

Aspect Reasoning by Reduction to Implicit Invocation

Jia Xu
Department of Computer

Science, University of Virginia
151 Engineer s Way, P.O. Box

400740
Charlottesville, Virginia 22904-

4740, USA
+1 434 982 2296

jx9n@cs.virginia.edu

Hridesh Rajan
Department of Computer

Science, University of Virginia
151 Engineer s Way, P.O. Box

400740
Charlottesville, Virginia 22904-

4740, USA
+1 434 982 2296

hr2j@cs.virginia.edu

Kevin Sullivan
Department of Computer

Science, University of Virginia
151 Engineer s Way, P.O. Box

400740
Charlottesville, Virginia 22904-

4740, USA
+1 434 982 2206

sullivan@cs.virginia.edu

ABSTRACT
Aspect-oriented programming constructs complicate reasoning
about program behavior. Our position is that we can reduce key
elements of aspect programming to implicit invocation (II) and
then use existing work on reasoning about II to reason formally
about aspect programs. We map aspect-oriented programs to
equivalent programs with join points and advice replaced by event
notifications and observers; use existing techniques for reasoning
about programs that use implicit invocation; and then interpret the
results in the context of the original aspect-oriented program.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features

abstract data types, polymorphism, control structures.

General Terms
Measurement, Design, Experimentation, Languages, Verification.

Keywords
AOP, Implicit Invocation, Reasoning, Model Checking

1. INTRODUCTION
The ability of aspect-oriented [15][16] approaches to enable
modular representation of crosscutting concern by implicit
behavioral modifications at join points specified by predicates on
program elements is a bane for reasoning. In the presence of
aspects, the behavior of a module at runtime can not be
determined by just looking at the module code. One is required to
understand the possible effects of each aspect in the system. The
actual behavior is determined by composing the base and aspect
behaviors. It is widely understood that reasoning about AOP
remains a challenge [5]. Our position is that a reduction from the
space of aspect-oriented programs to the space of programs using
implicit invocation has the potential to enable formal reasoning
about properties of aspect-oriented programs using existing
methods for reasoning about implicit invocation systems.

The problem is well known. Several approaches have been
proposed to enable automated reasoning about aspect-oriented
programs. Some of these approaches try to apply model checking
to verify properties of aspect-oriented programs [3][19][24], while
others try to reduce aspect-oriented programming model to
simpler models which can be easier to reason about [1][5][6][7].

Our contribution is in seeing how to exploit the relationship
between join points and events in implicit invocation systems
[12]. In such systems, modules expose events, with which other
modules register procedures. Registered procedures are invoked
when modules announce events, extending the modules

behaviors implicitly. Implicit invocation is widely used for
complex system design. Sullivan and Notkin [23] showed how
implicit invocation enables separation of integration concerns to
ease the design and evolution of integrated systems and how it
poses AOP-like problems in reasoning about II systems.

The problem of reasoning about implicit invocation (II) has
generated significant interest over the last decade. In particular,
Garlan et al. [11] proposed an event model to describe the
behavior of the II systems. They then use model checker to check
property assertions on this event model. Bradbury et al [4] further
refined Garlan et al. s approach and evaluated their approach in
real world software systems, demonstrating the feasibility of
applying formal reasoning techniques to real II systems.

Our position is that reducing the join point and advice model of
aspect programming to II is possible, as shown by Eos [18], and
that this reduction permits formal reasoning techniques for II
systems to be applied to aspect programs. We first map an aspect-
oriented program that uses join point and advice to a semantically
equivalent implicit invocation program; we reason about it using
existing techniques; we then map the results from the II space
back to the AOP space. In our earlier work [18], we showed that
the implicit invocation space can be mapped to the aspect space.
(In particular, support for instance-level aspects and first class
aspect instances enables a mapping of aspect programs to
mediator-based design structures [21][23], which use implicit
invocation extensively to separate integration concerns.) In this
work, we make the reduction concrete and present preliminary
evidence supporting our hypothesis.

In the rest of this paper, we will be using an example system from
our previous work [18], [22] to illustrate various approaches. The
example is extremely simple, but it is known to capture essential
issues in a way that scales up. Our example system consists of
two objects b1 and b2, instances of the Bit type. A Bit can be Set
and Cleared by Set and Clear and its current state can be read by
the Get method. In our example system b1 and b2 are required to
work together as follows: if any client Sets (respectively Clears)
either Bit, the other must be Set (Cleared). In other words, the
behaviors of the Bits have to be integrated by a behavioral
relationship, which we will call Equality, which maintains a bit-
equality constraint.

Figure 1. A simple example: Bit

The rest of this paper is organized as follows. Section 2 describes
aspect oriented programming and the challenges in reasoning
about it. Section 3 describes the effort in reasoning about implicit
invocation space. Section 4 describes our approach. Section 5
presents related work. Section 6 concludes.

2. ASPECT-ORIENTED PROGRAMMING
Aspect-oriented programming constructs are meant to enable the
modular representation of otherwise scattered and tangled code.
The key mechanisms of aspect-oriented programming in the
tradition of AspectJ [2] are join points, pointcut expressions,
advice code, and aspect modules. A join point is a point in the
execution of a program (such as just before a method body
executes) exposed by the language design for behavioral
modification by aspect modules. The join points exposed by
current AspectJ-like languages include method calls and
execution, field get and set operations, exceptions, and object
initialization. A pointcut is an expression a predicate that
serves to select a subset of program join points. Advice is code
that is effectively to be executed at each join point selected by a
pointcut. An aspect is a module that aggregates pointcut
expressions and associated advice code along with other
information typically found in class definitions. Weaving is the
process by which advice code is composed with the base program
code at selected join points to yield an executable.

Eos [13] [18] is an AspectJ-like extension of C# [17] that supports
first-class aspect instances and instance-level advising. By first
class aspect instance we mean that the aspects are class-like
constructs that can be instantiated, passed as arguments, returned
as value, etc. By instance-level advising we mean ability to select
specific instances of a type that will be affected by aspect advice.
(In AspectJ, aspects advise types and thus all instances.) The
code for the Bit example in Eos is as follows:

1 public class Bit {
2 bool value;
3 public Bit() { value = false; }
4 public void Set() { value = true; }
5 public bool Get (){ return value; }
6 public void Clear() {value= false; }
7 }

The following code implements Equality as an instance-level
aspect:

1 public instancelevel aspect Equality {
2 Bit b1, b2;
3 bool busy;
4 public Equality(Bit b1, Bit b2) {
5 addObject(b1); addObject(b2);
6 this.b1 = b1; this.b2 = b2;
7 busy = false;
8 }
9 after():execution(public void Bit.Set ()) {
10 if(!busy) {
11 busy = true;
12 Bit m = (Bit) thisJoinPoint.getTarget();
13 if(b == m1)b2.Set(); else b1.Set();
14 busy = false;
15 }
16 }
17 after():execution(public void Bit.Clear ()) {
18 if(!busy) {
19 busy = true;

20 Bit b = (Bit) thisJoinPoint.getTarget();
21 if(b == b1)b2.Set(); else b1.Set();
22 busy = false;
23 }
24 }
25 }

Figure 2. Eos code for Bit example

The purpose of the aspect is to ensure that b1 and b2 always have
the same state at quiescent points (i.e., except during execution of
a Set operation). We thus need to verify that the aspect module
behaves in such a way. It is, however, generally difficult to reason
about AOP for the following reasons:

1. The primitive constructs in aspect-oriented languages need to
be rigorously defined.

2. It could be very hard to reason about an aspect program
automatically. There has been a fair amount of research on
the possibility of applying model checking on reasoning
about AOP, although there is hardly a working example.

3. Since the behavioral modifications by aspects can cut across
the entire code base, it s very hard for us to understand an
aspect-oriented program in a modular way. That is, we can
no longer analyze modules separately then combine results.
An aspect can influence the semantics of the whole system.
This issue as the most difficult part of reasoning about AOP.

3. IMPLICIT INVOCATION
Implicit invocation [23] [12] is a mechanism for managing how
invocation relations are represented as names relations. If
component A needs to invoke component B at a certain point, A
can do so either by explicitly calling B, in which case A names B,
or B can register with A to be invoked implicitly by event
announcement, which case, B names A. Because the names
relation is a key determinant of compile, link, and runtime
dependencies, having means to structure it properly is important.
Implicit invocation and join points and advice provide such
means.

II is also known as publish-subscribe system, since generally it is
implemented in such a way. A component (the subscriber)
registers interest in particular events that the other component (the
publisher) announces. The II mechanism then guarantees the
invocation of subscriber. The publisher is not aware of the
existence of the subscribers. II has been used widely in system-
level development and message-passing applications. For
example, a user can define and register a callback procedure that
is invoked when a particular signal is raised by the OS kernel.

Such systems make modular reasoning harder, since we need to
decouple the verification of one component from the verification
of the rest of system that communicate with the given component
by event bindings. Dingel et al. [8] proposed a formal model for II
systems and proposed a three-phase reasoning methodology:
decomposition, local reasoning and global reasoning. By the
decomposition process, we can formalize the event/handler
semantics and model the system, the environment and the event
dispatch mechanism in a modular way. Applying the three-phase
reasoning then can be expected to achieve the effect of modular
reasoning about the whole system.

It is, however, often not easy to decompose the system into
separate groups and prove their independence. An alternative
approach proposed by Garlan et al. [11] uses model checking

instead of formal modular reasoning. Application of model
checking to software encounters two problems. First, an
appropriate state model for the system being checked needs to be
created. This state model of a reasonable size system has a huge
state space. To check this huge state space using a model checker
is time consuming, if not infeasible. Second problem is thus to
find the means to reduce this state space into manageable size so
that it can be supplied as an input to the model checker.

The architecture of an II system in [11] models the following
features:

- Components: functional objects with well-defined interfaces

- Events: the primary communication method between
components

- Event-Method Bindings: the correspondence between
announced events and the methods that are invoked in
response as event handlers

- Event Delivery Policy: rules about event announcement and
delivery

- Shared State: another communication method between
elements of the II system

- Concurrency Model: determines if the system has a single
thread or multiple threads of control

Figure 3. II system architecture

The system structure is in Figure 3. Besides those functional
components, the dispatcher and policy modules are another
important part of the approach. They are responsible for event
binding and dispatching. Also the environment represents external
elements that could affect the system.

The run time state model of an II system has to model the
following in addition:

- Event announcement by the system components

- Storage of event announcements before dispatching

- Event delivery to the system components

- Invocation of methods bound to the delivered events

- Invocation acknowledgement

For the Bit example, b1 and b2 are considered separate
components. Calling the state change methods Set/Clear on the
component b1 results in the component announcing an event
representing the change in its state, which is then captured by the
dispatcher. The dispatcher will consult the policy module to
determine what event will be delivered to which component
without causing a propagation cycle. The state change in b2 will
also result in announcement of an event representing its state
change and the same actions as above. Figure 4 depicts the
simplest II state model that models the Bit example, in which we
omit the environment module and the details of b2 s event
exchange since it s the same with b1. For each event of interest, a
notify message is delivered from the component to the dispatcher,
which results in the delivery of an invoke message from the
dispatcher to the other component.

Figure 4. II run time state model for the Bit example

To reason about the system, we are interested in verifying some
properties of the system. These properties are expressed as
assertions. The Equality between b1 and b2 will be represented as
the following assertion:

Equality:
assert(F (b1.state = b2.state));

F , a logical notation of LTL, represents eventually . The SMV
model checker takes these assertions and the state machine
constructed before as input and produces validity of these
assertions as output.

Bradbury et al. [4] extended Garlan et al. s model to support
dynamic event model. They use XML to represent the event
model which is later translated into SMV input. They have
applied their method on real world implicit invocation systems
such as Active Badge Location System (ABLS) [26] and
Unmanned Vehicle Control System (UVCS) [20] demonstrating
the capabilities of their approach.

4. Reduction from AOP to II
We would like to assure that the aspect performs its intended
behavioral modifications without producing any undesirable side
effect. Existing approaches can be used to reason about the plain
object-oriented systems. Our approach therefore focuses on
reasoning about aspects, the modular representation of
crosscutting concerns, and its interaction with the component part.
To enable this reasoning, we propose to reduce an element of
aspect-oriented programming space (an aspect-oriented program)

to an element in implicit invocation space (an implicit invocation
based program). We can then reason about the element in the
implicit invocation space using the II reasoning techniques
described in the last section. The reasoning results will then be
reduced back from II space to the AOP space thus effectively
enabling reasoning about the aspect-oriented program.

First, let us revisit the concepts of aspect-oriented programming
as embodied in asymmetric languages such as AspectJ. A join
point is a point in the execution of a program (such as just before
a method body executes) exposed by the language design for
behavioral modification by aspect modules. The join points
exposed by current AspectJ-like languages include method calls
and execution, field get and set operations, exceptions, and object
initialization. A pointcut is an expression a predicate that
serves to select a subset of program join points. A pointcut is then
defined to be a predicate expression over a set of join points.

We observe that every join point can be viewed as a set of
semantic events. These events will be announced when the
control hits the join point during program execution. AspectJ-like
languages can advise a join point in three different ways: before,
after and around. The before and after advice are semantically
clean, however, the around advice is a bit more involved. To keep
the model simple we will not be discussing around advices. To
differentiate between these ways of advising we map each join
point to a 2-tuple of events: <before the join point, after the join
point>. We treat each of these elements differently in the
corresponding event model. An advice before a join point is
mapped to the event before a join point and similarly for after
advice.

A pointcut selects a subset of program join points. Each pointcut
is mapped to an enumeration of a set of 2-tuple of events where
each 2-tuple in the set corresponds to a join point in the subset of
program join points selected by the pointcut. A named pointcut is
mapped to a named set of 2-tuples. The subset of join points that
are matched by the pointcut expressions that rely on run-time
information cannot be obtained statically. The control flow
(cflow) and control flow below (cflowbelow) are examples of
some of these pointcuts. These pointcuts cannot be mapped
statically to a simple event model like the one used by Garlan
[11]. In summary, the mapping of join points and pointcuts to II
concepts can be shown below:

f: {Joinpoint} -> {Event} X {Event}

g: {Pointcut} -> {Predicate} X {A set of events}

A pointcut can be denoted by a pair <predicate, {joinpoint}>,
which means a predicate expression over a set of joinpoints.

For example, the mapping applied to a joinpoint a is:

f(a) = <after_a, before_a>

in which after_a and before_a are two events.

The mapping applied to a pointcut <p, {a, b, c}> is:

g(<p, {a, b, c}>) = <g(p), {f(a), f(b), f(c)}>

in which p is a predicate over the set of joinpoints a, b, c, while
g(p) denotes the mapped predicate over the set of events.

Events picked out for our Bit example are shown below:

Events exposed by the Bit component =
{ [before_Bit.Bit, after_Bit.Bit],

 [before_Bit.Set, after_Bit.Set],
[before_Bit.Clear, after_Bit.Clear] }

Events picked out by the pointcut expression execution(public
void Bit.Set ())

= {[before_Bit.Set, after_Bit.Set]}

Events picked out by the pointcut expression execution(public
void Bit.Clear ())

= {[before_Bit.Clear, after_Bit.Clear]}

The mapping of pointcut after(): execution(Bit.Set()) is:

g(<after execution, {Bit.Set()}> =

<only after_* events, {<before_Bit.Set, after_Bit.Set>}>

The mapping of pointcut after(): execution(Bit.Clear()) is:

g(<after execution, {Bit.Clear()}>) =

<only after_* events, {<before_Bit.Clear, after_Bit.Clear>}>

An advice is mapped to an event handler. The role of an advice,
with respect to the advised pointcut, is the same as the event
handler with respect to the captured event. In the Bit example,
there are two event handlers in the Equality aspect, one
corresponds to the after():execution(Bit.Set()) advice, the other
corresponds to the after():execution(Bit.Clear()) advice.

Third, there should be a dispatcher in the mapped system, as well
as a dispatch policy module. The dispatcher is responsible for
event storage, event binding, event delivery and interacting with
the dispatch policy module. The policy module implements event
delivery policy. In the context of mapping AOP, it should be able
to choose event handlers according to a predicate expression over
a set of events, just like the pointcut definition.

As for the Bit example, the aspect Equality actually can be
mapped to part of the policy module in Figure 3. When the
dispatcher receives an event, it will inquire the policy module to
decide the actions it will take. In this case, the Equality policy
will determine which message (Set or Clear) to deliver to which
component.

The assertions we can check over this II system like assert(F
(b1.state = b2.state)) is now mapped back to the behavior
constraint between the two objects b1 and b2 in the Eos program
(Figure 2). This constraint is therefore checked by the reduction
process. Thus, we demonstrate a simple example of our approach
to use II reasoning technique to reason about an aspect-oriented
program s behavior.

5. RELATED WORK
Dingel et al. [8], Garlan et al. [11], and Bradbury et al. s [4] work
on model checking implicit invocation systems is closely related
to ours and is, in fact, used as a subroutine. They proposed an
event model to describe the behavior of the II systems. Bradbury
et al. s approach translates this model written in XML format to
the SMV language and applies the SMV model checker. These
approaches are applicable to II systems, but not directly to aspect-
oriented programs. Our approach supplements these approaches
by providing a reduction from the AOP space to II space, thus
enabling the use of these approaches in the AOP space.

Mapping AOP to event model is not a completely new idea.
Filman and Havelund [10] briefly proposed an event language for
aspects. The event language has primitive events and a set of
relationships between events, which include abstracted temporal
relationships, abstract temporal quantifiers, concrete temporal
relationship referring to clock time, cardinality relationships and
aggregation relationships for describing sets of events. Walker
and Murphy [25] employed their implicit context concept to map
join points to ordered events. By such mapping, they showed a
close relationship between AOP and implicit context. Our work
makes the reduction from AOP to II explicit.

As for reasoning about AOP, there has been significant research
on this topic. Ubayashi et al. [24] claimed to apply model
checking using aspects. They write an aspect for every property to
check, and then weave these aspects and the source program into
a new program and then execute this weaved program. This
approach works only for plain java programs. It can only check
properties that can be represented by aspects. It also uses a
dynamic approach, so presence of property violation can only be
discovered if that execution path is taken.

Blair and Monga [3] view every pointcut declaration as a slicing
criterion that can be used to compute an associated slice. They
then envision that this sliced program could be fed into Bandera
model checker, but the expressiveness of aspects is difficult to be
captured by any slicing technique.

Instead of reasoning about the entire program, Clifton and
Leavens [5][6] give two concepts for AspectJ: Observer
(Spectator) and Assistant. Assistants are aspects that could change
the behavior of other parts, while observers do not. They also
propose an accept notation to be added into AspectJ, to make
aspect invocation explicit, for facilitating modular reasoning. By
categorizing aspects into observers and assistants, and explicitly
exposing the join point, they expect to be able to reason AOP in a
modular way, however, it remains unclear how can we
differentiate assistants from observers in real programs. The
accept notation compromises the obliviousness [9] properties of
aspect-oriented programs. Our approach on the other hand, does
not impose any restriction on the language model of aspect-
oriented programming languages.

Devereux [7] tries to transfer aspect programs to alternating-time
logic. Then program properties can be expressed by assertions in
alternating-time logic. It supports two concepts, imposition and
preservation similar to assistant and observer. The development of
a reduction similar to ours from aspect-oriented space to
alternative-time logic is possible; however, the lack of tool
support for automated reasoning in alternating-time logic makes
the reduction less attractive.

Recently there has been increasing research interests on
exploiting type systems to enable reasoning about aspect-oriented
programs. Aldrich [1] presented a simple aspect language called
TinyAspect. Module sealing and explicit declaration of exported
join points is the core of TinyAspect. The idea is to enforce
abstraction by prohibiting clients, viz., aspects, from exploiting
implementation details, such as calls from within a component to
its own public methods. There is a set of type inference rules for
TinyAspect by which one can reason about the behavior of
aspects. Type checking in the TinyAspect model, however, does
not allow one to reason about the kinds of behavioral properties
that we address.

6. CONCLUSION
Aspect-oriented programming imposes many new challenges on
program understanding and reasoning. In fact, how to reason
about AOP in a modular way has been an open question for years.
In this paper, we reduce the join point and pointcut mechanisms
of AOP to the events of implicit invocation systems, and we show
that this reduction has the potential to improve our ability to
reason formally about the aspect program behavior. Forthcoming
work will formalize the reduction, develop and evaluate the
approach, and investigate the possibility of automated tool
support for such reductions and formal property verifications.

7. ACKNOWLEDGMENTS
This work was supported in part by the National Science
Foundation under grant ITR-0086003.

8. REFERENCES
[1] Aldrich, J., A Typed, Modular Foundation for Aspect-

Oriented Programming , 2003.

[2] AspectJ Homepage: http://www.eclipse.org/aspectj.

[3] Blair, L., Monga, M. Reasoning on AspectJ Programmes ,
GI-AOSDG 2003 Essen, Germany

[4] Bradbury, J. S., Dingel, J., Evaluating and Improving the
Automatic Analysis of Implicit Invocation Systems,

In Proc.
of the European Software Engineering Conference and the
ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (ESEC/FSE 2003),
Helsinki, Finland, Sept. 2003.

[5] Clifton, C., and Leavens, G. T., Observers and Assistants: A
Proposal for Modular Aspect-Oriented Reasoning. ,
Technical Report TR#02-04, Department of Computer
Science, Iowa State University, March 2002.

[6] Clifton, C., and Leavens, G. T., Obliviousness, Modular
Reasoning, and the Behavioral Subtyping Analogy. ,
Technical Report TR#03-01A, Department of Computer
Science, Iowa State University, March 2002.

[7] Devereux, B., Compositional Reasoning About Aspects
Using Alternating-time Logic , FOAL2003

[8] Dingel, J., Garlan, D., Jha, S., Notkin, D., Reasoning about
implicit invocation , Proceedings of the 6th ACM SIGSOFT
international symposium on Foundations of software
engineering, November 1998

[9] Filman R., and Friedman, D., Aspect-oriented programming
is quantification and obliviousness , In Proc. Workshop on
Advanced Separation of Concerns, OOPSLA 2000.

[10] Filman, R.E., Havelund, K.. Realizing Aspects by
Transforming for Events.

In Automated Software
Engineering 2002 (ASE'02). Edinburgh, Scottland, 23-27
September 2002. IEEE Computer Society

[11] Garlan, D., Khersonsky, S., and Kim, J. S., Model Checking
Publish-Subscribe Systems , Proceedings of The 10th
International SPIN Workshop on Model Checking of
Software (SPIN 03), Portland, Oregon, May 2003.

http://www.eclipse.org/aspectj

[12] Garlan, D., and Notkin, D., Formalizing Design Spaces:

Implicit Invocation Mechanisms . VDM '91: Formal
Software Development Methods, pp. 31--44 (October 1991).

[13] Eos Homepage: http://www.cs.virginia.edu/~eos

[14] Java: http://java.sun.com

[15] Kiczales, G.., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C., Loingtier, J. and Irwin, J., Aspect-oriented
programming, in Proceedings of the European Conference
on Object-Oriented Programming (ECOOP), Springer-
Verlang, Lecture Notes on Computer Science 1241, June
1997.

[16] Masuhara, H., and Kiczales G., Modular Crosscutting in
Aspect-Oriented Mechanisms , ECOOP 2003, Darmstadt,
Germany, July 2003.

[17] Microsoft. C# Specification Homepage.
http://msdn.microsoft.com/net/ecma

[18] Rajan, H. and Sullivan, K., Eos: Instance-Level Aspects for
Integrated System Design , 2003 Joint European Software
Engineering Conference and ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE 03),
(Helsinki, Finland, Sept 2003).

[19] Sihman, M. and Katz, S.. Model Checking Applications of
Aspects and Superimpositions , FOAL 2003

[20] Stuurman, S., and Katwijk, J.van, On-line change
mechanisms: the software architectural level , In Proc. Of
the ACM SIGSOFT FSE, pages 80-86, Nov. 1998

[21] Sullivan, K., Mediators: Easing the Design and Evolution of
Integrated Systems , Ph.D. dissertation, University of
Washington, 1994.

[22] Sullivan, K., Gu, L., Cai, Y., Non-modularity in Aspect-
Oriented Languages: Integration as a crosscutting concern
for AspectJ, Proceedings of Aspect-Oriented Software
Design, 2002

[23] Sullivan, K. and Notkin, D., Reconciling environment
integration and software evolution, ACM Transactions on
Software Engineering and Methodology 1, 3, July 1992, pp.
229 268 (short form: Proceedings of the 4th SIGSOFT
Symposium on Software Development Environments, 1990,
pp. 22 33).

[24] Ubayashi, N., Tamai, T., Aspect-oriented programming
with model checking , Proceedings of the 1st international
conference on Aspect-oriented software development, April
22-26, 2002, Enschede, The Netherlands

[25] Walker, R. J. and Murphy, G. C., Joinpoints as ordered
events: towards applying implicit context to aspect-
orientation , Workshop on Advanced Separation of
Concerns at the 23nd ICSE, 2001.

[26] Want, R., Hopper, A., Falcao, V., and Gibbons, J., The
active badge location system. ACM Trans. on software
engineering and methodology, 10(1):91-102, Jan. 1992

http://www.cs.virginia.edu/~eos
http://java.sun.com
http://msdn.microsoft.com/net/ecma

