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ABSTRACT 
Aspect-oriented programming constructs complicate reasoning 
about program behavior.  Our position is that we can reduce key 
elements of aspect programming to implicit invocation (II) and 
then use existing work on reasoning about II to reason formally 
about aspect programs.  We map aspect-oriented programs to 
equivalent programs with join points and advice replaced by event 
notifications and observers; use existing techniques for reasoning 
about programs that use implicit invocation; and then interpret the 
results in the context of the original aspect-oriented program.  

Categories and Subject Descriptors 
D.3.3 [Programming Languages]: Language Constructs and 
Features 

 

abstract data types, polymorphism, control structures.  

General Terms 
Measurement, Design, Experimentation, Languages, Verification. 

Keywords 
AOP, Implicit Invocation, Reasoning, Model Checking 

1. INTRODUCTION 
The ability of aspect-oriented [15][16] approaches to enable 
modular representation of crosscutting concern by implicit 
behavioral modifications at join points specified by predicates on 
program elements is a bane for reasoning. In the presence of 
aspects, the behavior of a module at runtime can not be 
determined by just looking at the module code. One is required to 
understand the possible effects of each aspect in the system. The 
actual behavior is determined by composing the base and aspect 
behaviors. It is widely understood that reasoning about AOP 
remains a challenge [5]. Our position is that a reduction from the 
space of aspect-oriented programs to the space of programs using 
implicit invocation has the potential to enable formal reasoning 
about properties of aspect-oriented programs using existing 
methods for reasoning about implicit invocation systems. 

The problem is well known. Several approaches have been 
proposed to enable automated reasoning about aspect-oriented 
programs. Some of these approaches try to apply model checking 
to verify properties of aspect-oriented programs [3][19][24], while 
others try to reduce aspect-oriented programming model to 
simpler models which can be easier to reason about [1][5][6][7].  

Our contribution is in seeing how to exploit the relationship 
between join points and events in implicit invocation systems 
[12]. In such systems, modules expose events, with which other 
modules register procedures.  Registered procedures are invoked 
when modules announce events, extending the modules

 

behaviors implicitly. Implicit invocation is widely used for 
complex system design.  Sullivan and Notkin [23] showed how 
implicit invocation enables separation of integration concerns to 
ease the design and evolution of integrated systems and how it 
poses AOP-like problems in reasoning about II systems. 

The problem of reasoning about implicit invocation (II) has 
generated significant interest over the last decade. In particular, 
Garlan et al. [11] proposed an event model to describe the 
behavior of the II systems. They then use model checker to check 
property assertions on this event model.  Bradbury et al [4] further 
refined Garlan et al. s approach and evaluated their approach in 
real world software systems, demonstrating the feasibility of 
applying formal reasoning techniques to real II systems. 

Our position is that reducing the join point and advice model of 
aspect programming to II is possible, as shown by Eos [18], and 
that this reduction permits formal reasoning techniques for II 
systems to be applied to aspect programs. We first map an aspect-
oriented program that uses join point and advice to a semantically 
equivalent implicit invocation program; we reason about it using 
existing techniques; we then map the results from the II space 
back to the AOP space. In our earlier work [18], we showed that 
the implicit invocation space can be mapped to the aspect space. 
(In particular, support for instance-level aspects and first class 
aspect instances enables a mapping of aspect programs to 
mediator-based design structures [21][23], which use implicit 
invocation extensively to separate integration concerns.) In this 
work, we make the reduction concrete and present preliminary 
evidence supporting our hypothesis.  

In the rest of this paper, we will be using an example system from 
our previous work [18], [22] to illustrate various approaches. The 
example is extremely simple, but it is known to capture essential 
issues in a way that scales up. Our example system consists of 
two objects b1 and b2, instances of the Bit type. A Bit can be Set 
and Cleared by Set and Clear and its current state can be read by 
the Get method. In our example system b1 and b2 are required to 
work together as follows: if any client Sets (respectively Clears) 
either Bit, the other must be Set (Cleared). In other words, the 
behaviors of the Bits have to be integrated by a behavioral 
relationship, which we will call Equality, which maintains a bit-
equality constraint. 



  
Figure 1. A simple example: Bit 

The rest of this paper is organized as follows. Section 2 describes 
aspect oriented programming and the challenges in reasoning 
about it. Section 3 describes the effort in reasoning about implicit 
invocation space. Section 4 describes our approach. Section 5 
presents related work. Section 6 concludes. 

2. ASPECT-ORIENTED PROGRAMMING 
Aspect-oriented programming constructs are meant to enable the 
modular representation of otherwise scattered and tangled code. 
The key mechanisms of aspect-oriented programming in the 
tradition of AspectJ [2] are join points, pointcut expressions, 
advice code, and aspect modules. A join point is a point in the 
execution of a program (such as just before a method body 
executes) exposed by the language design for behavioral 
modification by aspect modules. The join points exposed by 
current AspectJ-like languages include method calls and 
execution, field get and set operations, exceptions, and object 
initialization. A pointcut is an expression a predicate that 
serves to select a subset of program join points.  Advice is code 
that is effectively to be executed at each join point selected by a 
pointcut.  An aspect is a module that aggregates pointcut 
expressions and associated advice code along with other 
information typically found in class definitions. Weaving is the 
process by which advice code is composed with the base program 
code at selected join points to yield an executable. 

Eos [13] [18] is an AspectJ-like extension of C# [17] that supports 
first-class aspect instances and instance-level advising. By first 
class aspect instance we mean that the aspects are class-like 
constructs that can be instantiated, passed as arguments, returned 
as value, etc. By instance-level advising we mean ability to select 
specific instances of a type that will be affected by aspect advice.  
(In AspectJ, aspects advise types and thus all instances.)  The 
code for the Bit example in Eos is as follows: 

1     public class Bit {  
2       bool value; 
3       public Bit() { value = false; } 
4       public void Set() { value = true; }  
5       public bool Get (){ return value; }  
6       public void Clear() {value= false; } 
7      } 

The following code implements Equality as an instance-level 
aspect: 

1  public instancelevel aspect Equality  {  
2    Bit b1, b2; 
3    bool busy; 
4    public Equality(Bit b1, Bit b2)   { 
5    addObject(b1);  addObject(b2); 
6    this.b1 = b1;    this.b2 = b2; 
7    busy = false; 
8   } 
9   after():execution(public void Bit.Set ())   { 
10       if(!busy) { 
11    busy = true; 
12    Bit m = (Bit) thisJoinPoint.getTarget(); 
13    if(b == m1)b2.Set(); else b1.Set(); 
14    busy = false; 
15    } 
16   } 
17   after():execution(public void Bit.Clear ())   { 
18       if(!busy) { 
19    busy = true; 

20    Bit b = (Bit) thisJoinPoint.getTarget(); 
21    if(b == b1)b2.Set(); else b1.Set(); 
22    busy = false; 
23    } 
24   } 
25  } 

Figure 2. Eos code for Bit example 

The purpose of the aspect is to ensure that b1 and b2 always have 
the same state at quiescent points (i.e., except during execution of 
a Set operation). We thus need to verify that the aspect module 
behaves in such a way. It is, however, generally difficult to reason 
about AOP for the following reasons: 

1. The primitive constructs in aspect-oriented languages need to 
be rigorously defined.  

2. It could be very hard to reason about an aspect program 
automatically. There has been a fair amount of research on 
the possibility of applying model checking on reasoning 
about AOP, although there is hardly a working example. 

3. Since the behavioral modifications by aspects can cut across 
the entire code base, it s very hard for us to understand an 
aspect-oriented program in a modular way. That is, we can 
no longer analyze modules separately then combine results. 
An aspect can influence the semantics of the whole system. 
This issue as the most difficult part of reasoning about AOP.  

3. IMPLICIT INVOCATION  
Implicit invocation [23] [12] is a mechanism for managing how 
invocation relations are represented as names relations. If 
component A needs to invoke component B at a certain point, A 
can do so either by explicitly calling B, in which case A names B,  
or B can register with A to be invoked implicitly by event 
announcement, which case, B names A.  Because the names 
relation is a key determinant of compile, link, and runtime 
dependencies, having means to structure it properly is important.  
Implicit invocation and join points and advice provide such 
means. 

II is also known as publish-subscribe system, since generally it is 
implemented in such a way. A component (the subscriber) 
registers interest in particular events that the other component (the 
publisher) announces. The II mechanism then guarantees the 
invocation of subscriber. The publisher is not aware of the 
existence of the subscribers. II has been used widely in system-
level development and message-passing applications. For 
example, a user can define and register a callback procedure that 
is invoked when a particular signal is raised by the OS kernel. 

Such systems make modular reasoning harder, since we need to 
decouple the verification of one component from the verification 
of the rest of system that communicate with the given component 
by event bindings. Dingel et al. [8] proposed a formal model for II 
systems and proposed a three-phase reasoning methodology: 
decomposition, local reasoning and global reasoning. By the 
decomposition process, we can formalize the event/handler 
semantics and model the system, the environment and the event 
dispatch mechanism in a modular way. Applying the three-phase 
reasoning then can be expected to achieve the effect of modular 
reasoning about the whole system. 

It is, however, often not easy to decompose the system into 
separate groups and prove their independence. An alternative 
approach proposed by Garlan et al. [11] uses model checking 



 
instead of formal modular reasoning. Application of model 
checking to software encounters two problems. First, an 
appropriate state model for the system being checked needs to be 
created. This state model of a reasonable size system has a huge 
state space. To check this huge state space using a model checker 
is time consuming, if not infeasible. Second problem is thus to 
find the means to reduce this state space into manageable size so 
that it can be supplied as an input to the model checker.  

The architecture of an II system in [11] models the following 
features: 

- Components: functional objects with well-defined interfaces 

- Events: the primary communication method between 
components 

- Event-Method Bindings: the correspondence between 
announced events and the methods that are invoked in 
response as event handlers 

- Event Delivery Policy: rules about event announcement and 
delivery 

- Shared State: another communication method between 
elements of the II system 

- Concurrency Model: determines if the system has a single 
thread or multiple threads of control 

 

Figure 3. II system architecture 

The system structure is in Figure 3. Besides those functional 
components, the dispatcher and policy modules are another 
important part of the approach. They are responsible for event 
binding and dispatching. Also the environment represents external 
elements that could affect the system.  

The run time state model of an II system has to model the 
following in addition: 

- Event announcement by the system components 

- Storage of event announcements before dispatching 

- Event delivery to the system components 

- Invocation of methods bound to the delivered events 

- Invocation acknowledgement 

For the Bit example, b1 and b2 are considered separate 
components. Calling the state change methods Set/Clear on the 
component b1 results in the component announcing an event 
representing the change in its state, which is then captured by the 
dispatcher. The dispatcher will consult the policy module to 
determine what event will be delivered to which component 
without causing a propagation cycle. The state change in b2 will 
also result in announcement of an event representing its state 
change and the same actions as above. Figure 4 depicts the 
simplest II state model that models the Bit example, in which we 
omit the environment module and the details of b2 s event 
exchange since it s the same with b1. For each event of interest, a 
notify message is delivered from the component to the dispatcher, 
which results in the delivery of an invoke message from the 
dispatcher to the other component.  

 

Figure 4. II run time state model for the Bit example 

To reason about the system, we are interested in verifying some 
properties of the system. These properties are expressed as 
assertions. The Equality between b1 and b2 will be represented as 
the following assertion: 

Equality: 
assert(F (b1.state = b2.state)); 

F , a logical notation of LTL, represents eventually . The SMV 
model checker takes these assertions and the state machine 
constructed before as input and produces validity of these 
assertions as output.  

Bradbury et al. [4] extended Garlan et al. s model to support 
dynamic event model. They use XML to represent the event 
model which is later translated into SMV input. They have 
applied their method on real world implicit invocation systems 
such as Active Badge Location System (ABLS) [26] and 
Unmanned Vehicle Control System (UVCS) [20] demonstrating 
the capabilities of their approach.  

4. Reduction from AOP to II 
We would like to assure that the aspect performs its intended 
behavioral modifications without producing any undesirable side 
effect. Existing approaches can be used to reason about the plain 
object-oriented systems. Our approach therefore focuses on 
reasoning about aspects, the modular representation of 
crosscutting concerns, and its interaction with the component part. 
To enable this reasoning, we propose to reduce an element of 
aspect-oriented programming space (an aspect-oriented program) 



 
to an element in implicit invocation space (an implicit invocation 
based program). We can then reason about the element in the 
implicit invocation space using the II reasoning techniques 
described in the last section. The reasoning results will then be 
reduced back from II space to the AOP space thus effectively 
enabling reasoning about the aspect-oriented program.  

First, let us revisit the concepts of aspect-oriented programming 
as embodied in asymmetric languages such as AspectJ. A join 
point is a point in the execution of a program (such as just before 
a method body executes) exposed by the language design for 
behavioral modification by aspect modules. The join points 
exposed by current AspectJ-like languages include method calls 
and execution, field get and set operations, exceptions, and object 
initialization. A pointcut is an expression a predicate that 
serves to select a subset of program join points. A pointcut is then 
defined to be a predicate expression over a set of join points.  

We observe that every join point can be viewed as a set of 
semantic events. These events will be announced when the 
control hits the join point during program execution. AspectJ-like 
languages can advise a join point in three different ways: before, 
after and around. The before and after advice are semantically 
clean, however, the around advice is a bit more involved. To keep 
the model simple we will not be discussing around advices. To 
differentiate between these ways of advising we map each join 
point to a 2-tuple of events: <before the join point, after the join 
point>. We treat each of these elements differently in the 
corresponding event model. An advice before a join point is 
mapped to the event before a join point and similarly for after 
advice.  

A pointcut selects a subset of program join points. Each pointcut 
is mapped to an enumeration of a set of 2-tuple of events where 
each 2-tuple in the set corresponds to a join point in the subset of 
program join points selected by the pointcut. A named pointcut is 
mapped to a named set of 2-tuples. The subset of join points that 
are matched by the pointcut expressions that rely on run-time 
information cannot be obtained statically. The control flow 
(cflow) and control flow below (cflowbelow) are examples of 
some of these pointcuts. These pointcuts cannot be mapped 
statically to a simple event model like the one used by Garlan 
[11]. In summary, the mapping of join points and pointcuts to II 
concepts can be shown below: 

f: {Joinpoint} -> {Event} X {Event} 

g: {Pointcut} -> {Predicate} X {A set of events} 

A pointcut can be denoted by a pair <predicate, {joinpoint}>, 
which means a predicate expression over a set of joinpoints.  

For example, the mapping applied to a joinpoint a is: 

f(a) = <after_a, before_a> 

in which after_a and before_a are two events. 

The mapping applied to a pointcut <p, {a, b, c}> is: 

g(<p, {a, b, c}>) = <g(p), {f(a), f(b), f(c)}> 

in which p is a predicate over the set of joinpoints a, b, c, while 
g(p) denotes the mapped predicate over the set of events. 

Events picked out for our Bit example are shown below: 

Events exposed by the Bit component =  
{ [before_Bit.Bit, after_Bit.Bit], 

      [before_Bit.Set, after_Bit.Set],  
[before_Bit.Clear, after_Bit.Clear] } 

Events picked out by the pointcut expression execution(public 
void Bit.Set ())

 
= {[before_Bit.Set, after_Bit.Set]} 

Events picked out by the pointcut expression execution(public 
void Bit.Clear ())

 
= {[before_Bit.Clear, after_Bit.Clear]} 

The mapping of pointcut after(): execution(Bit.Set()) is: 

g(<after execution, {Bit.Set()}> = 

<only after_* events, {<before_Bit.Set, after_Bit.Set>}> 

The mapping of pointcut after(): execution(Bit.Clear()) is: 

g(<after execution, {Bit.Clear()}>) = 

<only after_* events, {<before_Bit.Clear, after_Bit.Clear>}> 

An advice is mapped to an event handler. The role of an advice, 
with respect to the advised pointcut, is the same as the event 
handler with respect to the captured event. In the Bit example, 
there are two event handlers in the Equality aspect, one 
corresponds to the after():execution(Bit.Set()) advice, the other 
corresponds to the after():execution(Bit.Clear()) advice. 

Third, there should be a dispatcher in the mapped system, as well 
as a dispatch policy module. The dispatcher is responsible for 
event storage, event binding, event delivery and interacting with 
the dispatch policy module. The policy module implements event 
delivery policy. In the context of mapping AOP, it should be able 
to choose event handlers according to a predicate expression over 
a set of events, just like the pointcut definition.  

As for the Bit example, the aspect Equality actually can be 
mapped to part of the policy module in Figure 3. When the 
dispatcher receives an event, it will inquire the policy module to 
decide the actions it will take. In this case, the Equality policy 
will determine which message (Set or Clear) to deliver to which 
component.  

The assertions we can check over this II system like assert(F 
(b1.state = b2.state)) is now mapped back to the behavior 
constraint between the two objects b1 and b2 in the Eos program 
(Figure 2). This constraint is therefore checked by the reduction 
process. Thus, we demonstrate a simple example of our approach 
to use II reasoning technique to reason about an aspect-oriented 
program s behavior. 

5. RELATED WORK 
Dingel et al. [8], Garlan et al. [11], and Bradbury et al. s [4] work  
on model checking implicit invocation systems is closely related 
to ours and is, in fact, used as a subroutine. They proposed an 
event model to describe the behavior of the II systems. Bradbury 
et al. s approach translates this model written in XML format to 
the SMV language and applies the SMV model checker. These 
approaches are applicable to II systems, but not directly to aspect-
oriented programs. Our approach supplements these approaches 
by providing a reduction from the AOP space to II space, thus 
enabling the use of these approaches in the AOP space.  



 
Mapping AOP to event model is not a completely new idea. 
Filman and Havelund [10] briefly proposed an event language for 
aspects. The event language has primitive events and a set of 
relationships between events, which include abstracted temporal 
relationships, abstract temporal quantifiers, concrete temporal 
relationship referring to clock time, cardinality relationships and 
aggregation relationships for describing sets of events. Walker 
and Murphy [25] employed their implicit context concept to map 
join points to ordered events. By such mapping, they showed a 
close relationship between AOP and implicit context. Our work 
makes the reduction from AOP to II explicit.  

As for reasoning about AOP, there has been significant research 
on this topic. Ubayashi et al. [24] claimed to apply model 
checking using aspects. They write an aspect for every property to 
check, and then weave these aspects and the source program into 
a new program and then execute this weaved program. This 
approach works only for plain java programs. It can only check 
properties that can be represented by aspects. It also uses a 
dynamic approach, so presence of property violation can only be 
discovered if that execution path is taken. 

Blair and Monga [3] view every pointcut declaration as a slicing 
criterion that can be used to compute an associated slice. They 
then envision that this sliced program could be fed into Bandera 
model checker, but the expressiveness of aspects is difficult to be 
captured by any slicing technique.  

Instead of reasoning about the entire program, Clifton and 
Leavens [5][6] give two concepts for AspectJ: Observer 
(Spectator) and Assistant. Assistants are aspects that could change 
the behavior of other parts, while observers do not. They also 
propose an accept notation to be added into AspectJ, to make 
aspect invocation explicit, for facilitating modular reasoning. By 
categorizing aspects into observers and assistants, and explicitly 
exposing the join point, they expect to be able to reason AOP in a 
modular way, however, it remains unclear how can we 
differentiate assistants from observers in real programs. The 
accept notation compromises the obliviousness [9] properties of 
aspect-oriented programs. Our approach on the other hand, does 
not impose any restriction on the language model of aspect-
oriented programming languages. 

Devereux [7] tries to transfer aspect programs to alternating-time 
logic. Then program properties can be expressed by assertions in 
alternating-time logic. It supports two concepts, imposition and 
preservation similar to assistant and observer. The development of 
a reduction similar to ours from aspect-oriented space to 
alternative-time logic is possible; however, the lack of tool 
support for automated reasoning in alternating-time logic makes 
the reduction less attractive. 

Recently there has been increasing research interests on 
exploiting type systems to enable reasoning about aspect-oriented 
programs. Aldrich [1] presented a simple aspect language called 
TinyAspect. Module sealing and explicit declaration of exported 
join points is the core of TinyAspect.  The idea is to enforce 
abstraction by prohibiting clients, viz., aspects, from exploiting 
implementation details, such as calls from within a component to 
its own public methods. There is a set of type inference rules for 
TinyAspect by which one can reason about the behavior of 
aspects.  Type checking in the TinyAspect model, however, does 
not allow one to reason about the kinds of behavioral properties 
that we address.   

6. CONCLUSION 
Aspect-oriented programming imposes many new challenges on 
program understanding and reasoning. In fact, how to reason 
about AOP in a modular way has been an open question for years. 
In this paper, we reduce the join point and pointcut mechanisms 
of AOP to the events of implicit invocation systems, and we show 
that this reduction has the potential to improve our ability to 
reason formally about the aspect program behavior. Forthcoming 
work will formalize the reduction, develop and evaluate the 
approach, and investigate the possibility of automated tool 
support for such reductions and formal property verifications. 
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