java
class files, without need of source, and produces new class
files to be used for execution.

AspectC++ is an application of the AspectJ approach to
C++. It is a set of C++ language extensions to facilitate
AOP with C++. It provides language features that allow a
highly modular and thus easily configurable implementation
of monitoring tasks and supports reuse of common imple-
mentations. AspectC++ offers virtual pointcuts and aspect
inheritance to support the reuse of aspects. AspectC is an
extension to the C language based on the AspectJ technolo-
gies. It is being developed concurrently with the a-kernel8

project at UBC.

MDL [12] is a language built by the authors of Dyninst. It
is specifically designed for performing runtime instrumenta-
tion using the Paradyn runtime code generation platform.
The language is specialized for writing instrumentation re-
quests in terms of performance metrics. The MDL code is
parsed and translated to Paradyn instructions. Although
the authors of MDL do not mention AOP, since their lan-
guage can capture crosscutting concerns, we categorize it as
one type of aspect language.

3. THE TINYC 2 LANGUAGE
The design goal of the TinyC2 language is to provide a lan-
guage perspective in terms of code instrumentation, and, at
the same time, to establish a framework for implementing a
post-compilation weaving aspect language that uses the C
syntax and a third party instrumentation tool as the back-
end. The rest of the section describes the language in detail
from both the syntactic point of view and the compiler ar-
chitecture perspective.

3.1 Language Features
Using aspect oriented programming terms, the component
programs of TinyC2 can be composed in the C language.
The aspect program is composed using TinyC2. Similar
to AspectJ, TinyC2 implements standard C grammar rules

8a-Kernel http://www.cs.ubc.ca/labs/spl/projects/
a-kernel.html

26

with the addition of a few new syntactic constructs. Pro-
grammer can use the regular C syntax to compose code
blocks. However, the basic modularization units in TinyC2

are not functions as in C but “snippet”s. A snippet is a
unit of aspect implementation. It encapsulates a code block
and defines the “weaving” points in the component program
where the aspect code is inserted. Snippets are functionally
equivalent to the “joinpoint” and “advice” concepts in an
“aspect” module in AspectJ.

void trace(char ∗); 1

onentry Service(int size) : (int totalsize) 2

{ 3

trace("function service is called\n"); 4

if(size>0) 5

{ 6

totalsize=totalsize+size; 7

} 8

9

} 10

onexit int retv Service(int size) : (int totalsize) 11

{ 12

trace("function service is exiting\n"); 13

if(retv<0) 14

{ 15

totalsize=totalsize−size; 16

} 17

18

} 19

20

Figure 1: Snippet: onexit and onentry constructs

Let us look at the constructs of “snippet”s more closely
through Figure 1. This code snippet illustrates how to im-
plement the typical logging and tracing functionality as an
aspect program in TinyC2. This aspect program, like in
regular C programs, first declares the prototype of the func-
tion trace (Line 1). The first section of the program (Line
2-10) traces the invocations of the function Service in the
target system. That is, before the Service is executed, a
message is logged (Line 4) and the size is added to a total
size (Line 7) if the size is bigger than zero. More specifically,
the onentry construct is defined as follows:

onentry FunctionName (formals list) : (formals list)

The construct binds the following identifiers in the com-
ponent program: 1. function names and these formal pa-
rameters (arguments); 2. global variables in the component
program designated by the formals after the “:”.

The second code segment (Line 11 - 19) presents an example
of the construct onexit. This snippet logs a message before
the function Service returns. It also performs some post-
invocation checking so that, if the Service function returns
a negative value possibly meaning an error, the service size is
subtracted from the total size. The onexit construct can be
used to insert new behavior after a certain function finishes
executing. We define the syntax of onexit as follows:

onexit formal list FunctionName (formals list) : (for-

mals list)

The difference of the onexit construct as comparing to on

entry is that onexit allows us to bind to the return value
of the function which is designated by the formal before the
function name. The formal grammar definition of these two
“snippet” constructs are defined using EBNF in Figure 2
and Figure 3.

onentry 1

: TK onentry ID LPAREN 2

(formalParameter (COMMA formalParameter)∗)? 3

RPAREN COLN LPAREN 4

(formalParameter (COMMA formalParameter)∗)? 5

RPAREN 6

block 7

8

Figure 2: Grammar definition for onentry

onexit 1

: TK onexit (formalParameter)? ID 2

LPAREN 3

(formalParameter (COMMA formalParameter)∗)? 4

RPAREN COLN LPAREN 5

(formalParameter (COMMA formalParameter)∗)? 6

RPAREN 7

block 8

Figure 3: Grammar definition for onexit

Currently, the TinyC2 provides a simple pattern matching
mechanism based on the prefix of the function names and
their return types. In addition, the wildcard character “*”
can be used to match all functions. The prefix-based match-
ing can be extended to the regular-expression-based match-
ing. The pattern can be defined using the “group” keyword
as follows (the vertical line denotes an OR relationship):

onexit | onentry formal list group prefix of function |

* (formals list) : (formals list)

Currently, TinyC2 supports integer and character compu-
tations. It supports conditional statements such as if and
else. The for and while loops are also supported by the
language.

3.2 Compiler Architecture
Generally speaking, the compiler of TinyC2 is essentially a
source-to-source translator built on top of the ANTLR9parser
generator tool, formerly known as PTTCS. ANTLR uses a
LL(K)-based language parsing scheme to parse a grammar
file and generates the corresponding parser. The TinyC2

compiler consists of three main components: the grammar
file for the language, the lexer and parser generated from the
grammar file, and the backend code translator and genera-
tor. Programs written in TinyC2 language are translated
by TinyC2 compiler to a source file written according to

9ANTLR: ANother Tool for Language Recognition.
http://www.antlr.org

27

Figure 4: Compilation process of TinyC2

the application programming interface of the target instru-
mentation platform. The generated source file then can be
compiled again using the common language compiler of the
runtime platform. It is the responsibility of the instrumenta-
tion platform to integrate the generated aspect system and
the component program together. That process is illustrated
by Figure 4.

The grammar understood by ANTLR is very similar to the
extended BNF grammar rules with additional manipulation
options that can be defined together with the grammar.
Therefore, during the evaluation process of the grammar
against a source code file, a large number of customized tasks
can be carried out by ANTLR to perform specific analysis
tasks regarding the target language, such as tree walking,
code translation, and many others.

The TinyC2 compiler is entirely composed in Java. The
most fundamental component of the translator is the Snippet
class which is the abstraction of the generated code for a par-
ticular language element in TinyC2. The extended or sub-
types of the abstract class Snippet provide concrete code
translation for a specific code instrumentation platform. As
the parser finishes parsing the entire source code file, a parse
tree is built consisting of various levels of snippets. A hier-
archy of snippet objects corresponds to the structure of the
source program which is defined by a finite set of grammar
rules. The creation of a snippet hierarchy is illustrated by
the following example.

In TinyC2, the following rule defines the conditional if

statement.

statement: 1

| TK if LPAREN iexpr RPAREN statement 2

(TK else statement)? 3

iexpr: ID (GRT|LET) expr 4

Figure 5: Grammar definition for if statement

The rule in Figure 5 defines that an if statement consists of
a token “if” followed by “(” (LPAREN), then by an inequality

expression, the token “)” (RPAREN), and a statement. The
product of the rule itself is also a statement. The iexpr rule
defines that the inequality statement is in the form of an
identifier followed by either “>” (GRT) or “<” (LET) symbol,
and then by a compound expression. Although those rules
are indifferent from the C grammar rules, ANTLR allows
us to directly place program code to get executed when a
matching of the rule occurs during parsing. The code is then
placed verbatim in the generated parser code. Figure 6 is
the same rule given above embellished with Java code.

statement 1

returns [Snippet s = null] 2

{Snippet subexpr, ifexpr,elsexpr;} 3

| TK if LPAREN subexpr=iexpr 4

RPAREN ifexpr=statement 5

{ 6

s = new DyninstSnippet("if"); 7

s.addSnippet(subexpr); 8

s.addSnippet(ifexpr); 9

} 10

(TK else elsexpr=statement 11

{s.addSnippet(elsexpr);} 12

)? 13

Figure 6: Defining parsing behavior for if statement

To look at code example in Figure 6 more closely, line 2-3
instructs ANTLR to generate and to return a Snippet class
for statement after finding a matching of the statement

rule. Line 3 declares three sub-snippets that a snippet for
the if statement consists of: the snippet for the condition
statement, the snippet for the code block of the if branch,
and the snippet for the code block of the else branch. Line
6-9 is the inserted code to actually create the snippet object
of type if which knows how to generate the code for if

statements. The three snippets representing the three parts
of if blocks are inserted into the if snippet at line 8, 9 and
12. For example, to parse the statement: if(a>b) b = b *

a;, a hierarchy of Snippet objects are built as illustrated in
Figure 7. The left of the figure is the parse tree of the if

statement. On the right is the image of the composition for
the Snippet representation. Each box is the boundary of a
Snippet object. The label denotes the type of the Snippet.

28

Figure 7: Snippet construction

And the symbol in the bracket represents the token(s) that
the corresponding Snippet is responsible to translate into
the target language. The labels following the arrows are the
actual class types in the target instrumentation API that
each corresponding snippet is translated to.

The design of the Snippet follows the Composite [11] ar-
chitectural pattern since a complex grammar rule can be
treated as a composite of the basic rules. To provide specific
code translation functionality, extensions to the abstract
Snippet class need to be defined. A concrete Snippet class
extends the abstract method getCode to generate the actual
target code for the corresponding language segment. In our
current implementation, the translation from the TinyC2

code to Dyninst API is carried out by the DyninstSnippet
class. The code generation is initiated by invoking getCode

at the top of the Snippet hierarchy which is the outer most
box in Figure 7. The invocation then recursively traverses
through all snippet classes after the parsing is finished. Al-
though the instances of the DyninstSnippet class are created
directly in the parser, it is easy to decouple the generated
parser from any knowledge of the concrete Snippet class by
using a Factory [11]. Therefore, the TinyC2 compiler can be
made backend independent by seamlessly switching to any
other specialized Snippet class at class loading time.

3.3 Dynamic Weaving Mechanism
The current implementation of the backend code generator is
targeted at the Dyninst runtime instrumentation platform.
Therefore, the TinyC2 code is firstly translated into C++
code in the Dyninst library API. The translated code is then
compiled by a regular C++ compiler to generate a binary
executable which is linked to the Dyninst instrumentation
library. The executable is started with the process informa-
tion of the target running system. The Dyninst library is
responsible for properly inserting the code into the address
space of the target program. The insertion mechanism is
based on system services used by debuggers. Detailed infor-
mation on how Dyninst works can be found in [7].

Leveraging the dynamic instrumentation capability of Dyn
inst, TinyC2 can be classified as a dynamic weaving aspect
language. The language can be used to perform traditional
non-functional activities such as tracing and performance
analysis. Moreover, benefiting from the modularization ca-

pability of the language, it is convenient to develop, to main-
tain, and to evolve sophisticated aspect programs to inten-
tionally change the runtime behavior of the system in a
systematic manner. To understand the applicability of the
dynamic weaving aspect languages, we present three case
studies of the language in the following section.

4. CASE STUDIES OF TINYC2

We can use dynamic-weaving aspect languages to increase
the portability, the adaptability and the reusability of shared
libraries. The reusability and the portability of libraries
can be greatly improved by maintaining the properties of
domain-independence and platform-neutrality. However, in
practice, domain specific or platform specific constraints al-
ways require adaptations in either the library code or the ap-
plication layer. Some of these constraints require changing
the code in a crosscutting fashion and, thus, can be modeled
by aspects. The problem with statically composed libraries
including those built on static-weaving aspect languages is
that it is not possible to pre-configure different versions of
the shared code for every application domain or platform.
And it is not safe to assume that the domain or platform spe-
cific runtime constraints are always properly addressed by
the applications. Thus, runtime adaptation of libraries can
be a very attractive feature especially for migrating code and
dynamically configured systems. In this section, we present
three case studies to illustrate such adaptations and the kind
of problems these adaptations solve.

4.1 State Validation
Libraries are often shared among different application do-
mains at runtime. Same results computed by the library
might subject to different interpretations and different def-
initions of validity depending on the domain-specific com-
puting requirement. We use an example to illustrate this
scenario. Suppose that we want to develop a math library
that provides a collection of functions to perform various in-
teger related mathematical computations. For example, in
mathematical or scientific applications, there can be no lim-
itation to the operating range of integer values. However, in
some particular computing domains such as our hypothetical
statistical application for populations, there can possibly be
some constraints regarding the operating range of integers
and, thus, a negative result should trigger an application er-
ror. Since the goal of library design is generality, one must

29

not hardcode the data validation logic into the library. One
possible solution is to apply the validation code at every call
site of the library functions that return integers. This causes
the same checking code to scatter all over the places. The
bloated code greatly degrades maintainability.

A more elegant and powerful solution is to compose the vali-
dation layer in TinyC2 as aspect programs. This layer can be
“woven” into the library dynamically in runtime as needed.
This layer is unloaded when the library is linked into other
applications. In TinyC2, this runtime adaptation layer can
be composed using the 7 lines of code in Figure 8.

onexit int retv group ∗ : 1

(int errorno, char ∗ errormsg) 2

{ 3

if(retv < 0) 4

{ 5

errorno=ILLEGAL RESULT; 6

errormsg="Result cannot be negative"; 7

} 8

} 9

Figure 8: Domain specific validation in TinyC2

We use the onexit construct to apply the validation (line 1).
The onexit construct binds all the functions in the target
system that return integers by using the wild card (“*”)
matching capability of the group keyword. The variable
retv binds the specific return value of these functions. Line
2 binds global variables errorno and errormsg in the target
system assuming the target system supports system wide
error code schemes similar to the errorno of Solaris. The
body of the onexit construct is very straightforward. It sets
the errorno to the error code ILLEGAL RESULT and assigns
the error message in the target system.

If we save the file in t.c, we can invoke the compiler as java
tc t.c > Mutator.cpp. The output Mutator.cpp is dis-
played in Figure 9. Lines 1-11 attach to the running process
identified by its process name and process ID. Lines 12-14 in-
voke the findGroupProcedurePoints method to obtain the
instrumentation points for all the functions that return in-
tegers. All the instrumentation points are collected in an
object of type BPatch pointgroup. Lines 20-25 create three
variables to hold two global variables and the variable for
the return value of the function. Lines 26-43 contain a while

loop which iterates through every instrumentation points in
the collection and inserts the if statements at these points
in the address space of the target program.

This example shows that, although Dyninst API can be used
directly by programmers, it is tedious to implement even a
simple functionality. The program in Dyninst is consider-
ably more complex and lengthy (24 lines) than our aspect
program (7 lines) in TinyC2. More importantly, the TinyC2

program greatly improves the reusability and the adaptabil-
ity of library code since no changes are made to both the
math library and the application code.

#include "BPatch.h" 1

int main(int argc, char∗∗ argv) 2

{ 3

BPatch bpatch; 4

char∗ name = argv[1]; 5

int pid = atoi(argv[2]); 6

printf("Attaching to %s pid %d\\n", name, pid); 7

BPatch thread ∗ appThread = 8

bpatch.attachProcess(name, pid); 9

appThread−>continueExecution(); 10

BPatch image ∗appImage = appThread−>getImage(); 11

BPatch pointgroup 12

∗star exit=appImage−> 13

findGroupProcedurePoints("*","int",BPatch exit); 14

if (!star exit | | (∗star exit).size() == 0) 15

{ 16

printf("Unable to find exit point to \"*\""); 17

exit(1); 18

} 19

BPatch variableExpr ∗errorno = 20

appImage−>findVariable("errorno"); 21

BPatch variableExpr ∗errormsg = 22

appImage−>findVariable("errormsg"); 23

BPatch variableExpr ∗retv = 24

appThread−>malloc(∗appImage−>findType("int")); 25

while((BPatch Vector<BPatch point∗> ∗point= 26

star exit−>getNextPoint())!=NULL) 27

{ 28

appThread−>insertSnippet(BPatch arithExpr(29

BPatch assign, ∗retv, BPatch retExpr()), 30

point); 31

appThread−>insertSnippet(BPatch ifExpr 32

(BPatch boolExpr (BPatch lt, ∗retv, 33

BPatch constExpr(0)), 34

BPatch arithExpr(BPatch assign, 35

∗errorno, BPatch constExpr(1))),∗point); 36

appThread−>insertSnippet(BPatch ifExpr 37

(BPatch boolExpr (BPatch lt, ∗retv, 38

BPatch constExpr(0)),BPatch arithExpr 39

(BPatch assign, ∗errormsg, 40

BPatch constExpr("Result cannot be negative") 41

)),∗point); 42

} 43

exit(1); 44

} 45

Figure 9: Mutator.cpp:A mutator program in full
Dyninst API

4.2 Adaptive Character Encoding
The bit format for representing characters has evolved from
ASCII-based single-byte encoding to multi-byte character
encoding such as Unicode. For legacy systems built on the
single-byte character encoding, processing information en-
coded by multi-byte character sets can produce erroneous
results. There exist several solutions to support different
character encodings in legacy code. One solution aims at
providing a translation layer in between applications and
the legacy code. Microsoft introduces MSLU10 to handle
the encoding translation between Unicode windows appli-
cations and windows 9X operating systems which do not
support Unicode. A second solution relies on smart com-
pilers to convert the character encoding. It requires re-

10http://msdn.microsoft.com/msdnmag/issues/01/10/
MSLU/default.aspx

30

compilation of the system. For example, gcc11 users can
use the -fshort-wchar switch to generate 16-bit characters
rather than the default 4-byte characters.

In a dynamic setting, both solutions fall short because they
require the prior knowledge of the target platform and the
pre-configuration of the system before the application can
run. During runtime, a library could possibly be dynam-
ically linked into several multi-byte applications, some use
one type of encoding and some use another type. It is not
possible to know what type of encoding to deal with un-
til the application is running. In these situations, we can
use TinyC2 to compose the translation layer on top of the
legacy code. This translation layer can be inserted into the
library dynamically at run-time when it is needed. For illus-
tration purposes, suppose in our hypothetical library, which
only supports ASCII encoding, there is a group of func-
tions which are responsible for maintaining a global mes-
sage buffer. To prevent unpredicted results, our adaptation
layer should first convert the characters in the buffer from
a foreign encoding to the native encoding before the buffer
is processed. After the buffer is processed, the adaptation
layer should convert the buffer back to its original encoding.
This pre/post processing logic can be implemented by the
onentry and onexit constructs of TinyC2. Figure 10 shows
the TinyC2 code.

onentry group buffer : (char ∗ buffer) 1

{ 2

convert encoding(buffer); 3

} 4

5

onexit group buffer : (char ∗ buffer) 6

{ 7

restore encoding(buffer); 8

} 9

Figure 10: Encoding adaptation layer

This TinyC2 code uses the group keyword to match all func-
tions prefixed by buffer . The onentry block (lines 2-4)
invokes an external function convert encoding which is re-
sponsible for converting the buffer into the native encoding.
The onexit block (line 8) calls another external function
restore encoding to restore the original encoding. The
TinyC2 compiler generates the following code in Dyninst
API.

#include "BPatch.h" 1

int main(int argc, char∗∗ argv) 2

{ 3

BPatch thread ∗ appThread = 4

bpatch.attachProcess(name, pid); 5

appThread−>continueExecution(); 6

BPatch image ∗appImage = appThread−>getImage(); 7

BPatch pointgroup 8

∗buffer entry=appImage−> 9

findGroupProcedurePoints("buffer_","void", 10

BPatch entry); 11

BPatch pointgroup 12

∗buffer exit=appImage−> 13

11http://gcc.gnu.org/

findGroupProcedurePoints("buffer_","void", 14

BPatch exit); 15

BPatch variableExpr ∗buffer = 16

appImage−>findVariable("buffer"); 17

BPatch function ∗convert encodingptr = 18

appImage−>findFunction("convert_encoding"); 19

BPatch Vector<BPatch snippet ∗> 20

convert encoding args; 21

convert encoding args.push back(buffer); 22

BPatch funcCallExpr convert encoding 23

(∗convert encodingptr, convert encoding args); 24

BPatch function ∗restore encodingptr = 25

appImage−>findFunction("restore_encoding"); 26

BPatch Vector<BPatch snippet ∗> 27

restore encoding args; 28

restore encoding args.push back(buffer); 29

BPatch funcCallExpr restore encoding 30

(∗restore encodingptr, restore encoding args); 31

while((BPatch Vector<BPatch point∗> ∗point= 32

buffer entry−>getNextPoint())!=NULL) 33

{ 34

appThread−> 35

insertSnippet(convert encoding,∗point); 36

} 37

while((BPatch Vector<BPatch point∗> ∗point= 38

buffer exit−>getNextPoint())!=NULL) 39

{ 40

appThread−> 41

insertSnippet(convert exit,∗point); 42

} 43

exit(1); 44

} 45

Generated encoding adaptation layer in Dyninst API

In the generated code, lines 4-15 attach to the running pro-
cess and obtain two groups of instrumentation points, one
being the entry points of all function prefixed by buffer ,
the other their exit points. Lines 16-31 bind to the global
message buffer and set up the function calls to convert

encoding and restore encoding. The onentry and onexit

constructs in Figure 10 are translated to two loops which
insert the function calls at corresponding instrumentation
points of every function in the group (lines 32-45).

4.3 Adaptive Systematic Behavior
A dynamic weaving aspect language allows us to modular-
ize systematic properties and to build systems that are more
adaptive and more efficient for specific runtime conditions.
For example, middleware systems are software substrates
that provide abstractions for the distributed computing en-
tities. In a environment such as mobile computing where the
platform resources and computation requirements change
dynamically, it is highly desirable to configure a right set of
middleware characteristics during runtime. Such high level
of configurability and adaptability is hard to achieve due to
non-modularized systematic properties. A typical system-
atic property is Thread Safeness. It is important for mid-
dleware systems to ensure the accesses to shared data are
synchronized. However, synchronization is not always nec-
essary for a smaller platform such as handheld devices where
the underlying OS might only support a single-thread exe-
cution model due to power and memory constraints. Some
middleware implementations such as TAO uses techniques

31

such as strategic locking [2] to allow fine tuning of locking
schemes. These implementations suffer from performance
overhead of redundant locking and unlocking if deployed on
small platforms where the contention of resources should be
minimized or avoided. The dynamic behaviors of applica-
tions such as the migration of services require middleware
to load and unload properties such as Thread Safeness dur-
ing runtime. A dynamic weaving aspect language such as
TinyC2 can help us achieve these goals.

To illustrate the TinyC2 approach, suppose that the func-
tion Service is responsible for sending a buffer of charac-
ters to a remote entity. To ensure a valid read, the func-
tion acquires the buffer lock by invoking lock buffer func-
tion before sending. It releases the lock by invoking the
release buffer function. Figure 11 presents the simple im-
plementation in C.

int Service(char ∗∗buffer, int size) 1

{ 2

int ret = 0; 3

lock buffer(); 4

ret=network send(socketfd,buffer, size); 5

release buffer(); 6

return ret; 7

} 8

Figure 11: A synchronized buffer send

As we have discussed, statically configured systems includ-
ing statically weaving aspect implementations incur runtime
overhead if locking is not necessary. We now provide the
TinyC2 implementation using the onentry and the onexit

constructs in Figure 12.

onentry Service(char∗∗ buffer, int size) 1

{ 2

lock buffer(); 3

//perform other operations such as checking 4

//the buffer size 5

} 6

7

onexit Service(char ∗∗ buffer, int size) 8

{ 9

lock release(); 10

//perform necessary post invocation checkings 11

} 12

Figure 12: TinyC2 approach to thread safeness

The TinyC2 compiler generates Dyninst API code in Fig-
ure 13. Similar to the previous example, lines 4-8 attach to
the target process. Lines 9-14 locate the entry point and the
exit point of the function Service. Lines 15-19 locate the
function lock buffer insert the function to the entry point
of Service. Lines 20-25 load the function release buffer

and insert it to the exit point of Service. TinyC2 does not
require the functions used in the aspect program such as
lock buffer also defined in the component program. These

functions can be compiled into a dynamically shared library
and linked at runtime.

#include "BPatch.h" 1

int main(int argc, char∗∗ argv) 2

{ 3

BPatch bpatch; 4

BPatch thread ∗ appThread = 5

bpatch.attachProcess(name, pid); 6

appThread−>continueExecution(); 7

BPatch image ∗appImage = appThread−>getImage(); 8

BPatch Vector<BPatch point∗> ∗Service entry= 9

appImage−> 10

findProcedurePoint("Service",BPatch entry); 11

BPatch Vector<BPatch point∗> ∗Service exit= 12

appImage−> 13

findProcedurePoint("Service",BPatch exit); 14

BPatch function ∗lock bufferptr = 15

appImage−>findFunction("lock_buffer"); 16

BPatch funcCallExpr lock buffer(∗lock bufferptr); 17

appThread−>insertSnippet(lock buffer, 18

∗Service entry); 19

BPatch function ∗release bufferptr = 20

appImage−>findFunction("lock_release"); 21

BPatch funcCallExpr release buffer 22

(∗release bufferptr); 23

appThread−>insertSnippet(release buffer, 24

∗Service exit); 25

} 26

27

Figure 13: TinyC2 approach to thread safeness

Again, our TinyC2 implementation achieves considerable
code reduction from 25 lines to 8 lines. More importantly,
the synchronization facilities can be dynamically plugged
in and out depending on the runtime requirements. Sav-
ing redundant locking and unlocking greatly improves the
efficiency of the system.

5. RUNTIME CHARACTERISTICS OF AS-
PECT PROGRAMS USING DYNINST API

In this section, we examine the runtime characteristics of the
application and aspect programs using addition instructions
as an experiment. We are interested in two types of behav-
iors: 1. the “weaving” cost which is the time taken to insert
the aspect code into the component program; 2. the runtime
cost which is the time of computation in the dynamically
inserted aspect program versus a statically written compo-
nent program. We first measure the code patching cost of
Dyninst. It is measured as the time taken to insert a num-
ber of “add” instructions in the target program. To measure
the runtime execution overhead, we first measure the exe-
cution time of executing an increasing number of addition
instructions in the component program. We then measure
the same computation in the inserted aspect program. The
data is collected on a Pentium IV 2GHz Linux workstation.

5.1 Code Patching Cost
Figure 14 shows the time to insert the snippet versus the
number of additions in the snippet. As the size of the snip-
pet increases, the weaving time of snippet increases rapidly.
Dyninst uses the same operating system services such as

32

ptrace and /proc file system to communicate between the
application process and the mutator process. The instru-
mentation code is stored in large arrays which are loaded
into the application process. The arrays are used for dy-
namically allocating small regions of memory: one is used
for instrumentation variables; the other is to hold instru-
mentation code. A bigger snippet occupies a larger space in
the array in the application memory space. It takes longer
to fetch data from a larger memory space.

100 101 102 103 104
0

2000

4000

6000

8000

10000

12000

Number of Addition

S
ni

pp
et

 In
se

rti
on

 T
im

e

Snippet Insertion Time

Figure 14: Code patching cost

5.2 Runtime Cost
Another important factor for dynamic weaving aspect lan-
guage is the execution overhead of the aspect language as
compared to carrying the same computation task in the
component program. Figure 15 plots the runtime cost of
performing additions in the regular C programs and in the
inserted TinyC2 code.

The running time for the same number of additions in the
aspect program is significantly longer than in the compo-
nent program. This can be explained by the runtime in-
strumentation mechanism of Dyninst. The original code in
the application process branches into newly generated code
through use of trampolines [7]. Trampolines are short sec-
tions of code that provide a way of getting from the point
to the newly generated snippet. Several steps are involved
here. Firstly, one or more instructions at the instrumenta-
tion point are replaced with a branch to the start of a base
trampoline. Then the base trampoline code branches to
a mini-trampoline. The mini-trampoline saves the current
machine state and contains the code for a single snippet. At
the end of the single snippet, code is placed to restore the
machine state and to branch back to the base trampoline.
The base trampoline executes the original instruction(s) in
the application code. Therefore, there is significant manage-
ment overhead for executing the aspect program in the case
of Dyninst. Another reason is that since the aspect code is
inserted during runtime, the code misses the static compiler
optimization stage and, therefore, produces un-optimized
code.

5.3 Limitations and Open Questions

100 101 102 103 104
0

2

4

6

8

10

12

14

Number of Additions

R
un

tim
e

pe
r F

un
ct

io
n

C
al

l i
n

Ta
rg

et
 P

ro
gr

am
 [u

s]

Runtime Comparison

Component Program
Aspect Program

Figure 15: Runtime cost of TinyC2 code versus reg-
ular C code

There are many limitations of the current implementation
of the TinyC2 language. Firstly, the language is being im-
plemented as a prototype. We hope to demonstrate its ca-
pability of implementing large scale and complex aspect ori-
ented systems by our continuous extension of the language.
The second limitation comes from the limitations of Dyninst.
The API of Dyninst was not designed to support aspect lan-
guages. Features such as modifying function arguments and
their return values are not yet possible to implement using
Dyninst. We have added a number of APIs to Dyninst to
support the “group” language construct.

There are also many challenges regarding implementing dy-
namic weaving aspect oriented systems in general. The first
category of challenges is comprised of performance related
issues of dynamically woven AOP systems. Our experimen-
tal data show that the cost of computing in dynamically
inserted code is considerably high. One reason is that dy-
namically inserted code misses the optimization stage in the
compilation process which leads to un-optimized code. In-
tuitively, advanced compiler techniques such as dynamic op-
timization techniques [10] can be used to further optimized
the mutated code during runtime. However, there are sev-
eral issues regarding dynamic optimization. Firstly, from a
compiler point of view, the newly patched code might dis-
turb any optimization strategy that the compiler has chosen
for the code. Runtime code patching can also trigger subse-
quent runtime optimization, which adds a considerable over-
head to the overall runtime cost. Secondly, it is not clear to
us if the runtime optimized code still allows us to detach the
inserted aspect code on the fly as part of the dynamic adap-
tation. A third prominent issue is that current aspect lan-
guage designs require preservations of weaving points, e.g.
function identifiers in the context of the TinyC2 language,
in order for weaving to work. This is a trivial concern for
static-weaving languages. However, these identifiers in the
source code might disappear in the runtime code due to
compiler optimization techniques such as code specializa-
tion, function inlining, and many others. Certain identifiers
or symbols must be made available to aspect weavers at all
time. But does the preservation of symbols decrease the
optimization gain? Is there a measure of such trade-offs?

33

The second category of challenges concerns designing dy-
namic weaving languages is that whether there should be
language facilities to take advantage of its dynamic nature.
For example, Dyninst gives us some degree of control over
the running state of the target program during the code
patching process. Should the design of a dynamic weaving
language gives first-status concerns to issues such as control-
ling the state of the target program, runtime information of
the platform, optimization related tasks, and many others?

The third category of challenges includes issues regarding
the security of dynamic weaving languages. That is the
dynamically inserted code must comply with the security
policies of the target platform. These policies could include
execution privileges and copyright protections.

6. CONCLUSION
In this paper, we presented the work of TinyC2, an aspect
oriented language that is designed to syntactically extend
the C programming language and to use existing code in-
strumentation platforms as the backend. A prototype of
the language compiler is developed to support a subset of
the standard C language features with a couple of additional
language constructs. The backend instrumentation platform
is provided by Dyninst runtime instrumentation platform.

Through this work, we demonstrate the possibility of sup-
porting certain aspect oriented language semantics by using
code instrumentation platforms. We prove the concept that
code instrumentation techniques and the aspect oriented de-
sign goals are fundamentally compatible as one can be used
to express the other. A language approach in bridging the
two domains is viable because, as illustrated in the case
study, we are able to express higher-level programming con-
cerns in the form of TinyC2 language and to realize those
concerns through the form of code instrumentation.

It is currently not possible to have a complete evaluation
of the language approach presented in this paper, since the
full aspect language features are still needed to be developed.
We also need to experiment with a different instrumentation
tool to verify if the consistency of the language semantics can
be maintained. Finally, from the experience of this work, we
have encountered several issues regarding the viability of the
runtime weaving aspect language design. These issues are
mainly concerned with the cost of dynamically changing the
runtime behavior of the system. We expect further research
on advanced AOP compilers will develop solutions to these
problems.

Acknowledgements
We are very grateful to Michael J. Voss who pointed out to
us the similarities between runtime instrumentation tech-
niques and aspect oriented mechanisms. The initial perfor-
mance analysis and the graphs in this paper are prepared
by Yiqian Ying.

7. REFERENCES
[1] Jason Baker and Wilson Hsieh. Runtime aspect

weaving through metaprogramming. In Proceedings of
the 1st international conference on Aspect-oriented
software development, 2002.

[2] Douglas Schmidt Michael Stal Hans Rohnert Frank
Bushmann. Pattern-Oriented Software Architecture
Patterns for Concurrent and Networked Objects,
volume 2 of Software Design Patterns. John Wiley &
Sons, Ltd, 1 edition, 1999.

[3] Morgan Deters Ron K. Cytron. Introduction of
Program Instrumentation using Aspects. Proceedings
of the OOPSLA 2001 Workshop on Advanced
Separation of Concerns in Object-Oriented Systems,
pages 131–147, 2001.

[4] A. Srivastava A. Edwards and H. Vo. Vulcan: Binary
transformation in a distributed environment.
Technical Report Technical Report MSR-TR2001 -50,
Microsoft Research, One Microsoft Way,
Redmond,WA, April 2001.

[5] B. Grant M. Philipose M. Mock C. Chambers S.J.
Eggers. An Evaluation of Staged Run-time
Optimizations in DyC. Conference on Programming
Language Design and Implementation, May 1999.

[6] M. Arnold S. Fink D. Grove M. Hind and P.F.
Sweeney. Adaptive Optimization in the Jalapeno
JVM. Object-Oriented Programming Systems,
Languages and Applications, 2000.

[7] Bryan Buck Jeffrey K. Hollingsworth. An API for
runtime code patching. Journal of Supercomputing
Applications and High Performance Computing.

[8] Charles Zhang Hans-Arno Jacobsen. Quantifying
Aspects in Middleware Platforms. International
Conference of Aspect Oriented Software and
Development, pages 130–139, 2003.

[9] G. Kiczales. Aspect-oriented programming. ACM
Computing Surveys (CSUR), 28(4es), 1996.

[10] Bala Vasanth Duesterwald Evelyn Banerjia Sanjeev.
Transparent dynamic optimization. Technical Report
HPL-1999-77, Hewlett Packard, 1999.

[11] Erich Gamma Richard Helm Ralph Johnson John
Vlissides. Design Patterns. Addison-Wesley, 1995.

[12] Jeffrey K. Hollingsworth Barton P. Miller Marcelo J.
R. Goncalves Oscar Naim Zhichen Xu and Ling
Zheng. MDL: A Language and Compiler for Dynamic
Program Instrumentation. International Conference
on Parallel Architectures and Compilation Techniques,
1997.

34

