Fine-Grained Generic Aspects

Tobias Rho, Ginter Kniesel, Malte Appeltauer
Dept. of Computer Science |l

University of Bonn

Romerstr. 164, D-53117 Bonn
Germany

{rho,gk,appeltau}@cs.uni-bonn.de

ABSTRACT

In theory, join points can be arbitrary places in the structure or
execution of a program. However, most existing aspect languages
do not support the full expressive power of this concept, limiting
their pointcut languages to a subset of the theoretically possible
join points. In this paper we explore a minimal language design
based on only three built-in fine-grained pointcuts, which enable
expressing the entire spectrum of structures of an underlying base
language, from types to statements and expressions. The combi-
nation of fine-grained pointcuts with uniform genericity in our
LogicAJ 2 language yields the concept of fine-grained generic
aspects. We demonstrate their power by showing how they allow
programmers to express and extend the static primitive pointcuts
of AspectJ and how they can model applications that previously
required run-time reflection or special purpose language exten-
sions.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features - abstract data types

General Terms
Languages

Keywords

Fine-Grained  Genericity, Homogeneous Generic  Aspect
Language, Program Transformation, Multi Join Points, Fine-
Grained Pointcuts

1. INTRODUCTION

The notion of join points is central to aspect-oriented program-
ming languages. Join points are well-defined places in the struc-
ture or execution flow of a program [4], [5], [3], [21], [16]. In
theory, they could be arbitrary program elements or run-time
events. In practice, however, the classes of join points supported
by most existing aspect languages are limited. Method call,
method execution, field access and field modification are the
typical join points that are widely supported.  Different
researchers [7], [6], [17], [9] have noted independently that finer
grained join points are necessary in various application areas. For
instance, Kniesel and Austermann [9] show that thorough code
coverage analysis requires access to every individual statement in
a program. They present a professional code coverage tool for

Java based on load-time byte code adaptation [11]. Sullivan and
H. Rajan [17] address the same problem domain but provide a
solution at a higher level of abstraction. They show how code
coverage analysis can be implemented in a language that provides
statement-level join points. Their approach uses reflection and
generates new aspects based on reflective information at join
points. Unfortunately, this makes static type checking impossible.

Another impressive application area for fine-grained pointcuts is
the automatic detection and optimization of highly parallel loops.
Figure 1 shows a simple example. B. Harbulot and R. Gurd [7]
demonstrate that with Aspect) [8] parallelization of such loops is
only possible after refactoring the loop into a new method with a
defined signature pattern that makes its lower and upper bounds
explicit. Because typical code in parallel scientific applications
almost never makes loop bounds explicit as methods the authors
conclude that statement-level join points are needed to enable
aspect-based optimizations of highly parallel programs. In
LoopsAJ [6] they provide a solution tailored specifically to the
interception of loops. However, their solution also imposes some
constraints on the structure of the code in and before loops.

1 public void mQ{
int[] a = new int[42];
int[] b = new int[42];

for(int i = 0;i< a.length;i++) {
a[i] = 2*i;
b[i] = i*i;
¥
T

©o~No g~ WN

Figure 1. Simple highly parallel for loop

The work reported in this paper goes beyond previous approaches
in that it provides a comprehensive design for fine-grained
pointcuts in an extensible, statically checkable, high-level lan-
guage. Although our aspect language, LogicAJ 2%, provides only 3
built-in pointcuts, it is able to express all possible join points
whose shadows are elements of the base language (in our case
Java). We demonstrate the expressiveness of our concept by
showing how it allows programmers to express and extend the
static primitive pointcuts of Aspect) and how to model applica-
tions that previously required special purpose language exten-
sions. In particular, we show that LogicAJ 2‘s combination of
fine-grained genericity and extensibility can express the
functionality of LoopsAJ, without imposing any constraints on the
structure of base programs.

! LogicAJ 2 is based on the generic aspect language LogicAJ [10].



Section 2 introduces our language design. Section 3 demonstrates
how the language can be easily extended by expressing ‘basic’
poincuts of AspectJ using fine-grained genericity. In Section 4 we
give two examples of modelling applications that previously
required specific language extensions: the Law Of Demeter and
the for-loop pointcut. Section 5 discusses related work and
Section 6 ongoing work. Finally, section 7 concludes.

2. FINE-GRAINED GENERICITY

In this section we gradually introduce the basic concepts behind
LogicAJ 2 and illustrate them on small examples.

2.1 Basic Pointcuts

The aim of our design was the identification of a minimal, ortho-
gonal set of pointcuts that are able to express more complex ones
offered in other languages. Our analysis resulted in just three
basic pointcuts, representing the distinct classes of basic elements
of any programming language: declarations, statements and
expressions. Their syntax is:

. decl(Join_point, declaration_code_pattern)
. stmt(Join_point, statement_code_pattern)
. expr(join_point, expression_code_pattern)

The first argument of each basic pointcut is an explicit represen-
tation of the matched join point (see Section 2.4). The second
argument is a pattern describing the join point (see Section 2.2).

The expr pointcut selects any expression matching the given
source code pattern and binds the join_point argument to an explicit
representation of the matched join point. The stmt pointcut does
the same for statements. These two pointcuts can match any
element within a method body. The decl pointcut additionally
matches declarations of classes, interfaces, methods and fields.

Taken together, these three pointcuts can match any structure of a
base (Java) program, from the coarsest to the finest granularity.
Therefore we also call them fine-grained pointcuts.

The basic pointcuts can be used to bind any syntax element of
their domain, by omitting the code pattern.

2.2 Logic Meta-Variables

Unlike most aspect languages, we do not provide a special syntax
for the patterns used to specify join points. Instead, join point des-
criptions are simply base language code or patterns resulting from
the ability to use placeholders for all base language elements that
are not syntactic delimiters or keywords.

Instead of unnamed wildcards our placeholders are named logic
meta-variables (LMV). Meta-variables are variables that can
range over syntactic elements of the base language (e.g. Java).
They are denoted syntactically by names starting with a question
mark, e.g. “?methodBody”.

Named meta-variables give us the ability (1) to express that
different occurrences of the same placeholder must agree on the
matched value and (2) to use the matched values as a building
block of advice code. Rho and Kniesel [10], [12] show that
uniform use of logic meta-variables in pointcuts and advice
(uniform genericity) increases the expressiveness, reusability and
modularity of aspects — even without the added power of fine-
grained pointcuts introduced here. The combination of uniform
genericity and fine-grained basic pointcuts is called fine-grained
genericity. We demonstrate the increased expressiveness of fine-
grained genericity in Section 3 and 4.

In addition to logic meta-variables that have a one-to-one corres-
pondence to individual base language elements, logic list meta-
variables (LLMV) can match an arbitrary number of elements,
e.g. arbitrary many call arguments or method parameters. These
variables are indicated syntactically by two leading question
marks, e.g. “??parameterList”. Their introduction is motivated by
the fact that in truly generic application scenarios one often needs
to say things like “match every constructor invocation” or “add a
forwarding method for every method from type T” or “select all
update expressions in a for-loop”. In such cases it is neither
possible to know the exact number of parameters of an invocation
or a method, nor is it practical to specify a finite set of method
argument lists. The language provides a set of built-in operations
on LLMVs, e.g. concatenation and member check.

Unnamed logic meta-variables are indicated by an underscore (?_
and ??_). If a pointcut contain several unnamed meta-variables,
they are all treated as distinct variables.

2.3 Named Pointcuts

Using the basic pointcuts, programmers can define arbitrary
custom pointcuts. Custom pointcut definitions can be named and
can have meta-variables as arguments. Unlike in AspectJ, for
instance, custom pointcuts can be defined recursively. This is
useful for expressing transitive relationships, for instance the
subtype relation. The recursive definition of a generalized version
of AspectJ’s withincode pointcut is discussed in Section 2.5.

2.4 Explicit Join Points

Our language design leverages on the power of meta-variables by
making the join point selected by a basic pointcut explicit as a
meta-variable argument. This is an extremely powerful concept,
since it makes join points first class entities of the aspect
language.

Figure 2 shows a pattern that selects if statements. Upon every
match the ?if meta-variable is bound to the complete matched
statement (the join point), whereas the meta-variables contained in
the pattern are bound to the respective sub-elements of the
statement. In this case ?cond is bound to the condition expression
and ??someStatements is bound to the list of statements in the
body of the if statements’ block.

stmt(?if, if(?cond){??someStatements})

Figure 2. Selection of an if statement, its condition and its
body

Figure 3 shows the use of two expr pointcuts that select all calls of
the methods foo and bar. The matched join points are explicitly
represented by the meta-variable ?jp, which is passed as a
parameter to the pointcut definition. Thus, it can be used as the
join point of an advice based on fooBarCalls(?p).

1 pointcut fooBarCalls(?jp):
2 expr(?jp , foo(Q) )
3 |l expr(?jp , barQ) )

Figure 3. Join points made explicit via meta-variables

Alternatively, we can reuse this pointcut as shown in Figure 4.
Note that the meta-variable ?call is used within the if statement
pattern in the stmt pointcut and within fooBarCalls. This way we
express that the calls to foo and bar must be the condition of an if
statement. Note further that the defined pointcut provides ?if and
?call as parameters to its users. Thus it does not predetermine
whether the matched if statement or the matched call is the join
point that it selects.



1 pointcut fooBarCallsWithinlf(?if, ?call):
2 stmt(?if, if(?call){??someStatements} )
3 && fooBarCalls(?call) ;

generalized version that checks the withincode relationship of
statements and expressions to any enclosing element.

Figure 4. Refining the pointcut from Figure 3 to select calls of
foo or bar that occur within an if-condition

Since different meta-variables can represent different join points
at the same time it is possible to express relations between join
points, as illustrated in Figure 4. This is an extremely powerful
concept. In Section 4.1 we demonstrate how it enables a concise
implementation of the Law of Demeter.

In addition it gives us the option to let a generic advice choose at
which of the multiple join points the advice code should be
woven. Therefore the syntax of LogicAJ 2 advice? was slightly
extended. The target join point of the advice must be specified as
the first argument of the advice. The advice shown in Figure 5
counts all invocations of foo or bar that occur as the condition of
an if statement. If we change the advice parameter to ?if the advice
will count the number of if statements whose conditions are calls
to foo or bar.

1 pointcut withincode(?jp,?enclosing):

2 Cexpr(?ip) |l stmt(?jp) )

3  && ( equals(?jp::parent, ?enclosing)

4 |l withincode(?jp::parent, ?enclosing)
5 )

1 around(?call): fooBarCallsWithinlf(?if, ?call) {
2 Counter.count++;

3%

Figure 5. Explicit choice of the effective join point for an
advice

2.5 Meta-Variable Attributes

For many uses, it is not sufficient to consider only a syntactic
element itself but also the static context of the element. For
example, the declaring type is important information about a
method or a field declaration. Similarly, the statically resolved
binding between a method call and its called method or between a
variable access and the declared variable is necessary for several
pointcuts.

We make this information available via LMV attributes. An
attribute a of a meta-variable ?mv is accessible via:

?mv::a
Figure 6 describes the attributes used in the remainder of the
paper. They are a subset of the attributes supported by LogicAJ 2.

Attrib. | Represented context information of a LMV

parent |The enclosing element of the syntax element
represented by the LMV.

ref The statically resolved declaration referenced by an
expression: a call references a method, and an
identifier a field, variable or parameter declaration.
type | The statically resolved Java type of an element
bound to a LMV. This attribute is syntactic sugar. It
is inferable via the ref attribute.

Figure 6. LMV attributes provide additional information
about the syntactic elements’ context and the resolved Java
bindings.

Figure 7 demonstrates the use of the parent attribute for the
withincode pointcut, known from AspectJ. It checks if a join point
is defined in the body of a given method. We present a

2 and declare error/warning constructs

Figure 7. Definition of the withincode pointcut in LogicAJ 2

First, the ?jp variable is bound to an expression or statement. The
equals predicate has a double role. If ?enclosing was bound to a
value before withincode was called, equals just checks if the value
of ?enclosing is ?jp’s parent element Otherwise it binds ?enclosing
to ?jp:parent. In order to get all the directly and indirectly
enclosing elements, of ?jp the pointcut is evaluated recursively for
the parent of the ?jp.

3. EXTENSIBILITY OF THE POINTCUT
LANGUAGE

This section shows how basic pointcuts can be used to build
pointcuts known from common aspect languages. Designing
semantic meta-levels with basic pointcuts drastically enriches the
usability of pointcuts and is an important criterion for the
expressiveness of an AO language.

3.1 Static AspectJ Pointcuts

The pointcuts offered by Aspect) are very useful. Due to the
expressiveness of our minimalist pointcut language we can define
custom pointcuts that implement Aspect] pointcut semantics with
little effort. We have already shown the implementation of the
withincode pointcut in Figure 7. In this section we show the
implementation of the call and get pointcut in LogicAJ 2. The
other static pointcuts of Aspect can be implemented following
the same scheme.

3.1.1 Call Pointcut

Our implementation of the AspectJ call pointcut (Figure 8) starts
with an expr pointcut selecting the call expression, (line 4) and a
decl pointcut binding the called method (lines 5-6). The equals
predicate in line 7 denotes that the call join points are statically
bound to the method ?method. Line 8 binds the declaring type of
?method to ?declType by using the ref and type attributes (see Line
8). Line 9 binds the ??parTypes list to the types of the method
parameters. We omit the definition of the parameterTypes
pointcut. It can easily be implemented as a recursive pointcut
using the type argument.

1 pointcut call(?jp, ?declType, ??modifiers,
?returnType, ?name, ??parTypes):

expr(?jp, ?name(??args) )
&& decl(?method,
??modifiers ?returnType ?name(??par){??stmts} )
&& equals(?method, ?jp::ref)
&& equals(?declType, ?method::parent::type)
&& parameterTypes(??parTypes,??par);

©O© oo ~NOO UL WwWwN

Figure 8. Implementation of the call pointcut

Figure 9 shows two usage examples of the call pointcut. For com-
parison, the respective Aspect) syntax is shown as a comment.
Line 1-3 illustrates the selection of calls to the method with
signature m(int) in class Foo. Line 5-7

1//AJ: pointcut mQ): call( void Foo.m(int) )



2 pointcut m(?jp):

3 call(?jp, Foo, ??7_,
4

5//AJ: pointcut anycall(QQ: call(* *.*(..));

6 pointcut anycall(?jp): call(?jp,?_,??_,?_,?_,??_);

void, m, [int]);

Figure 9. Comparison between AspectJ and LogicAJ 2 call
syntax. Square brackets (line 3) denote a list of values.

3.1.2 Get Pointcut

Our next example implements Aspect)’s get pointcut. It selects
field read accesses. Field declarations can have different syntactic
forms. For instance, they can be declared with or without a value
assignment. Each syntactic occurrence selects a different set of
join points. Figure 10 presents the unification of the different
syntactic join point variants by a more general field access
pointcut. The union is expressed by the disjunction in lines 4-5,
which states that all declarations with or without value assignment
are bound to ?field .

1 pointcut get(?jp,??modifier,?declType, ?name,?retType):
2 expr(?jp,?name )

3 && (

4 decl(?field,??modifier ?retType ?name; )

5 |11 decl(?field,??modifier ?retType ?name = ?V;)
6
7
8

)
&& equals(?field, ?jp::ref)
&& equals(?declType, ?field::parent::type);

enclose each of the code patterns corresponding to a variable
declaration into a stmt pointcut (see Figure 11, lines 5-6). The
final equals predicate checks whether the selected local declara-
tion is indeed the declaration of the identifier matched in line 3.

3.2.2 Field Pointcut

Within the declarations of the get pointcut we had to consider
syntactic differences of field declarations. We can encapsulate
those within a field pointcut definition in order to achieve a more
modular and readable implementation of get and other pointcuts
that deal with field declarations. We will see another use of the
field pointcut in Section 4.1.

The definition illustrated in Figure 12 selects all field
declarations, with and without initializers. Then it determines the
declaring type by accessing the static join point context captured
by the meta-variable attributes ?jp::parent::type. Similarly, we can
implement a method or a class pointcut that abstracts from the
syntactic variants of the base language.

1 pointcut field(?jp,?declaringType,?returnType,?name):
2 (

3 decl(?jp, ?returnType ?name; )

4 11 decl(?jp, ?returnType ?name = ?anyVal;)
5 )

6 && equals(?declaringType, ?jp::parent::type);

Figure 10. Implementation of AspectJ get pointcut semantics

In this example, join points are selected on the syntactic, not on
the semantic level. However, we do not see this as a limitation of
our approach. The defined custom pointcut implements a semantic
selection criterion. It can be reused, hiding the syntactic details.

3.2 New Pointcuts

In the following, we give examples illustrating how easy it is to
define additional semantic pointcuts that are neither built-in nor
expressible in common AO languages.

3.2.1 Local Variable Access Pointcuts

As a complement to the common get and set pointcuts that select
fields, we introduce getlL and setL pointcuts that select read and
write accesses to local variables. We describe the implementation
of the getlL pointcut in detail. The setL implementation is
analoguous.

1 pointcut getL(?jp,?type,?name):
//Select all identifier expressions:
expr(?jp, ?name)
// Select all local variable declarations:
&&( stmt(?localdecl, ?type ?name;)

]l stmt(?localdecl, ?type ?name = ?val;)

O~NOO O WN

// Check that the local variable declaration
9 // is referenced by the identifier:
10 && equals(?localdecl, ?jp::ref) );

Figure 11. Implemantation of new pointcuts: the getL pointcut
only selects local variable accesses

The intended semantics of getL is to select all identifiers whose
declaration is a local variable. We start by selecting all expres-
sions that have the form of an identifier, that is, consist of a single
name. This is done by the expr(?jp, ?name) pointcut (Figure 11,
line 3). The set of identifiers matched this way can also contain
fields and parameters. In order to understand how we limit it to
local variables only, it is helpful to recall that, in Java, the
declaration of a local variable is a statement. Accordingly, we

Figure 12. field semantics

4. EXAMPLES

We now consider two different use cases that rely on fine-grained
pointcuts. Section 4.1 presents a simple check for the static variant
of the Law of Demeter, expressing a contract previously claimed
to require extension of Aspect] by statically executable advice
[14]. Section 4.2 comes back to the high-performance computing
example.

4.1 Example: Law Of Demeter

Binding several join points at the same time enables very
expressive pointcuts. This section gives a thorough example. It
shows how the declare warning construct can be used to check the
Law of Demeter with the help of a fine-grained pointcuts.

The Law of Demeter (LoD) [13] restricts the method calls used in
a class C to methods from ‘known’ types. These include

C,

the types of the calling method’s parameters,

the types of C’s fields,

the return types of C’s methods

the classes instantiated in C and

all the supertypes of any of the known types from 1-5.

ouk~kwnE

Figure 13 shows the LawOfDemeter aspect, concisely imple-
mented in LogicAJ 2. The aspect uses the custom pointcuts
method, constructorcall and the subtype, which can be defined easily,
like the pointcuts in Section 3.

The pointcut knownTo defined in line 3-11 encapsulates rules 1-5
of the LoD. It defines the basic set of types known to a method. Its
semantics is that ?Type is known to a method with parameter types
?ParameterTypes contained in ?CallingType.

o Line 4 checks the first rule: The ?CallingType is known to itself.



e Line 5 checks the second rule: Every member of ?ParamTypes
is known. The member predicate successively binds ?Type to an
element of ?ParamTypes.

e Line 6 checks the third rule: The type of every field of
?CallingType is known. The field predicate successively binds
?Type to the type of a field of ?CallingType.

e Line 7 checks the fourth rule: The return type of every method
of ?CallingType is known. The method predicate successively
binds ?Type to the return type of a method of ?CallingType.

e Lines 10-11 check the fourth rule: The type instantiated by a
constructor call contained in the ?CallingType is known. The
constructorcall predicate in line 9 determines all constructor
calls and the withincode predicate in line 11 ensures that only
calls within ?CallingType are regarded.

The knownTo pointcut is the core of the real LoD checking in line

13-25. Lines 14-17 set the stage by binding the meta-variable

?CalledType to the static receiver type of a method call,

?CallingType and ?CallingMethod to the type and method containing

the call, and ??ParamTypes to the list of parameter types of

?CallingMethod. Line 21 uses the knownTo pointcut to determine a

known ?Type and line 22 verifies whether ?CalledType is a

supertype of the known ?Type®. If not, a violation is reported in

line 24 along with the violating call.

This example uses explicit join point LMVs (see Section 2.4). The
call and the constructorcall pointcuts are used within a single scope:
the one in line 14 and the nested one in the definition of knownTo
(line 9). This example could not be expressed if the join points
could not be explicit parameters of the pointcuts in line 9 and 10.
If there were only implicit join points (as in AspectJ), it would not
be clear that constructor calls should not be reported as LoD
violations and that failure of matching constructor calls in line 9
should not inhibit reporting a violation of other calls.

1 aspect LawOfDemeter {

2
3 pointcut knownTo(?CallingType,??ParamTypes,?Type):
4 equals(?Type, ?CallingType) //rule 1
5 |1 member(?Type, ??ParamTypes) //rule 2
6 || field(?jp.?CallingType, ?Type, ?Fname) //rule 3
7 1| method(?jp.??_,?Type,?CallingType,?Mname,??_)//r.4
8 11
9 (
10 constructorcall(?ConstrCall,?Type,?? ) //rule 5
11 && withincode(?ConstrCall, ?CallingType ) //rule 5
12 );
13
14 declare warning:
15 call(?called,?CalledType,??_,?_,?CalledMeth,?? )
16  && method(?call,??_,?_,?CallingType,?CallingMeth,
17 ??ParamTypes )
18 && withincode(?called, ?call)
19 &&
20 1(
21 knownTo(?CallingType,??ParTypes,?Type)//r.1-5
22 && subtype(?Type, ?CalledType) //rule 6
23 )
24 : "The call violates the Law of Demeter.";
25}

4.2 Example High-Performance Computing
The following section shows how the execution of highly parallel
loops can be distributed by a generic aspect onto a set of threads,
following the approach described in [6]. Unlike the approach in
[6] our solution does not rely on code conventions.

The target of a high-performance aspect could be the following
for-loop, whose body uses the local array variables a and b.

1 public void mQ{
int[] a new int[42];
int[1 b new int[42];

1
2
3
4  Ffor(int i = 0;i< a.length;i++) {
5
6
7
8

Figure 14. Simple for-loop

The detection of the highly parallel loop can be performed with
the simple detector presented in Figure 15. The pointcut
highlyParallelLoop checks that no method call is present in the block
(avoiding side-effects) and tests that values are exclusively read
from (or written to) a variable in the block.

This ensures that the order of the computation does not affect the
result. Below we see the pointcut describing these checks. We
assume to have implemented withincode, set, setl, get and getlL
pointcuts as shown in Section 3.

1 pointcut highlyParallelLoop(?jp,?range,?lb,

2 ?ub,?body,?incr):

3 //selects for-loops

4 stmt(?jp,

5 for(?type ?range=?lb; ?range<?ub; ?incr){?body})
6 // selects all join points within the loop body
7 && withincode(?stmts, ?body)

8 // excludes calls within loops

9 && lcall(?stmts,?_,??7_,?retType,?name,??args)

10 && // no read AND write access to a variable allowed
11 1

12 setL(?bodyJPs, ?body, ?type, ?name, ?val)

13 && withincode(?another, ?body)

14 && getL(?another, ?body, ?type, ?name, ?val)

15 )

16 && // the same for fields

17 1(

18 set(?bodyJPs, ?p,?cl,?meth,??mod, ?type, ?name, ?val)

19 && withincode(?another, ?body)
20 && get(?another,?p,?cl,?meth,??mod, ?type,?name,?val)

Figure 15. The pointcut selecting highly parallel loops.

The around advice in Figure 16 wraps the for-loop into a run()
method of a thread and modifies the bounds of the loop. The for
loop now runs in parallel in several threads, each thread
calculating only a uniform range of the loop.

Figure 13. Aspect checking the Law of Demeter (LoD) at
weave-time. It reports a warning for every method invoked on
a type that is not among those “known” to the calling type or
the parameters of the calling method.

% Note that every type is a super type of itself. Subtype can be
declared recursively, similar to withincode (see Figure 6)

1 around(?jp) :
highlyParallelLoop(?loop, ?range,?lb,?ub,?body,?incr){

2
3
4 int THREADS = 5;

5 //resolve the value of the bounds

6 final ?ub::type ub = ?ub;

7 final ?lb::type 1lb = ?lb;

8 final ?range::type range = (ub - 1b)/THREADS;
9 List list = new ArrayList();

10



11 for(int threads=0; threads < THREADS; threads++){

12 final int finalThreads = threads;

13 Thread thread = new Thread() {

14 public void run(Q){

15 ?range::type newLb = lIb+range*finalThreads;
16 ?range::type newUb = newLb + range;

17

18 if(newUb >= ub)

19 newUb = ub;

20

21 for(?range::type ?range = newLb;?range < newUb;
22 ?incr){

23 ?body

24 3

25 }

26 thread.run(Q);

27 list.add(thread);

28 }

29

30 for(int threads = O;threads<list.size();threads++)
31 try{

32 ((Thread)list.get(threads)).join();

33

34 catch(InterruptedException e){

35 e._printStackTrace();

36 }

37 }

38 }

Figure 16. The for-loop parallelization aspect.

5. RELATED WORK

A comparison with existing generic aspect languages is given in
[12]. 1t includes a thorough comparison of LogicAJ 2 to related
work from logic meta-programming and program transformation
systems. Here we confine ourselves to related work specific to
fine-grained genericity.

The TyRuBa language [19] introduces logic meta-programming
for Java programs by defining Prolog-like predicates on Java
programs. All code blocks of the base program are represented as
quoted Java code within the TyRuBa rules. The quoted code may
contain meta-variables for types and identifiers. In TyRuBa the
quoted code can only be used for the generation of Java code, but
not in the query language.

Several approaches exist that describe finer-grained extensions to
the AspectJ join point model.

The extensible AspectJ compiler abc [1] provides a Java API to
extend the set of known AspectJ pointcuts. For every additional
pointcut, the lexer, parser and weaver must be extended to support
the new pointcut. Implementation of custom pointcuts in LogicAJ
2 does not require any such changes. Es we have shown, the
extensions are expressible within the language.

EOS-T [17] extends the AspectJ primitive pointcuts with pointcuts
for conditionals and loops. It does not provide no ability to refer
to join points statement-arguments or -blocks. Harbulot presents
LoopAJ [6], an Aspect] extension for loop pointcuts. His approach
is bult on abc and uses byte code analysis to identify loops.
Kniesel and Austermann [9] present a professional code coverage
tool for Java, CC4J, implemented based on the JMangler load-
time adaptation framework [11]. Working at byte code level,
however, is not the preferred level of abstraction for most
programmers.

Borba et al. introduce JaTS [2], a language for pattern based
transformations of Java programs. Similar to our basic pointcuts,
code patterns are used to describe program parts on which trans-

formations should take place. The transformation specification is
described with another pattern. Like in LogicAJ 2, both parts can
be linked by the use of meta-variables, which substitute syntactic
elements at the interface level of a base-program. According to
personal communication with the authors, meta-variables can also
match finer grained elements. That lets JaTS appear to be the
closest match for our concept of fine-grained genericity.
Comparison of JaTS and LogicAJ 2 will therefore be a rewarding
topic of future work.

6. ONGOING WORK

The design of LogicAJ 2 described in this paper is currently
implemented as an extension of our existing LogicAJ compiler,
which is available at [15].

The added expressive power of a generic aspect language does not
come for free. In particular, static analysis of aspect code is
difficult in the presence of meta-variables.

In order to prevent substitution of statements where expressions
are expected and vice-versa, meta-variables need to be
syntactically typed, that is every meta-variable needs to have a
type that determines the kind of syntactic entity from the base
language that may be substituted. Syntactic types can either be
declared or inferred from the definition of the predicates that are
used to bind meta-variable values. For lack of space, we did not
address this issue in this paper. This is a topic of ongoing work.

Currently we do not support dynamic join points like cflow, this or
target with our basic pointcut model. In contrast to static join
points, dynamic ones have no counterpart in the base program that
could be described by a unique code pattern. Overcoming this
limitation is also subject of ongoing work.

We will evaluate LogicAJ 2 by applying fine-grained genericity to
different application areas. General software transformation
approaches, like [18] have addressed optimizations techniques
like partial evaluation and data-flow optimization with generic
transformations. We will analyze how they can be translated to
fine-grained generic aspects.

Contract4J [20] uses AspectJ to check contracts on Java. Currently
the contracts are limited to AspectJ join points. For instance loop
invariants can not be checked. Fine-grained genericity could be
used to remove this restriction.

7. CONCLUSION

In this paper, we have introduced the concept of fine-grained
genericity for aspect languages. Our approach is based on a
minimal set of fine-grained pointcuts and base-language code
patterns containing logic-meta variables. This enables us to
express context-dependent aspect effects and dependencies
between multiple join points. In addition, we have shown that
fine-grained genericity is able to express the static pointcuts
known from Aspect] and to define arbitrary other kinds of
pointcuts that previously required specific language extensions.

Thus, we have shown that there is no need for extending an aspect
language in order to implement new ‘basic’ pointcuts if the
language itself is powerful enough to select all base-language join
points.

8. ACKNOWLEDGEMENTS

We want to thank the FOAL’06 reviewers for their constructive
and knowledgeable comments on the submitted draft of our paper.



[1]

(2]

(3]
(4]
(5]
(6]
[7]
(8]

(9]

REFERENCES

Awvgustinov, P., Christensen, A. S., Hendren, L., Kuzins, S.,
Lhotak, J., Lhotdk, O., Moor, O., Sereni, D., Sittampalam,
G., and Tibble, J. abc: An extensible Aspect] compiler,
Transactions on Aspect-Oriented Software Development,
2005

Castor, F., and Borba, P. A language for specifying Java
transformations. In V Brazilian Symposium on Programming
Languages, pages 236-251, Curitiba, Brazil, 23rd-25th May
2001.

Conejero, J. M., van den Berg, K., and Chitchyan, R. Aosd
ontology. http://www.aosdeurope.net.

Filman, R. E., and Friedman, P. D. Aspect-Oriented
Programming is Quantification and Obliviousness,
Workshop on Advanced Separation of Concerns, OOPSLA
2000, October 2000, Minneapolis.

Filman, R. E., Elrad, T., Clarke, S., and Aksit, M. Aspect-
Oriented Software Development. Addison-Wesley, Boston,
2005.

Harbulot, B., and Gurd, J. R. A join point for loops in
aspectj. FOAL 2005, 2005.

Harbulot, B., and Gurd, J. R. Using Aspect) to Separate
Concerns in Parallel Scientific Java Code, Proceedings of 3rd
International Conference on Aspect-Oriented Software
Development (AOSD), March 2004

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J.,
and Griswold, W. An Overview of AspectJ, Proceedings of
ECOOP 2001

Kniesel, G., and Austermann, M. CC4J - Code Coverage for
Java, Lecture Notes in Computer Science, Volume 2370, Jan
2002, Page 155

[10] Kniesel, G., and Rho, T. Beyond Type Genericity -

Homogeneous Genericity for Aspect Languages, Technical
Report IAI-TR-2004-4, University of Bonn, Dec 2004.

[11] Kniesel, G., Costanza, P., and Austermann, M. JMangler - a

framework for load-time transformation of Java class files
Source Code Analysis and Manipulation. Proceedings. First
IEEE International Workshop on 10 Nov. 2001 Page(s):98 —
108

[12] Kniesel, G., Rho, T., Generic Aspect Languages - Needs,

Options and Challenges, Special issue of L'Objet, Hermes
Science Publishing, London, 2006

[13] Lieberherr, K. J., Holland, 1., Riel, A.: Object-Oriented
Programming: An Objective Sense of Style, In Proceedings
of the Conference on Object-oriented Systems, Languages
and Applications (OOPSLA), San Diego, California, USA,
pages 38-48, September 1988.

[14] Lieberherr, K., Lorenz, D., and Wu, P. A case for statically
executable advice — checking the law of Demeter with
Aspect], Proceedings of the 2" International Conference on
Aspect-Oriented Software Development (AOSD), Boston,
MA, March 17-21, ACM Press, 2003

[15] LogicAJ Homepage, http://roots.iai.uni-
bonn.de/research/logicaj

[16] Masuhara, H., Kiczales, G., and Dutchyn, C. A Compilation
and Optimization Model for Aspect-oriented Programs.
Compiler Construction (CC) also Lecture Notes in Computer
Science (LNCS) vol. 2622.

[17] Rajan, H., and Sullivan, K. "Generalizing AOP for Aspect-
Oriented Testing”, In the proceedings of the Fourth
International Conference on Aspect-Oriented Software
Development (AOSD 2005), 14-18 March, 2005, Chicago,
IL, USA

[18] Visser, E., Program Transformation with Stratego/XT: Rules,
Strategies, Tools, and Systems in StrategoXT-0.9. In C.
Lengauer et al., editors, Domain-Specific Program
Generation, volume 3016 of Lecture Notes in Computer
Science, pages 216--238. Spinger-Verlag, June 2004.

[19] Volder, K. D. Aspect-oriented logic meta programming. In
Proceedings of the Second International Conference on
Metalevel Architectures and Reflection, volume 1616 of
Lecture Notes in Computer Science . Springer-Verlag,1999

[20] Wampler, D., Contract4J for Design by Contract in Java:
Design Pattern-Like Protocols and Aspect Interfaces, Fifth
AOSD Workshop on ACP4IS, Bonn 2006

[21] Wand, M., Kiczales G., et al. A Semantics for Advice and
Dynamic Join Points in Aspect-Oriented Programming,
LNCS 2196, 2001



	1. INTRODUCTION
	2. FINE-GRAINED GENERICITY
	2.1 Basic Pointcuts
	2.2 Logic Meta-Variables
	2.3 Named Pointcuts
	2.4 Explicit Join Points
	2.5  Meta-Variable Attributes

	3. EXTENSIBILITY OF THE POINTCUT LANGUAGE
	3.1  Static AspectJ Pointcuts
	3.1.1 Call Pointcut
	3.1.2 Get Pointcut

	3.2 New Pointcuts
	3.2.1 Local Variable Access Pointcuts
	3.2.2 Field  Pointcut


	4. EXAMPLES
	4.1 Example: Law Of Demeter
	4.2 Example High-Performance Computing

	5. RELATED WORK
	6. ONGOING WORK
	7. CONCLUSION
	8. ACKNOWLEDGEMENTS
	9. REFERENCES

