
Continuation Join Points

Yusuke Endoh
Department of Computer

Science, University of Tokyo

mame@yl.is.s.u-
tokyo.ac.jp

Hidehiko Masuhara
Graduate School of Arts and
Sciences, University of Tokyo

masuhara@acm.org

Akinori Yonezawa
Department of Computer

Science, University of Tokyo

yonezawa@yl.is.s.u-
tokyo.ac.jp

ABSTRACT
In AspectJ-like languages, there are several different kinds
of advice declarations, which are specified by using advice
modifiers such as before and after returning. This makes
semantics of advice complicated and also makes advice dec-
larations less reusable since advice modifiers are not param-
eterized unlike pointcuts. We propose a simpler join point
model and an experimental AOP language called PitJ. The
proposed join point model has only one kind of advice, but
has finer grained join points. Even though we unified differ-
ent kinds of advice into one, the resulted language is suffi-
ciently expressive to cover typical advice usages in AspectJ,
and has improved advice reusability by allowing pointcuts,
rather than advice modifiers, to specify when advice body
runs. Along with the language design, this paper gives a for-
malization of the join point model in a continuation-passing
style (CPS).

1. INTRODUCTION
One of the fundamental language mechanisms in aspect-
oriented programming (AOP) is the pointcut and advice
mechanism, which can be found in many AOP languages
including AspectJ[12]. As previous studies have shown, de-
sign of pointcut language and selection of join points are
key design factors of the pointcut and advice mechanisms in
terms of expressiveness, reusability and robustness of advice
declarations[3, 11, 18, 13, 10, 14].

A pointcut serves as an abstraction of join points in the
following senses:

� It can give a name to a set of join points (e.g., by
means of named pointcuts in AspectJ).

� Differences among join points, such as join point kinds
and parameter positions, can be subsumed. For exam-
ple, when we define a logging aspect that records the
first argument to runCommand method and the second

argument to debug, different parameter positions are
subsumed by the next pointcut:

pointcut userInput(String s):
(call(* Toplevel.runCommand(String)) && args(s))

|| (call(* Debugger.debug(int,String)) && args(*,s));

� It can separate concrete specifications of interested join
points from advice declarations (e.g., by means of ab-
stract pointcuts and aspect inheritance in AspectJ). In
other words, we can parameterize interested join points
in an advice declaration.

There have been several studies on advanced pointcut prim-
itives for accurately and concisely abstracting join points[3,
11, 18, 13].

In order to allow pointcuts to accurately abstract join points,
the pointcut and advice mechanisms should also have a rich
set of join points. If an interested event is not a join point,
there is not way to advise it at all. Several studies have
investigated to introduce new kinds of join points, such as
loops[10], conditional branches[14], and local variable ac-
cesses[15] into AspectJ-like languages. In other words, the
more kinds of join points the pointcut and advice mecha-
nism has, the more opportunities advice declarations can be
applied to.

This paper focuses on a language with finer grained join
points for improving reusability of advice declarations. The
join point model can be compared with traditional join point
model in AspectJ-like languages as follows:

� In the join point model in AspectJ-like languages, a
join point represents duration of an event, such as a
call to a method until its termination. We call this
model the region-in-time model because a join point
corresponds to a region on a time line.

� In our proposing join point model, a join point repre-
sents an instant of an event, such as the beginning of
a method call and the termination of a method call.
We call this model the point-in-time model because a
join point corresponds to a point on a time line.

The contributions of the paper are:



� We demonstrate that the point-in-time join point
model can improve reusability of advice.

� We present an experimental AOP language called PitJ
based on the point-in-time model. PitJ’s advice is as
expressive as AspectJ’s in most typical use cases even
though the advice mechanism in PitJ is simpler than
the one in AspectJ-like languages.

� We give a formal semantics of the point-in-time model
by using a small functional AOP language called Pitλ.
Thanks to affinity with continuation passing style, the
semantics gives a concise model with advanced features
such as exception handling.

2. REUSABILITY PROBLEM OF REGION-
IN-TIME JOIN POINT MODEL

Although languages that are based on the region-in-time
join point model are designed to be reusable, there are situ-
ations where aspects are not as reusable as they seem to be.
This section explains such situations, and argues that this
is common problem to the region-in-time join point model.

In order to clarify the problem, this section uses a cross-
cutting concern that is to log user’s input received by the
following two versions of base program:

a console version that receives user input from the con-
sole.

a hybrid version, evolved from the console version, that
receives user input from both the console and GUI
components.

2.1 Logging Aspect for the Console Version
Figure 1 shows a logging aspect for the console version in
AspectJ[12]. We assume that the base program receives user
input as return values of readLinemethod in several classes.

¶ ³
1 aspect ConsoleLogging {
2 pointcut userInput(): call(String *.readLine());
3 after() returning(String s): userInput() {
4 Log.add(s);
5 }
6 }

µ ´

Figure 1: Logging aspect for the console version

Line 2 declares a pointcut userInput that matches any join
point that represents a call to readLine method. Lines 3–5
declare advice to log the input. after() returning(String

s) is an advice modifier of the advice declaration that spec-
ifies to run the advice body after the action of the matched
join points with binding the return value from the join point
to variable s. The body of the advice, which is at line 4,
records the value.

It is possible to declare a generic aspect in order to subsume
changes of join points to be logged in different versions. For
example, Figure 2 shows a generic logging aspect that uses

abstract pointcut userInput in an advice declaration, and
a concrete logging aspect for the console version that con-
cretizes userInput into call(String *.readLine()).

¶ ³
1 abstract aspect UserInputLogging {
2 abstract pointcut userInput();
3 after() returning(String s): userInput() {
4 Log.add(s);
5 }
6 }

7 aspect ConsoleLogging extends UserInputLogging {
8 pointcut userInput():
9 call(String *.readLine());

10 }

µ ´

Figure 2: Generic logging aspect and its application

to the console version

The generic logging aspect is reusable to log user’s input
from environment variables as shown in Figure 3. Note that
we can achieve this without modifying the generic logging
aspect.

¶ ³
1 aspect ConsoleAndEnvVarLogging
2 extends UserInputLogging {
3 pointcut userInput():
4 call(String *.readLine()) ||
5 call(String System.getenv(String));
6 }

µ ´

Figure 3: Logging aspect for console and environ-

ment variable

2.2 Modifying the Aspect to the Hybrid Ver-
sion

The generic logging aspect is not reusable when the base
program changes its programming style. In other words,
pointcuts no longer can subsume changes in certain kinds of
programming style.

Consider a hybrid version of the base program that receives
user input from GUI components as well as from the console.
The version uses the GUI framework which calls onSubmit

(String) method on a listener object in the base program
with the string as an argument when a user inputs a string
via GUI interface.

Since UserInputLogging in Figure 2 can only log return
values, we have to define a different pointcut and advice
declaration as shown in Figure 4.

Making the logging aspect for hybrid version reusable is
tricky and awkward. Since single pointcut and advice can
not subsume differences between return values and argu-
ments, we have to define a pair of pointcuts and advice dec-
larations. In order to avoid duplication in advice bodies, we
need to define an auxiliary method and let advice bodies
call the method. The resulted aspect is shown in Figure 5.



¶ ³
1 aspect HybridLogging extends UserInputLogging {
2 pointcut userInput(): call(String *.readLine());
3 pointcut userInput2(String s):
4 call(String *.onSubmit(String)) && args(s);
5 before(String s): userInput2(s) {
6 Log.add(s);
7 }
8 }

µ ´

Figure 4: Logging aspect for the hybrid version

¶ ³
1 abstract aspect UserInputLogging2 {
2 abstract pointcut userInputAsReturnValue();
3 abstract pointcut userInputAsArgument(String s);
4 after() returning(String s):
5 userInputAsReturnValue() {
6 log(s);
7 }
8 before(String s): userInputAsArgument(s) {
9 log(s);
10 }
11 void log(String s) {
12 Log.add(s);
13 }
14 }

µ ´

Figure 5: Generic logging aspect that can log for

both return values and arguments

2.3 Analysis of the Problem
By generalizing the above problem, we argue that pointcuts
in the region-in-time join point model can not subsume dif-
ferences between the beginnings of actions and the ends of
actions.

Such a difference is not unique to the logging concern, but
can also be seen in many cases. For example, following dif-
ferences can not be subsumed by pointcuts in the region-in-
time join point model:

� a polling style program that waits for events by call-
ing a method and an event driven style program that
receives events by being called by a system,

� a method that reports an error by returning a special
value and a method that does by an exception, and

� a direct style program in which caller performs rest
of the computation and continuation-passing style in
which the rest of computation is specified by function
parameters.

Our claim is that the problem roots from the design of join
point model in which a join point represents a region-in-
time, or a time interval during program execution. For
example, in AspectJ, a call join point represents a region-
in-time while invoking the method, executing the body of
the method and returning from the method. This design
in turn requires advice modifiers which indicate either the

beginnings or the ends of the join points that are selected
by pointcut.

3. POINT-IN-TIME JOIN POINT MODEL
3.1 Overview
We propose a new join point model, called point-in-time
join point model, and design an experimental AOP language,
called PitJ. PitJ differs from AspectJ-like languages in the
following ways:

� A join point represents a point-in-time (or an instant
of program execution) rather than a region-in-time (or
an interval). Consequently, there are no such notions
like “beginning of a join point” or “end of a join point”.

� There are new kinds of join points that represent ter-
minations of actions. For example, a return from meth-
ods is an independent join point, which we call a re-
ception1 join point, from a call join point. Similarly,
an exceptional return is a failure join point. Table 1
lists the join points in PitJ along with respective ones
in AspectJ.

� There are new pointcut constructs that match those
new kinds of join points. For example, reception(m)
is a pointcut that selects any reception join point that
returns from the method m.

� Advice declarations no longer take modifiers like before
and after to specify timing of execution.

PitJ AspectJ

call / reception / failure method call
execution / return / throw method execution

get / success get / failure get field reference
set / success set / failure set field assignment

Table 1: Join points in PitJ and AspectJ

Figures 6 and 7 illustrate the difference between the point-
in-time join point model and region-in-time one.

Figure 8 shows example aspect definitions in PitJ. The
generic aspect (lines 1–6) is not different from the one in As-
pectJ expect that the advice does not take a modifier (line
3). HybridLogging aspect concretizes the pointcut by using
reception and call pointcut primitives (lines 9–10). When
readLine returns to the base program, a reception join point
is created and matches the userInput. The return value is
bound to s by args pointcut. When onSubmit method is
called, a call join point matches the pointcut with binding
the argument to s.

As we see in Figure 8, differences in the timing of advice ex-
ecution as well as the way of passing parameters can be sub-
sumed by pointcuts with the point-in-time join point model.
This ability allows us to define more reusable aspect libraries
by using abstract pointcuts because users of the library can
fully control the join points to apply aspect.

1Older versions of AspectJ[12] have reception join points for
representing different actions.



readLine();

main

readLine(){

}

console

call join point

Figure 6: Call join point in AspectJ-like languages

readLine();

main

readLine(){

}

console

call join point

reception join point

Figure 7: Call and reception join points in PitJ

¶ ³
1 abstract aspect UserInputLogging {
2 abstract pointcut userInput(String s);
3 advice(String s) : userInput(s) {
4 Log.add(s);
5 }
6 }

7 aspect HybridLogging extends UserInputLogging {
8 pointcut userInput(String s):
9 (reception(String *.readLine()) ||
10 call(* *.onSubmit(String))) && args(s);
11 }

µ ´

Figure 8: A logging abstract aspect and its applica-

tion to the hybrid version in PitJ

We verified the reusability problem which is effectively solved
by the point-in-time join point model by case study with
some realistic applications, aTrack[1] and AJHotDraw[16].
The details of the case study are presented in the other lit-
erature[9].

3.2 Exception Handling
In AspectJ, advice declarations have to distinguish excep-
tions by using a special advice modifier after() throwing.
It specifies to run the advice body when interested join
points terminate by throwing exception. For example, a
sample aspect in Figure 9 prints a message when an un-
caught exception is thrown from readLine. Similar to the
discussion on the before and after advice, termination by
throwing an exception and normal termination can not be
captured by single advice declaration2.

In PitJ, ‘termination by throwing an exception’ is regarded

2It is possible to capture them by using after advice, which
however can not access to return values or exception objects.

¶ ³
1 aspect ErrorReporting {
2 after() throwing: call(* *.readLine()) {
3 System.out.println("exception");
4 }
5 }

µ ´

Figure 9: An aspect to capture exceptions in As-

pectJ

¶ ³
1 aspect ErrorReporting {
2 advice(): failure(* *.readLine()) {
3 System.out.println("exception");
4 }
5 }

µ ´

Figure 10: An aspect to capture exceptions in PitJ

as an independent failure join point. Figure 10 is an equiv-
alent to the one in Figure 9. A pointcut failure matches
a failure join point which represents a point-in-time at the
termination of a specified method by throwing an exception.

3.3 Around-like Advice
One of the fundamental questions to PitJ is, by simplifying
advice modifiers, whether it is expressive enough to imple-
ment around advice in AspectJ. The usages of around advice
in AspectJ can be classified into the following four:

1. replacing the parameters to a join point with new ones,

2. replacing the return values to the caller of a join point,

3. going back to the caller without executing a join point,
and

4. executing a join point more then once.

In PitJ, 1 and 2 are realized by using a return construct in
an advice body. For example, the next advice declaration:

advice(String s):

(reception(* *.readLine()) ||

call(* *.onSubmit(String)) && args(s) {

return s.replaceAll("<", "&lt;").

replaceAll(">", "&gt;");

}

sanitizes user input by replacing meta-characters with es-
caped ones. When an advice body ends without return,
the values in join points remain unchanged.

As for 3, we introduce a construct skip. When an advice
declaration applied to a call join point evaluates skip, it
jumps to the reception join point that corresponds to the
current call join point without executing subsequent advice
declarations matching the call join point, and the call join



point itself. When skip is evaluated at a reception or failure
join point, it merely skips subsequent advice declarations
matching the join points. For example, consider the next
two advice declarations:

advice(): call(* *.readLine()) { skip "dummy"; }

advice(): call(* *.readLine()) {

Log.add("reading");

}

When readLine() is called, the first advice body imme-
diately returns "dummy" to the caller without running the
second advice and the body of readLine.

As for 4, we introduced a special function proceed. On
a call join point, it executes the action until just before
the subsequent reception join point that corresponds to the
current call join point, and then returns the result of the
call. On a reception or failure join point, proceed always
returns the null. We show three examples of proceed below.

advice(): call(* *.readLine()) {

String str = proceed();

}

The above advice performs the body of readLine by evalu-
ating proceed, and performs readLine again after finishing
the advice body. As a result, the method readLine skips
every other line.

advice(): call(* *.readLine()) {

skip(proceed() + proceed());

}

The second advice lets a call to readLine return a concate-
nation of two lines.

advice(): call(* *.readLine()) {

skip(proceed());

}

The above advice has no effect because the proceed exe-
cutes the action until just before the reception join point
that corresponds to the current call join point, and the skip
jumps to the same reception join point.

Note that we introduced skip and proceed as a set of mini-
mal constructs in order to realize the same functionalities to
AspectJ’s around advice. Further investigations would be
needed in terms of conciseness and expressiveness in real-
world applications.

3.4 More Advanced Features
Some existing AOP languages including AspectJ provide
context sensitive pointcuts. They judge whether a join point
is in a specific context. PitJ has cflow pointcut, which is a
kind of context sensitive pointcuts. It identifies join points

based on whether they occur in the dynamic context dur-
ing a region-in-time between a specified call join point and
the subsequent reception one. For example, cflow(call(*
*.onSubmit(String))) specifies any join point that occurs
between when a onSubmit method is called and when it re-
turns.

In addition, we are considering the integration of execution
trace sensitive aspects[8, 7, 18], which use execution trace,
or a history of generated join points, to judge whether to
perform additional computation. We expect that our finer
grained join points enhance its effectiveness and robustness.

4. FORMAL SEMANTICS
We present a formal semantics of Pitλ, which is a simpli-
fied version of PitJ. Pitλ simplifies PitJ by using a lambda-
calculus as a base language, and by supporting only call,
reception and failure join points. The semantics contributes
to clarify the detailed behavior of the program especially
when integrated with other advanced features such as ex-
ception handling and context sensitive pointcuts. It also
helps to compare expressiveness of the point-in-time join
point model against the region-in-time one.

4.1 Base Language
Figure 11 shows the syntax of the base language and its de-
notational semantics in a continuation passing style (CPS).
We use untyped lambda-calculus as the base language. The
semantics follows the style of Danvy and Filinski[6].

¶ ³
Syntax:�
Expression � e :: � x (Identifier)�

fun x � e (Function)�
e e (Application)

Semantic algebras:
numbers Int , booleans Bool , identifiers Ide

v � Val � Int � Bool � Fun (Values)
ρ � Env � Ide � Val (Environments)
κ � Ctn � Val � Ans (Continuations)
f � Fun � Ctn � Ctn (Functions)

Ans � Val � (Answers)

Valuation function for the expressions:

E : Expression � Env � Ctn � Ans
E � x 	 ρ κ � κ

�
ρ x �

E � fun x � e 	 ρ κ � κ
�
inFun

�
λκ 
 v. E � e 	 ���

v  x � ρ � κ 
����
E � e0 e1 	 ρ κ � E � e0 	 ρ �

λFun
�
f � . E � e1 	 ρ �

λv.

f κ v ���
µ ´
Figure 11: Syntax and semantics of the base lan-

guage

4.2 Syntax of Pitλ0

We begin with Pitλ0, which is a core part of Pitλ that has
only call and reception join points. Figure 12 displays the
syntax.

4.3 Semantics of Pitλ0



¶ ³
�
Expression � e :: � x (Identifier)�

fun x � e (Function)�
e e (Application)�

Pointcut � p :: � call(x)
�
reception(x)�

args(x)
�
p && p

�
p || p�

Advice � a :: ��� � advice : p � e; a

µ ´
Figure 12: Pitλ0 syntax

¶ ³
P : Pointcut � Env � Jp � �

Env ��� False � �
P � call(x) 	 ρ �

call
�
x 
�� , v � ��

ρ if x � x 
 or x ���
False otherwise

P � reception(x) 	 ρ �
reception

�
x 
�� , v � ��

ρ if x � x 
 or x ���
False otherwise

P � args(x) 	 ρ �
ε, v � � �

v  x � ρ
P � p0 && p1 	 ρ θ �

�
P � p1 	 ρ 
 θ if P � p0 	 ρ θ � ρ 

False otherwise

P � p0 || p1 	 ρ θ �
�
ρ 
 if P � p0 	 ρ θ � ρ 

P � p1 	 ρ θ otherwise

µ ´
Figure 13: Semantics of pointcuts

We give a semantics of Pitλ0 by modifying the semantics of
the base language in Section 4.1.

First, we define additional semantic algebras. An event ε
is either call or reception with a function name and a join
point θ is a pair of an event and an argument:

ε :: � call
�
x � �

reception
�
x � �

Evt �
θ :: � �

ε, v � �
Jp �

Additionally, we define an auxiliary function σ that extracts
a signature (or a name) from an expression.

σ : Expression � Identifier

σ
�
e � �

�
e if e is Identifier

$ otherwise

If it receives an Identifier, the argument itself is returned.
Otherwise, it returns the dummy signature $. For example,
σ
�
x � is x , and σ

�
fun x � x � is $.

The semantics of the pointcuts is a function P shown in Fig-
ure 13. P � p 	 ρempty θ tests whether the pointcut p and the
current join point θ match. If they do, it returns an envi-
ronment that binds a variable to a value by args pointcut.
Otherwise, it returns False.

We then define the semantic function A for lists of advice
declarations (Figure 14), which receives an advice list, an
event and a continuation. When the pointcut of the first
advice matches a join point, it returns a continuation that
evaluates the advice body and then evaluates the rest of

¶ ³
A : Advices � Evt � Ctn � Ctn
A � advice : p � e; a 
 	 ε κ v ��

E � e 	 ρ 
 �
A � a 
 	 ε κ � if P � p 	 ρempty

�
ε, v � � ρ 


A � a 
 	 ε κ v otherwise

A �	� 	 ε κ v � κ v

µ ´
Figure 14: Semantics of advice

¶ ³
E : Expression � Env � Ctn � Ans

E � x 	 ρ κ � κ
�
ρ x �

E � fun x � e 	 ρ κ � κ
�
inFun

�
λκ 
 v. E � e 	 ���

v  x � ρ � κ 
����
E � e0 e1 	 ρ κ � E � e0 	 ρ �

λFun
�
f � . E � e1 	 ρ �

λv.

A � a0 	 call
�
σ
�
e0 ����

f
�
A � a0 	 reception

�
σ
�
e0 ��� κ ��� v ���

µ ´
Figure 15: Semantics of expressions

the advice list. Otherwise, it returns a continuation that
evaluates the rest of the advice list. At the end of the list,
it continues to the original computation.

We finally define the semantic function of the expression.
In the section, the semantics of Identifier and Function
remain unchanged. The semantics of Application in Pitλ0

is defined by inserting application to A at appropriate posi-
tions. The original semantics of Application is as follows:

E � e0 e1 	 ρ κ � E � e0 	 ρ �
λFun

�
f � . E � e1 	 ρ �

λv. f κ v ���

The shadowed part f κ is a continuation that executes the

function body and passes the result to the subsequent con-

tinuation κ. The application to the continuation f κ v,

therefore, corresponds to a call join point. By replacing the
continuation with A � a 	 call

�
x � �

f κ � , we can run applicable
advice at function calls:

E � e0 e1 	 ρ κ � E � e0 	 ρ �
λFun

�
f � . E � e1 	 ρ �

λv.

A � a0 	 call
�
σ
�
e0 ��� �

f κ � v ���
where a0 is the globally defined list of all advice declarations.

Similarly a reception of a return value from a function ap-
plication can be found by η-expanding3 κ as follows:

E � e0 e1 	 ρ κ � E � e0 	 ρ �
λFun

�
f � .E � e1 	 �

λv.f
�
λv 
 .κ v 
 � v ���

Therefore, advice application at reception join point can be
achieved by replacing κ with A � a 	 reception

�
x � κ.

Figure 15 shows the final semantics for the expression with
call and reception join points. As we have seen, advice ap-
plication is taken into the semantic function in a systematic
way: given a continuation κ that represents a join point,

3This η-expansion prevents tail-call elimination. It fits the
facts that defining an advice whose pointcut specifies a re-
ception join point makes tail-call elimination impossible.



substitute with A � a 	 ε κ. In the next section, we will see ad-
vanced features can also be incorporated in the same ways.

5. SEMANTICS OF ADVANCED FEATURES
In the section, with the aid of the clarified semantics, we
investigated integration of advanced language features with
the point-in-time join point model. Thus far, the follow-
ing features are integrated into Pitλ: exception handling,
context sensitive pointcuts and around advice. We call the
integrated version Pitλ1. For the sake of simplicity, we ex-
plain about each integration step orthogonally.

5.1 Exception Handling
In AspectJ, advice declarations have to distinguish excep-
tions by using a special advice modifier (as described in Sub-
section 3.2). It not only complicates the problem in reusabil-
ity, but also makes the semantics awkward. This is because
we have to pay attention to all combinations of advice modi-
fiers and pointcuts. In fact, some existing formalizations[19,
17] gave a slightly different semantic equation to each kind of
advice declarations. Meanwhile, the point-in-time join point
model has no advice modifiers, which makes the semantics
simpler.

Figure 16 shows additional constructs for exception han-
dling: Try and Raise as the expression, and failure as
the pointcut. For the sake of simplicity, we don’t introduce

¶ ³
�
Expression � e :: � . . .�

try e with x � e (Try)�
raise e (Raise)�

Pointcut � p :: � . . .
�
failure(x)

µ ´
Figure 16: Additional constructs for exception han-

dling

the special values which represent an exception; an arbi-
trary value can be raised. For example, (fun x � raise x) 1

raises the value 1 as an exception. try ((fun x � raise x) 1)

� 2 with x � x � 3 is evaluated normally to the value 4. But,
with advice : failure( � ) && args(x) � x � 2, it is evalu-
ated to the value 5.

We first give a standard denotational semantics to these con-
structs. In preparation for it, we introduce a continuation
which represents current exception handler to the semantics
algebra Fun and the semantic functions A and E :

f � Fun � Ctn � Ctn � Ctn

E : Expression � Env � Ctn � Ctn � Ans

E � x 	 ρ κh κ � κ
�
ρ x �

E � fun x � e 	 ρ κh κ � κ
�
inFun

�
λκh 
 κ 
 v.

E � e 	 ���
v  x � ρ � κh 
 κ 
 ���

E � e0 e1 	 ρ κh κ � E � e0 	 ρ κh

�
λFun

�
f � . E � e1 	 ρ κh

�
λv.

A � a 	 call
�
σ
�
e0 ��� κh�

f κh

�
A � a 	 reception

�
σ
�
e0 ��� κh κ ��� v ���

The new definition of A is in Figure 17-(b). This modifi-
cation, adding the shadowed parts, is mechanical since ad-
ditional continuations are dealt with only by the additional

¶ ³
(a) Pointcuts (failure only):

P � failure(x) 	 ρ �
failure

�
x 
�� , v � ��
ρ if x � x 
 or x � �
False otherwise

(b) Advices:

A : Advices � Evt � Ctn � Ctn � Ctn
A � advice : p � e; a 
 	 ε κh κ v ��

E � e 	 ρ 
 �
A � a 
 	 ε κh κ � if P � p 	 ρempty

�
ε, v � � ρ 


A � a 
 	 ε κh κ v otherwise

A �	� 	 ε κh κ v � κ v

(c) Expressions (Application, Try and Raise only):

E � e0 e1 	 ρκhκ � E � e0 	 ρ κh

�
λFun

�
f � . E � e1 	 ρ κh

�
λv.

A � a 	 call
�
σ
�
e0 ��� κh�

f
�
A � a 	 failure

�
σ
�
e0 ��� κh κh ��

A � a 	 reception
�
σ
�
e0 ��� κh κ ��� v ���

E � try e0 with x � e1 	 ρ κh κ �
E � e0 	 ρ �

λv. E � e1 	 ���
v  x � ρ � κh κ � κ

E � raise e 	 ρ κh κ � E � e 	 ρ κh κh

µ ´
Figure 17: Semantics of Pitλ1 with exception han-

dling

constructs. After that, we can define a semantics of the Try
and the Raise as Figure 17-(c).

Now, we define the semantics of a failure join point by mod-
ifying the original semantics. The failure is added to the
events Evt :

ε :: � . . .
�
failure

�
x �

and the semantics of the failure pointcuts is defined as
Figure 17-(a).

Then, look the semantics of Application. From the first
argument κh in f κh . . ., show up the application form by
η-expansion.

E � e0 e1 	 ρ κh κ � E � e0 	 ρ κh

�
λFun

�
f � . E � e1 	 ρ κh

�
λv.

A � a 	 call
�
σ
�
e0 ��� κh�

f
�
λv. κh v ��
A � a 	 reception

�
σ
�
e0 ��� κh κ ��� v ���

This continuation κh corresponds to a failure join point. We
therefore define the semantics of Application as Figure 17-
(c), in a similar way to call and reception.

The above semantics clarifies the detailed behavior of the
case where aspect mechanism gets tangled up with excep-
tion handling. For example, consider the case where an
exception is thrown in an advice declaration which corre-
sponds to a call join point. Then, a question: “After that,
will any advice declaration be executed?” See the semantic
function A which represents advice execution in a call join
point: A � a 	 call

�
name � κh . . .. It receives κh as an excep-

tion handler directly. So, we can easily answer, “No advice
declaration will be executed.”



¶ ³
�
Pointcut � p :: � . . .

�
cflow(p)

µ ´
Figure 18: cflow pointcut syntax

5.2 Context Sensitive Pointcuts
The subsection describes how we integrate cflow pointcut,
which is a kind of context sensitive pointcuts. The pointcut
identifies join points based on whether they occur in the
dynamic context during a region-in-time of other join points.
For example, cflow(call(* func(..))) specifies each join
point that occurs in the dynamic context during a region-
in-time of the join points specified by call(* func(..)).
In other words, this specifies each join point that occurs
between when a func method is called and when it returns.

The context required by cflow is call stack. When a method
is called, the call join point is pushed onto the stack. And
the stack is popped at a reception join point.

First, we add cflow(p) to the pointcut (Figure 18). Its
informal semantics is explained by example as follows. Con-
sider an advice declaration:

advice : cflow(call(saveFile) && args(x)) && call(write)
� log (”real save : ”

�
x)

When the write method is called in the dynamic context
during saveFile, or when saveFile (”save.dat”) is exe-
cuting, a string ”real save : save.dat” is logged. Out of
the dynamic context during saveFile (”save.dat”), a call
to write makes no logging. Note that the pointcut args(x)
binds the actual parameters of saveFile, not write. A args

pointcut in a cflow binds the value of join point that is
matched by the cflow.

We now define a formal semantics of a cflow pointcut. First,
we modify the semantic algebras of join point and function:

θ � Jp � �
Evt � Val � Jp � �

Nil

f � Fun � Jp � Ctn � Ctn

The semantic algebra Jp comes to take the form of stack
(or list) of join points; it represents the context required by
cflow. And the semantic algebra Fun receives a join point
as well as a continuation. This additional argument is a call
join point at which this function is called.

Along with the change, the semantic function of the point-
cuts needs to be slightly modified:

P � call(x) 	 ρ �
call

�
x 
 � , v, θ � �

�
ρ if x � x 
 or x � �
False otherwise

Other pointcuts are similar. In addition, we add the seman-
tic equation for the cflow pointcut (Figure 19-(a)). If the
pointcut p of cflow(p) matches the current join point (or
the top of stack), P � cflow(p) 	 returns the result environ-
ment. Otherwise, it tries to match the outer join point (or
the next element of stack). This is repeated until Nil (or
stack is empty).

¶ ³
(a) Pointcuts (cflow and Nil only):

P � cflow(p) 	 ρ ���
ε, v, θ 
 � as θ � ��
ρ 
 if P � p 	 ρ θ � ρ 

P � cflow(p) 	 ρ θ 
 otherwise

P � p 	 ρ Nil � False

(b) Advices:

A : Advices � Evt � Jp � Ctn � Ctn

A � advice : p � e 	 ε θ κ v ��
E � e 	 ρ 
 θ �

A � a 
 	 ε θ κ � if P � p 	 ρempty

�
ε, v, θ � � ρ 


A � a 
 	 ε θ κ v otherwise

A �	� 	 ε θ κ v � κ v

(c) Expressions:

E : Expression � Env � Jp � Ctn � Ans

E � x 	 ρ θ κ � κ
�
ρ x �

E � fun x � e; a 
 	 ρ θ κ � κ
�
inFun

�
λθ 
 κ 
 v.

E � e 	 ���
v  x � ρ � θ 
 κ 
 ���

E � e0 e1 	 ρ θ κ � E � e0 	 ρ θ �
λFun

�
f � . E � e1 	 ρ θ �

λv.

A � a 	 call
�
σ
�
e0 ��� θ�

f
�
call

�
σ
�
e0 ��� , v, θ ��

A � a 	 reception
�
σ
�
e0 ��� θ κ ��� v ���

µ ´
Figure 19: Semantics of Pitλ1 with cflow pointcut

¶ ³
�
Expression � e :: � . . .

�
skip e (Skip)

µ ´
Figure 20: skip syntax

The semantics of the advice has to be similarly modified too
(Figure 19-(b)).

Finally, we modify the semantic function of the expression
(Figure 19-(c)). In the semantics of Application, the func-

tion’s argument
�
call

�
σ
�
e0 ��� , v, θ � is a dynamic context.

And, in the semantics of Function, the semantic lambda
function receives a dynamic context.

5.3 Around Advice Modifier
As described in Subsection 3.3, we introduce a construct
skip (Figure 20). A special function proceed is also added.

We here have two options: when integrating only skip, and
when integrating both skip and proceed. If only skip is
required, we integrate it by only adding a continuation which
represents current skip handler. This way is very similar to
exception handling (Subsection 5.1), so we omit explanation.
Although we feel that it may be convenient enough without
proceed, it’s not to say that we can not integrate both.
But we need a technique like partial continuation[6]. It is
a part of the rest of computation, rather than the whole



¶ ³
(a) Advices:

A : Advices � Evt � Ctn � Ctn
A � advice : p � e; a 
 	 ε κp κ v ����� ���
κ

�
E � e 	 ���

proc  proceed � ρ 
 � �
A � a 
 	 ε κp

�
λv 
 . v 
������

if P � p 	 ρempty

�
ε, v � � ρ 


κ
�
A � a 
 	 ε κp

�
λv 
 . v 
 � v � otherwise

where proc � inFun
�
λκ 
 v. κ 
 �

κp v ���
A �	� 	 ε κp κ v � κ

�
κp v �

(b) Expressions (Application and Skip only):

E � e0 e1 	 ρ κ � E � e0 	 ρ �
λFun

�
f � . E � e1 	 ρ �

λv.

A � a 	 call
�
σ
�
e0 ��� �

f
�
λv. v ����

A � a 	 reception
�
σ
�
e0 ��� �

λv. v � κ � v ���
E � skip e 	 ρ κ � E � e 	 ρ �

λv. v �
µ ´
Figure 21: Semantics of Pitλ1 with around advice

rest of computation as in the full continuation. We use a
partial continuation to represent a region-in-time which may
be skipped or be run more than once.

In what follows, we give a denotational semantics of Pitλ1 in
a continuation composing style (CCS). It allows some kinds
of nested function application unlike CPS. Although it loses
the CPS’s important property, enforcing strict call-by-value
evaluation, we know that it can be restored by converting
the definition once more into CPS.

Now, we give the semantics of skip and proceed by using
a partial continuation. We first add a partial continuation
which represents the current proceed function.

f � Fun � Ctn � Ctn � Ctn

And next we modify the semantics of advice (Figure 21-
(a)). Additional continuation κp is a partial continuation
that represents the action until an appropriate join point,
not until program termination. So, κ

�
κp v � executes first

a partial continuation κp and then the rest of continuation
κ. Such applications are not permitted in CPS, but CCS
allows.

Finally, we define the semantics of the expressions (Fig-
ure 21-(b)). In the Application,

�
f

�
λv. v ��� corresponds

to proceed of a call join point, and
�
λv. v � corresponds to

the one of a reception join point. The Skip evaluates the
argument, and does not apply the result to the continuation.
This allows jumping from a call join point to the counter-
part, or the following reception join point, without execution
between the two join points.

6. RELATED WORK
As far as we know, practical AOP languages with point-
cut and advice, including AspectJ[12], AspectWerkz[2] and
JBoss AOP[4], are all based on the region-in-time model.
Therefore, the reusability problem in Section 2 is common

to those languages even though they have mechanisms for
aspect reuse.

A few formal studies, such as MinAML[17], treat beginning
and end of an event as different join points. However, moti-
vations behind those studies are different from ours. Mi-
nAML is a low-level language that serves as a target of
translation from a high-level AOP language. Douence and
Teboul’s work[8] focuses on identifying calling contexts from
execution history.

Including the region-in-time and point-in-time models, pre-
vious formal studies focus on different properties of aspect-
oriented languages. Aspect SandBox (ASB)[19] focuses on
formalizing behavior of pointcut matching and advice execu-
tion by using denotational semantics. Since ASB is based on
the region-in-time model, the semantics of advice execution
has to have a rule for each advice modifier. Tucker and Kr-
ishnamurthi[?] presented a pointcut and advice mechanism
for higher-order languages and implemented a prototype on
top of PLT Scheme. The pointcuts in their mechanism are
first-class entities, and can be parameterized. Although the
design could improve reusability of advice declarations, their
mechanism is based on the region-in-time model; hence
it can not uniformly treat beginnings and ends of actions.
MiniMAO1[5] focuses on type soundness of around advice,
based on ClassicJava style semantics. It is also based on the
region-in-time model.

7. CONCLUSION
We proposed an experimental new join point model. The
model treats ends of actions, such as returns from methods,
as different join points from beginnings of actions. In PitJ,
ends of actions can be captured solely by pointcuts, rather
than advice modifiers. This makes advice declaration more
reusable. Even with simplified advice mechanism, PitJ is as
expressive as AspectJ in typical use cases.

We also gave a formal semantics of Pitλ, which simplified
from PitJ. It is a denotational semantics in a continuation
passing style, and symmetrically represents beginnings and
ends of actions as join points. With the aid of the semantics,
we investigated integration of advanced language features
with the point-in-time join point model.

Our future work includes the following topics. We will in-
tegrate more advanced features, such as dflow pointcut[13],
first-class continuation and tail-call elimination. We will also
plan to implement compiler for PitJ languages.

8. ACKNOWLEDGMENTS
We would like to thank Kenichi Asai, the members of the
Principles of Programming Languages Group at University
of Tokyo, and the members of the Kumiki Project for their
valuable comments. We would also like to thank the anony-
mous reviewers.

9. REFERENCES
[1] R. Bodkin. aTrack. https://atrack.dev.java.net/.

[2] J. Bonér and A. Vasseur. AspectWerkz.
http://aspectwerkz.codehaus.org/.



[3] J. Brichau, W. D. Meuter, and K. De Volder. Jumping
aspects. In C. Lopes, L. Bergmans, M. D’Hondt, and
P. Tarr, editors, Workshop on Aspects and
Dimensions of Concerns (ECOOP 2000), June 2000.

[4] B. Burke, A. Chau, M. Fleury, A. Brock, A. Godwin,
and H. Gliebe. JBoss Aspect Oriented Programming,
2003.
http://www.jboss.org/developers/projects/jboss/aop.

[5] C. Clifton and G. T. Leavens. MiniMAO:
Investigating the semantics of proceed. In G. T.
Leavens, C. Clifton, and R. Lämmel, editors,
Foundations of Aspect-Oriented Languages, Mar. 2005.

[6] O. Danvy and A. Filinski. Abstracting control. In
Proceedings of the 1990 ACM Conference on LISP and
Functional Programming, Nice, pages 151–160, New
York, NY, 1990. ACM.

[7] R. Douence, T. Fritz, N. Loriant, J.-M. Menaud,
M. Ségura-Devillechaise, and M. S udholt. An
expressive aspect language for system applications
with arachne. In AOSD ’05: Proceedings of the 4th
international conference on Aspect-oriented software
development, pages 27–38, New York, NY, USA, 2005.
ACM Press.

[8] R. Douence and L. Teboul. A pointcut language for
control-flow. In G. Karsai and E. Visser, editors,
GPCE, volume 3286 of Lecture Notes in Computer
Science, pages 95–114. Springer, 2004.

[9] Y. Endoh. Continuation join points. Master’s thesis,
Department of Computer Science, University of
Tokyo, 2006. to appear.

[10] B. Harbulot and J. R. Gurd. A join point for loops in
aspectj. In Proceedings of the 4th workshop on
Foundations of Aspect-Oriented Languages (FOAL
2005), Mar. 2005.

[11] G. Kiczales. Making the code look like the design. In
AOSD 2003, 2003. keynote.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of
AspectJ. Lecture Notes in Computer Science,
2072:327–355, 2001.

[13] H. Masuhara and K. Kawauchi. Dataflow pointcut in
aspect-oriented programming. In A. Ohori, editor,
APLAS, volume 2895 of Lecture Notes in Computer
Science, pages 105–121. Springer, 2003.

[14] H. Rajan and K. Sullivan. Aspect language features
for concern coverage profiling. In AOSD ’05:
Proceedings of the 4th international conference on
Aspect-oriented software development, pages 181–191,
New York, NY, USA, 2005. ACM Press.

[15] Y. Usui and S. Chiba. Bugdel: An aspect-oriented
debugging system. In Proceedings of 12th Asia-Pacific
Software Engineering Conference (APSEC 2005),
pages 790–795. IEEE Press, 2005.

[16] A. van Deursen, M. Marin, and L. Moonen.
AJHotDraw: A showcase for refactoring to aspects. In
T. Tourwé, A. Kellens, M. Ceccato, and D. Shepherd,
editors, Linking Aspect Technology and Evolution,
Mar. 2005.

[17] D. Walker, S. Zdancewic, and J. Ligatti. A theory of
aspects. In ICFP ’03: Proceedings of the eighth ACM
SIGPLAN international conference on Functional
programming, pages 127–139, New York, NY, USA,
2003. ACM Press.

[18] R. J. Walker and G. C. Murphy. Implicit context:
easing software evolution and reuse. SIGSOFT Softw.
Eng. Notes, 25(6):69–78, 2000.

[19] M. Wand, G. Kiczales, and C. Dutchyn. A semantics
for advice and dynamic join points in aspect-oriented
programming. ACM Trans. Program. Lang. Syst.,
26(5):890–910, 2004.


