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ABSTRACT 
In theory, join points can be arbitrary places in the structure or 
execution of a program. However, most existing aspect languages 
do not support the full expressive power of this concept, limiting 
their pointcut languages to a subset of the theoretically possible 
join points. In this paper we explore a minimal language design 
based on only three built-in fine-grained pointcuts, which enable 
expressing the entire spectrum of structures of an underlying base 
language, from types to statements and expressions. The combi-
nation of fine-grained pointcuts with uniform genericity in our 
LogicAJ 2 language yields the concept of fine-grained generic 
aspects. We demonstrate their power by showing how they allow 
programmers to express and extend the static primitive pointcuts 
of AspectJ and how they can model applications that previously 
required run-time reflection or special purpose language exten-
sions.       
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1. INTRODUCTION 
The notion of join points is central to aspect-oriented program-
ming languages. Join points are well-defined places in the struc-
ture or execution flow of a program [4], [5], [3], [21], [16]. In 
theory, they could be arbitrary program elements or run-time 
events. In practice, however, the classes of join points supported 
by most existing aspect languages are limited. Method call, 
method execution, field access and field modification are the 
typical join points that are widely supported.  Different 
researchers [7], [6], [17], [9] have noted independently that finer 
grained join points are necessary in various application areas. For 
instance, Kniesel and Austermann [9] show that thorough code 
coverage analysis requires access to every individual statement in 
a program. They present a professional code coverage tool for 

Java based on load-time byte code adaptation [11]. Sullivan and 
H. Rajan [17] address the same problem domain but provide a 
solution at a higher level of abstraction. They show how code 
coverage analysis can be implemented in a language that provides 
statement-level join points. Their approach uses reflection and 
generates new aspects based on reflective information at join 
points. Unfortunately, this makes static type checking impossible. 
Another impressive application area for fine-grained pointcuts is 
the automatic detection and optimization of highly parallel loops. 
Figure 1 shows a simple example. B. Harbulot and R. Gurd  [7] 
demonstrate that with AspectJ  [8] parallelization of such loops is 
only possible after refactoring the loop into a new method with a 
defined signature pattern that makes its lower and upper bounds 
explicit. Because typical code in parallel scientific applications 
almost never makes loop bounds explicit as methods the authors 
conclude that statement-level join points are needed to enable 
aspect-based optimizations of highly parallel programs. In 
LoopsAJ [6] they provide a solution tailored specifically to the 
interception of loops. However, their solution also imposes some 
constraints on the structure of the code in and before loops.  
1 public void m(){ 
2   int[] a = new int[42]; 
3   int[] b = new int[42]; 
4  
5   for(int i = 0;i< a.length;i++) { 
6     a[i] = 2*i; 
7     b[i] = i*i; 
8   }    
9 } 

Figure 1. Simple highly parallel for loop 
The work reported in this paper goes beyond previous approaches 
in that it provides a comprehensive design for fine-grained 
pointcuts in an extensible, statically checkable, high-level lan-
guage. Although our aspect language, LogicAJ 21, provides only 3 
built-in pointcuts, it is able to express all possible join points 
whose shadows are elements of the base language (in our case 
Java). We demonstrate the expressiveness of our concept by 
showing how it allows programmers to express and extend the 
static primitive pointcuts of AspectJ and how to model applica-
tions that previously required special purpose language exten-
sions. In particular, we show that LogicAJ 2‘s combination of 
fine-grained genericity and extensibility can express the 
functionality of LoopsAJ, without imposing any constraints on the 
structure of base programs.   
                                                                 
1 LogicAJ 2 is based on the generic aspect language LogicAJ [10]. 



Section 2 introduces our language design. Section 3 demonstrates 
how the language can be easily extended by expressing ‘basic’ 
poincuts of AspectJ using fine-grained genericity. In Section 4 we 
give two examples of modelling applications that previously 
required specific language extensions: the Law Of Demeter and 
the for-loop pointcut. Section 5 discusses related work and 
Section 6 ongoing work. Finally, section 7 concludes. 
 

2. FINE-GRAINED GENERICITY 
In this section we gradually introduce the basic concepts behind 
LogicAJ 2 and illustrate them on small examples. 

2.1 Basic Pointcuts 
The aim of our design was the identification of a minimal, ortho-
gonal set of pointcuts that are able to express more complex ones 
offered in other languages. Our analysis resulted in just three 
basic pointcuts, representing the distinct classes of basic elements 
of any programming language: declarations, statements and 
expressions. Their syntax is: 

• decl(join_point, declaration_code_pattern) 
• stmt(join_point, statement_code_pattern) 
• expr(join_point, expression_code_pattern) 
 

The first argument of each basic pointcut is an explicit represen-
tation of the matched join point (see Section 2.4). The second 
argument is a pattern describing the join point (see Section 2.2).  
The expr pointcut selects any expression matching the given 
source code pattern and binds the join_point argument to an explicit 
representation of the matched join point.  The stmt pointcut does 
the same for statements. These two pointcuts can match any 
element within a method body. The decl pointcut additionally 
matches declarations of classes, interfaces, methods and fields.  
Taken together, these three pointcuts can match any structure of a 
base (Java) program, from the coarsest to the finest granularity. 
Therefore we also call them fine-grained pointcuts. 
The basic pointcuts can be used to bind any syntax element of 
their domain, by omitting the code pattern.  

2.2 Logic Meta-Variables 
Unlike most aspect languages, we do not provide a special syntax 
for the patterns used to specify join points. Instead, join point des-
criptions are simply base language code or patterns resulting from 
the ability to use placeholders for all base language elements that 
are not syntactic delimiters or keywords.  
Instead of unnamed wildcards our placeholders are named logic 
meta-variables (LMV). Meta-variables are variables that can 
range over syntactic elements of the base language (e.g. Java). 
They are denoted syntactically by names starting with a question 
mark, e.g. “?methodBody”.    
Named meta-variables give us the ability (1) to express that 
different occurrences of the same placeholder must agree on the 
matched value and (2) to use the matched values as a building 
block of advice code. Rho and Kniesel [10], [12]  show that 
uniform use of logic meta-variables in pointcuts and advice 
(uniform genericity) increases the expressiveness, reusability and 
modularity of aspects – even without the added power of fine-
grained pointcuts introduced here. The combination of uniform 
genericity and fine-grained basic pointcuts is called fine-grained 
genericity. We demonstrate the increased expressiveness of fine-
grained genericity in Section 3 and 4. 

In addition to logic meta-variables that have a one-to-one corres-
pondence to individual base language elements, logic list meta-
variables (LLMV) can match an arbitrary number of elements, 
e.g. arbitrary many call arguments or method parameters. These 
variables are indicated syntactically by two leading question 
marks, e.g. “??parameterList”. Their introduction is motivated by 
the fact that in truly generic application scenarios one often needs 
to say things like “match every constructor invocation” or “add a 
forwarding method for every method from type T” or “select all 
update expressions in a for-loop”. In such cases it is neither 
possible to know the exact number of parameters of an invocation 
or a method, nor is it practical to specify a finite set of method 
argument lists. The language provides a set of built-in operations 
on LLMVs, e.g. concatenation and member check. 
Unnamed logic meta-variables are indicated by an underscore (?_ 
and  ??_ ). If a pointcut contain several unnamed meta-variables, 
they are all treated as distinct variables. 

2.3 Named Pointcuts 
Using the basic pointcuts, programmers can define arbitrary 
custom pointcuts. Custom pointcut definitions can be named and 
can have meta-variables as arguments. Unlike in AspectJ, for 
instance, custom pointcuts can be defined recursively. This is 
useful for expressing transitive relationships, for instance the 
subtype relation. The recursive definition of a generalized version 
of AspectJ’s withincode pointcut is discussed in Section 2.5. 

2.4 Explicit Join Points 
Our language design leverages on the power of meta-variables by 
making the join point selected by a basic pointcut explicit as a 
meta-variable argument. This is an extremely powerful concept, 
since it makes join points first class entities of the aspect 
language. 
Figure 2 shows a pattern that selects if statements. Upon every 
match the ?if meta-variable is bound to the complete matched 
statement (the join point), whereas the meta-variables contained in 
the pattern are bound to the respective sub-elements of the 
statement. In this case ?cond is bound to the condition expression 
and ??someStatements is bound to the list of statements in the 
body of the if statements’ block. 
 
 stmt(?if, if(?cond){??someStatements}) 

Figure 2. Selection of an if statement, its condition and its 
body 

Figure 3 shows the use of two expr pointcuts that select all calls of 
the methods foo and bar. The matched join points are explicitly 
represented by the meta-variable ?jp, which is passed as a 
parameter to the pointcut definition. Thus, it can be used as the 
join point of an advice based on fooBarCalls(?jp).  
1  pointcut fooBarCalls(?jp):  
2      expr(?jp , foo() )  
3   || expr(?jp , bar() )  

Figure 3. Join points made explicit via meta-variables 
Alternatively, we can reuse this pointcut as shown in Figure 4. 
Note that the meta-variable ?call is used within the if statement 
pattern in the stmt pointcut and within fooBarCalls.  This way we 
express that the calls to foo and bar must be the condition of an if 
statement. Note further that the defined pointcut provides ?if and 
?call  as parameters to its users. Thus it does not predetermine 
whether the matched if statement or the matched call is the join 
point that it selects.  

 



1  pointcut fooBarCallsWithinIf(?if, ?call):  
2      stmt(?if, if(?call){??someStatements} )  
3   && fooBarCalls(?call) ;   
Figure 4. Refining the pointcut from Figure 3 to select calls of 

foo or bar that occur within an if-condition 
Since different meta-variables can represent different join points 
at the same time it is possible to express relations between join 
points, as illustrated in Figure 4. This is an extremely powerful 
concept. In Section 4.1 we demonstrate how it enables a concise 
implementation of the Law of Demeter. 
In addition it gives us the option to let a generic advice choose at 
which of the multiple join points the advice code should be 
woven. Therefore the syntax of LogicAJ 2 advice2 was slightly 
extended. The target join point of the advice must be specified as 
the first argument of the advice. The advice shown in Figure 5 
counts all invocations of foo or bar that occur as the condition of 
an if statement. If we change the advice parameter to ?if the advice 
will count the number of if statements whose conditions are calls 
to foo or bar. 
1 around(?call):  fooBarCallsWithinIf(?if, ?call) { 
2   Counter.count++; 
3 } 

Figure 5. Explicit choice of the effective join point for an 
advice 

 

2.5  Meta-Variable Attributes 
For many uses, it is not sufficient to consider only a syntactic 
element itself but also the static context of the element. For 
example, the declaring type is important information about a 
method or a field declaration. Similarly, the statically resolved 
binding between a method call and its called method or between a 
variable access and the declared variable is necessary for several 
pointcuts. 
We make this information available via LMV attributes. An 
attribute a of a meta-variable ?mv is accessible via: 

?mv::a 
Figure 6 describes the attributes used in the remainder of the 
paper. They are a subset of the attributes supported by LogicAJ 2. 

Attrib. Represented context information of a LMV 
parent The enclosing element of the syntax element 

represented by the LMV. 

 ref    The statically resolved declaration referenced by an 
expression: a call references a method, and an 
identifier a field, variable or parameter declaration.  

 type  The statically resolved Java type of an element 
bound to a LMV. This attribute is syntactic sugar. It 
is inferable via the ref attribute.  

Figure 6. LMV attributes provide additional information 
about the syntactic elements’ context and the resolved Java 

bindings. 
Figure 7 demonstrates the use of the parent attribute for the 
withincode pointcut, known from AspectJ. It checks if a join point 
is defined in the body of a given method. We present a 

                                                                 
2 and declare error/warning constructs 

generalized version that checks the withincode relationship of 
statements and expressions to any enclosing element. 
1 pointcut withincode(?jp,?enclosing): 
2     ( expr(?jp)  ||  stmt(?jp) )         
3   && ( equals(?jp::parent, ?enclosing)  
4        || withincode(?jp::parent, ?enclosing) 
5      ); 

Figure 7. Definition of the withincode pointcut in LogicAJ 2 
First, the ?jp variable is bound to an expression or statement. The 
equals predicate has a double role. If ?enclosing was bound to a 
value before withincode was called, equals just checks if the value 
of ?enclosing is ?jp’s parent element Otherwise it binds ?enclosing 
to ?jp::parent. In order to get all the directly and indirectly 
enclosing elements, of ?jp the pointcut is evaluated recursively for 
the parent of the ?jp. 
 

3. EXTENSIBILITY OF THE POINTCUT 
LANGUAGE 
This section shows how basic pointcuts can be used to build 
pointcuts known from common aspect languages. Designing 
semantic meta-levels with basic pointcuts drastically enriches the 
usability of pointcuts and is an important criterion for the 
expressiveness of an AO language.  

3.1  Static AspectJ Pointcuts 
The pointcuts offered by AspectJ are very useful. Due to the 
expressiveness of our minimalist pointcut language we can define 
custom pointcuts that implement AspectJ pointcut semantics with 
little effort. We have already shown the implementation of the 
withincode pointcut in Figure 7. In this section we show the 
implementation of the call and get pointcut in LogicAJ 2. The 
other static pointcuts of AspectJ can be implemented following 
the same scheme.  

3.1.1 Call Pointcut 
Our implementation of the AspectJ call pointcut (Figure 8) starts 
with an expr pointcut selecting the call expression, (line 4) and a 
decl pointcut binding the called method (lines 5-6). The equals 
predicate in line 7 denotes that the call join points are statically 
bound to the method ?method. Line 8 binds the declaring type of 
?method to ?declType by using the ref and type attributes (see Line 
8). Line 9 binds the ??parTypes list to the types of the method 
parameters. We omit the definition of the parameterTypes 
pointcut. It can easily be implemented as a recursive pointcut 
using the type argument. 
1 pointcut call(?jp, ?declType, ??modifiers,   
2               ?returnType, ?name, ??parTypes): 
3  
4     expr(?jp, ?name(??args) )  
5  && decl(?method,  
6       ??modifiers ?returnType ?name(??par){??stmts} )  
7  && equals(?method, ?jp::ref) 
8  && equals(?declType, ?method::parent::type) 
9  && parameterTypes(??parTypes,??par); 

Figure 8. Implementation of the call pointcut  
 
 Figure 9 shows two usage examples of the call pointcut. For  com-
parison, the respective AspectJ syntax is shown as a comment. 
Line 1-3 illustrates the selection of calls to the method with 
signature m(int) in class Foo.  Line 5-7 
1 //AJ:  pointcut m(): call( void Foo.m(int) ) 

 



2 pointcut m(?jp):  
3      call(?jp, Foo, ??_, void, m, [int]); 
4  
5 //AJ:  pointcut anycall(): call(* *.*(..)); 
6 pointcut anycall(?jp): call(?jp,?_,??_,?_,?_,??_);              

Figure 9.  Comparison between AspectJ and LogicAJ 2 call 
syntax. Square brackets (line 3) denote a list of values. 

3.1.2 Get Pointcut 
Our next example implements AspectJ’s get pointcut. It selects 
field read accesses. Field declarations can have different syntactic 
forms. For instance, they can be declared with or without a value 
assignment. Each syntactic occurrence selects a different set of 
join points. Figure 10 presents the unification of the different 
syntactic join point variants by a more general field access 
pointcut. The union is expressed by the disjunction in lines 4-5, 
which states that all declarations with or without value assignment 
are bound to ?field. 
1 pointcut get(?jp,??modifier,?declType,?name,?retType): 
2      expr(?jp,?name ) 
3   && (  
4           decl(?field,??modifier ?retType ?name; )  
5        || decl(?field,??modifier ?retType ?name = ?v;) 
6      )   
7   && equals(?field, ?jp::ref)  
8   && equals(?declType, ?field::parent::type);   

Figure 10. Implementation of AspectJ get pointcut semantics  
In this example, join points are selected on the syntactic, not on 
the semantic level. However, we do not see this as a limitation of 
our approach. The defined custom pointcut implements a semantic 
selection criterion. It can be reused, hiding the syntactic details.   
 

3.2 New Pointcuts 
In the following, we give examples illustrating how easy it is to 
define additional semantic pointcuts that are neither built-in nor 
expressible in common AO languages. 

3.2.1 Local Variable Access Pointcuts 
As a complement to the common get and set pointcuts that select 
fields, we introduce getL and setL pointcuts that select read and 
write accesses  to local variables. We describe the implementation 
of the getL pointcut in detail. The setL implementation is 
analoguous. 
1 pointcut getL(?jp,?type,?name): 
2     //Select all identifier expressions:        
3     expr(?jp, ?name) 
4     // Select all local variable declarations:  
5     &&(   stmt(?localdecl, ?type ?name;)  
6        || stmt(?localdecl, ?type ?name = ?val;)    
7        ) 
8     // Check that the local variable declaration   
9     // is referenced by the identifier:   

10  && equals(?localdecl, ?jp::ref) );   

Figure 11. Implemantation of new pointcuts: the getL pointcut 
only selects local variable accesses 

The intended semantics of getL is to select all identifiers whose 
declaration is a local variable. We start by selecting all expres-
sions that have the form of an identifier, that is, consist of a single 
name. This is done by the expr(?jp, ?name) pointcut (Figure 11, 
line 3). The set of identifiers matched this way can also contain 
fields and parameters. In order to understand how we limit it to 
local variables only, it is helpful to recall that, in Java, the 
declaration of a local variable is a statement. Accordingly, we 

enclose each of the code patterns corresponding to a variable 
declaration into a stmt pointcut (see Figure 11, lines 5-6). The 
final equals predicate checks whether the selected local declara-
tion is indeed the declaration of the identifier matched in line 3. 

3.2.2 Field  Pointcut 
Within the declarations of the get pointcut we had to consider 
syntactic differences of field declarations. We can encapsulate 
those within a field pointcut definition in order to achieve a more 
modular and readable implementation of get and other pointcuts 
that deal with field declarations. We will see another use of the 
field pointcut in Section 4.1.  
The definition illustrated in Figure 12 selects all field 
declarations, with and without initializers. Then it determines the 
declaring type by accessing the static join point context captured 
by the meta-variable attributes ?jp::parent::type. Similarly, we can 
implement a method or a class pointcut that abstracts from the 
syntactic variants of the base language.  
1 pointcut field(?jp,?declaringType,?returnType,?name):     
2   (    
3        decl(?jp, ?returnType ?name; )  
4     || decl(?jp, ?returnType ?name = ?anyVal;)  
5   )  
6   && equals(?declaringType, ?jp::parent::type); 

Figure 12. field semantics 

 

4. EXAMPLES 
We now consider two different use cases that rely on fine-grained 
pointcuts. Section 4.1 presents a simple check for the static variant 
of the Law of Demeter, expressing a contract previously claimed 
to require extension of AspectJ by statically executable advice 
[14]. Section 4.2 comes back to the high-performance computing 
example. 

4.1 Example: Law Of Demeter 
Binding several join points at the same time enables very 
expressive pointcuts. This section gives a thorough example. It 
shows how the declare warning construct can be used to check the 
Law of Demeter with the help of a fine-grained pointcuts. 
The Law of Demeter (LoD) [13] restricts the method calls used in 
a class C to methods from ‘known’ types. These include  

1. C, 
2. the types of the calling method’s parameters,  
3. the types of C’s fields,  
4. the return types of C’s methods  
5. the classes instantiated in C and 
6. all the supertypes of any of the known types from 1-5. 

 
Figure 13 shows the LawOfDemeter aspect, concisely imple-
mented in LogicAJ 2. The aspect uses the custom pointcuts 
method, constructorcall and the subtype, which can be defined easily, 
like the pointcuts in Section 3. 
The pointcut knownTo defined in line 3-11 encapsulates rules 1-5 
of the LoD. It defines the basic set of types known to a method. Its 
semantics is that ?Type is known to a method with parameter types 
?ParameterTypes contained in ?CallingType.  

• Line 4 checks the first rule: The ?CallingType is known to itself.   

 



• Line 5 checks the second rule: Every member of ?ParamTypes 
is known. The member predicate successively binds ?Type to an 
element of ?ParamTypes.    

• Line 6 checks the third rule: The type of every field of 
?CallingType is known. The field predicate successively binds 
?Type to the type of a field of ?CallingType.    

• Line 7 checks the fourth rule: The return type of every method 
of ?CallingType is known. The method predicate successively 
binds ?Type to the return type of a method of ?CallingType.    

• Lines 10-11 check the fourth rule: The type instantiated by a 
constructor call contained in the ?CallingType is known. The 
constructorcall predicate in line 9 determines all constructor 
calls and the withincode predicate in line 11 ensures that only 
calls within ?CallingType are regarded.  

The knownTo pointcut is the core of the real LoD checking in line 
13-25. Lines 14-17 set the stage by binding the meta-variable 
?CalledType to the static receiver type of a method call, 
?CallingType and ?CallingMethod to the type and method containing 
the call, and ??ParamTypes to the list of parameter types of 
?CallingMethod. Line 21  uses the knownTo pointcut to determine a 
known ?Type and line 22 verifies whether ?CalledType is a 
supertype of the known ?Type3. If not, a violation is reported in 
line 24 along with the violating call.  
This example uses explicit join point LMVs (see Section 2.4). The 
call and the constructorcall pointcuts are used within a single scope: 
the one in line 14 and the nested one in the definition of knownTo 
(line 9). This example could not be expressed if the join points 
could not be explicit parameters of the pointcuts in line 9 and 10. 
If there were only implicit join points (as in AspectJ), it would not 
be clear that constructor calls should not be reported as LoD 
violations and that failure of matching constructor calls in line 9 
should not inhibit reporting a violation of other calls.    
1 aspect LawOfDemeter { 
2  
3  pointcut knownTo(?CallingType,??ParamTypes,?Type): 
4      equals(?Type, ?CallingType)               //rule 1 
5   || member(?Type, ??ParamTypes)               //rule 2 
6   || field(?jp,?CallingType, ?Type, ?Fname)    //rule 3 
7   || method(?jp,??_,?Type,?CallingType,?Mname,??_)//r.4                    
8   || 
9   (   

10        constructorcall(?ConstrCall,?Type,??_)  //rule 5 
11     && withincode(?ConstrCall, ?CallingType )  //rule 5 
12   ); 
13  
14  declare warning: 
15      call(?called,?CalledType,??_,?_,?CalledMeth,??_)  
16   && method(?call,??_,?_,?CallingType,?CallingMeth, 
17              ??ParamTypes )  
18    && withincode(?called, ?call)  
19    && 
20    !( 
21           knownTo(?CallingType,??ParTypes,?Type)//r.1-5 
22        && subtype(?Type, ?CalledType)          //rule 6 
23      )  
24     : "The call violates the Law of Demeter.";              
25 }  

Figure 13. Aspect checking the Law of Demeter (LoD) at 
weave-time. It reports a warning for every method invoked on 
a type that is not among those “known” to the calling type or 

the parameters of the calling method.  

                                                                 
3  Note that every type is a super type of itself. Subtype can be 

declared recursively, similar to withincode (see Figure 6) 

4.2 Example High-Performance Computing 
The following section shows how the execution of highly parallel 
loops can be distributed by a generic aspect onto a set of threads, 
following the approach described in [6]. Unlike the approach in 
[6] our solution does not rely on code conventions. 
The target of a high-performance aspect could be the following 
for-loop, whose body uses the local array variables a and b. 
1 public void m(){ 
1     int[] a = new int[42]; 
2     int[] b = new int[42]; 
3  
4   for(int i = 0;i< a.length;i++) { 
5     a[i] = i*i; 
6     b[i] = i*i*i; 
7   }  
8 } 

Figure 14. Simple for-loop 
The detection of the highly parallel loop can be performed with 
the simple detector presented in Figure 15. The pointcut 
highlyParallelLoop checks that no method call is present in the block 
(avoiding side-effects) and tests that values are exclusively read 
from (or written to) a variable in the block. 
This ensures that the order of the computation does not affect the 
result. Below we see the pointcut describing these checks. We 
assume to have implemented withincode, set, setL, get and getL 
pointcuts as shown in Section 3. 
 

1 pointcut highlyParallelLoop(?jp,?range,?lb, 
2                             ?ub,?body,?incr):  
3     //selects for-loops  
4  stmt(?jp, 
5     for(?type ?range=?lb; ?range<?ub; ?incr){?body})     
6     // selects all join points within the loop body 
7  && withincode(?stmts, ?body)   
8     // excludes calls within loops 
9  && !call(?stmts,?_,??_,?retType,?name,??args)            

10  && // no read AND write access to a variable allowed 
11  !(      
12       setL(?bodyJPs, ?body, ?type, ?name, ?val)  
13    && withincode(?another, ?body)    
14    && getL(?another, ?body, ?type, ?name, ?val) 
15  ) 
16  &&  // the same for fields 
17  !(    
18       set(?bodyJPs,?p,?cl,?meth,??mod,?type,?name,?val)        
19    && withincode(?another, ?body)  
20    && get(?another,?p,?cl,?meth,??mod,?type,?name,?val)        
21  );    

Figure 15. The pointcut selecting highly parallel loops. 
 
The around advice in Figure 16 wraps the for-loop into a run() 
method of a thread and modifies the bounds of the loop. The for 
loop now runs in parallel in several threads, each thread 
calculating only a uniform range of the loop. 
 
1 around(?jp) :  
2   highlyParallelLoop(?loop,?range,?lb,?ub,?body,?incr){ 
3  
4    int THREADS = 5; 
5    //resolve the value of the bounds 
6    final ?ub::type ub = ?ub; 
7    final ?lb::type lb = ?lb; 
8    final ?range::type range = (ub - lb)/THREADS; 
9    List list = new ArrayList(); 

10    

 



11    for(int threads=0; threads < THREADS; threads++){ 
12    final int finalThreads = threads; 
13    Thread thread = new Thread() { 
14      public void run(){ 
15     ?range::type newLb = lb+range*finalThreads; 
16     ?range::type newUb = newLb + range; 
17     
18         if(newUb >= ub)  
19           newUb = ub;      
20         
21         for(?range::type ?range = newLb;?range < newUb;   
22            ?incr){   
23               ?body 
24     } 
25   } 
26   thread.run(); 
27   list.add(thread); 
28    } 
29    
30     for(int threads = 0;threads<list.size();threads++) 
31   try{ 
32         ((Thread)list.get(threads)).join(); 
33   }  
34        catch(InterruptedException e){ 
35    e.printStackTrace(); 
36        } 
37      } 
38    } 

Figure 16. The for-loop parallelization aspect. 
 

5. RELATED WORK 
A comparison with existing generic aspect languages is given in 
[12]. It includes a thorough comparison of LogicAJ 2 to related 
work from logic meta-programming and program transformation 
systems. Here we confine ourselves to related work specific to 
fine-grained genericity. 
The TyRuBa language [19] introduces logic meta-programming 
for Java programs by defining Prolog-like predicates on Java 
programs. All code blocks of the base program are represented as 
quoted Java code within the TyRuBa rules. The quoted code may 
contain meta-variables for types and identifiers. In TyRuBa the 
quoted code can only be used for the generation of Java code, but 
not in the query language. 
Several approaches exist that describe finer-grained extensions to 
the AspectJ join point model. 
The extensible AspectJ compiler abc [1] provides a Java API to 
extend the set of known AspectJ pointcuts. For every additional 
pointcut, the lexer, parser and weaver must be extended to support 
the new pointcut. Implementation of custom pointcuts in LogicAJ 
2 does not require any such changes. Es we have shown, the 
extensions are expressible within the language. 
EOS-T [17] extends the AspectJ primitive pointcuts with pointcuts 
for conditionals and loops. It does not provide no ability to refer 
to join points statement-arguments or -blocks. Harbulot presents 
LoopAJ [6], an AspectJ extension for loop pointcuts. His approach 
is bult on abc and uses byte code analysis to identify loops. 
Kniesel and Austermann [9] present a professional code coverage 
tool for Java, CC4J, implemented based on the JMangler load-
time adaptation framework [11]. Working at byte code level, 
however, is not the preferred level of abstraction for most 
programmers.  
Borba et al. introduce JaTS [2], a language for pattern based 
transformations of Java programs. Similar to our basic pointcuts, 
code patterns are used to describe program parts on which trans-

formations should take place. The transformation specification is 
described with another pattern. Like in LogicAJ 2, both parts can 
be linked by the use of meta-variables, which substitute syntactic 
elements at the interface level of a base-program. According to 
personal communication with the authors, meta-variables can also 
match finer grained elements. That lets JaTS appear to be the 
closest match for our concept of fine-grained genericity. 
Comparison of JaTS and LogicAJ 2 will therefore be a rewarding 
topic of future work.    

6. ONGOING WORK 
The design of LogicAJ 2 described in this paper is currently 
implemented as an extension of our existing LogicAJ compiler, 
which is available at [15]. 
The added expressive power of a generic aspect language does not 
come for free. In particular, static analysis of aspect code is 
difficult in the presence of meta-variables.  
In order to prevent substitution of statements where expressions 
are expected and vice-versa, meta-variables need to be 
syntactically typed, that is every meta-variable needs to have a 
type that determines the kind of syntactic entity from the base 
language that may be substituted. Syntactic types can either be 
declared or inferred from the definition of the predicates that are 
used to bind meta-variable values. For lack of space, we did not 
address this issue in this paper. This is a topic of ongoing work.  
Currently we do not support dynamic join points like cflow, this or 
target with our basic pointcut model. In contrast to static join 
points, dynamic ones have no counterpart in the base program that 
could be described by a unique code pattern. Overcoming this 
limitation is also subject of ongoing work. 
We will evaluate LogicAJ 2 by applying fine-grained genericity to 
different application areas. General software transformation 
approaches, like [18] have addressed optimizations techniques 
like partial evaluation and data-flow optimization with generic 
transformations. We will analyze how they can be translated to 
fine-grained generic aspects.  
Contract4J [20] uses AspectJ to check contracts on Java. Currently 
the contracts are limited to AspectJ join points. For instance loop 
invariants can not be checked. Fine-grained genericity could be 
used to remove this restriction. 

7. CONCLUSION 
In this paper, we have introduced the concept of fine-grained 
genericity for aspect languages. Our approach is based on a 
minimal set of fine-grained pointcuts and base-language code 
patterns containing logic-meta variables. This enables us to 
express context-dependent aspect effects and dependencies 
between multiple join points. In addition, we have shown that 
fine-grained genericity is able to express the static pointcuts 
known from AspectJ and to define arbitrary other kinds of 
pointcuts that previously required specific language extensions. 
Thus, we have shown that there is no need for extending an aspect 
language in order to implement new ‘basic’ pointcuts if the 
language itself is powerful enough to select all base-language join 
points. 
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