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ABSTRACT
AspectJ aims at managing tangled concerns in Java sys-
tems. Crosscutting aspect definitions are woven into the
Java bytecode at compile-time. Whether the better mod-
ularization introduced by aspects is real or just apparent
remains unclear. While aspect separation may be useful to
focus the programmer’s attention on a specific concern, the
oblivious nature of the weaving makes it difficult to figure
out the behavior of the whole system. In particular, it is
not easy to figure out if two aspects interfere one with the
other. We built a bytecode slicer called XCutter in order
to study which part of the woven code is affected by the ap-
plication of an aspect. However, our experiments show that
a static analysis of AspectJ woven bytecode does not give
the expected results, unless the code is properly annotated.

Categories and Subject Descriptors
D.1.m [Programming Techniques]: Miscellaneous; D.2.4
[Software Engineering]: Software/Program Verification;
D.3.3 [Language Constructs and Features]:

General Terms
Languages, Verification

Keywords
Program analysis, Slicing, aspect-oriented programming, As-
pectJ, interference analysis

1. INTRODUCTION
AspectJ [1] is the most successful language embodying the
idea of aspect-oriented programming, introduced by Kicza-
les et al. in [2]. In AspectJ, crosscutting entities called as-
pects are woven into traditional object-oriented (Java) byte-
code at compile-time. Nevertheless, events that can trigger
the execution of aspect-oriented code are run-time events:
method calls, exception handling, and other specific points
in the control flow of a program. The basic idea is that as-
pects describe crosscutting computations (pieces of advice)
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by referring to an abstract view of the system and composi-
tion is performed by the automatic weaving process, which
produces a standard Java bytecode application.

In principle, the various aspects should not interfere with
one another, and they should not interfere with the evolu-
tion of classes. Currently, non interference in presence of
class evolution is really hard, and programmers should be
very careful in writing aspects that make use of the imple-
mentation details of classes as little as possible if they want
to be able to reuse their aspects. Moreover, it is still not
clear how to cope with the difficult problem of aspect inter-
action. In fact, the code affected by an aspect is oblivious
about that, i.e., its text does not contain any clue about
which aspects might or will be advised on it. Thus, by look-
ing at a given statement, programmers may have a hard time
figuring out if one of the aspects of the system will influence
it. We believe that this represents a limit in the current
AspectJ approach, since it means that the actual separation
of aspects is in a sense only apparent. In other words, while
aspect code units are physically separated, one has always
to keep all of them in mind while coding the other parts
of the system, since every aspect could potentially influence
any other component.

In order to assess the complexity of the weaving in an As-
pectJ program, we proposed[3, 4] to use program analysis
techniques to measure how large is the portion of a program
potentially (i.e., statically known) affected by an aspect. We
suggested this could be used to study aspect interactions.
In fact, roughly speaking, if the portions affected by two as-
pects do not overlap, this is a sufficient condition to state
that they do not interfere. More precisely, let a code unit
be an aspect or a class of a system. We say that an aspect
A does not interfere with a code unit C if and only if every
interesting predicate on the state manipulated by C is not
changed by the application of A. For example, if an object x
manipulated by C exists such that the predicate x ≤ 0 must
hold for the correctness of the system, A does not interfere
with C only if C woven with A preserves x ≤ 0. This defi-
nition captures only interferences caused by inconsistencies
in the state manipulated by the code units: other types of
clashing are not considered.

This can be used to derive an operational test to find out as-
pect potential collisions [3]. If A1 and A2 are two aspects and
S1 and S2 the corresponding backward slices [5] obtained by
using all the statements defined in A1 and A2 as the slicing



criterion, A1 does not interfere with A2 if A1 ∩ S2 = ∅. In
fact, the set S2 contains all the statements that affect the
slicing criterion (a set containing all the statements of A2).

To this end, we built XCutter 1 (to be pronounced cross-
cutter) a tool to do backward static slicing on Java bytecode
and to map bytecode entities back to the AspectJ code. In
this paper we report about the challenges we encountered in
building such a tool and some preliminary results about its
use. The paper is organized as follows: Section 2 briefly sur-
veys slicing techniques and talks about our work to build a
working slicer, Section 3 talks about the preliminary results
we obtained using our tool on AspectJ programs for inter-
ference detection, and Section 4 finally discuss the lessons
we learnt.

2. SLICING OBJECT AND ASPECT ORI-
ENTED PROGRAMS

Program slicing is a program analysis technique introduced
by Weiser in the ’80s [5]. A backward slice is a set of program
instructions that, fixed one or more instructions as a slicing
criterion, influence the criterion, i.e., change the right-values
of the statements included in the criterion. Ottenstein and
Ottenstein proposed a slicing technique based on a graph
representation of the program in [6], in which directed edges
represent data and control dependencies between instruc-
tions. The original proposal was about a technique to ana-
lyze a single procedure of a procedural program. In [7] the
graph-based approach was extended to handle programs in-
cluding interacting procedures calls, and an algorithm that
could correctly take the calling context into account was
proposed. This algorithm performs two phases of reacha-
bility analysis, which consider different kinds of edges, to
preserve the calling context. The resulting slice is a set of
graph nodes that is mapped back onto the program source.
Slicing techniques were further studied and applied to object
oriented programs by Liang and Harrolds in [8].

Object oriented slicing techniques, unfortunately, cannot be
used as is to analyze aspect oriented programs, since the
weaving introduces data dependencies that have to be taken
into account. A graph representation for the AspectJ lan-
guage was proposed by Zhao in [9]. His work relies on the
graph representation presented for object oriented programs
and adds representation for some of the constructs of As-
pectJ. Pieces of advice are represented as methods, point-
cuts are represented adding a pointcut edge from the entry
of a piece of advice representation to the point in the base
system code captured by the pointcut. Intertype declara-
tions are represented adding the representation for the field
or method introduced and binding it with an introduction
edge to the interested point of the base system. However, the
dynamic nature of pointcut definitions (that can even apply
to pieces of advice to which are attached) is neglected.

Slicing AspectJ programs by considering aspects as first
class entities, is appealing, since it allows for not consid-
ering the actual implementation of the weaver. However, in
order to build working tools one has to deal with the details

1The source code of the tool is available at http://www.
elet.polimi.it/upload/cavallaro/thesis/Xcutter.jar
under the terms of a GPL license.

of the expressive power of all AspectJ constructs. This ef-
fort actually replicates the weaving task. Therefore, in [4]
we proposed to exploit the fact that AspectJ programs are
eventually translated into Java bytecode, and the latter is
an object oriented language, to which the mainstream state
of the art of program analysis can be applied.

Our strategy is divided in four steps:

1. Compile Java classes and aspects using an AspectJ
compiler and weave aspects into an executable pro-
gram.

2. Apply existing slicing algorithms to the resulting byte-
code.

3. Obtain a slice as a set of bytecode statements.

4. Map these statements back onto the original source
code of the program.

Working at bytecode level may seem inappropriate, since
in bytecode there is no distinction between the aspect ori-
ented and the object oriented parts of an AspectJ program.
In fact, the weaving process translates aspects into classes,
pieces of advice in methods and pointcuts into method invo-
cations. Thanks to this, the mapping of bytecode instruc-
tions onto source code can be done rather efficiently and
precisely. Some problems about intertype declarations re-
main (see Section 2.3.5): these could be in future resolved
by a suitable use of bytecode annotations by the AspectJ
compiler. XCutter, our backward static slicer, can an-
alyze both AspectJ and Java programs, since it works at
bytecode level.
A tool similar to ours is Indus [10], a slicer for Java that
works at the bytecode level: unfortunately it was made
available when our effort was already begun and initially
released with a license [11] incompatible with our commit-
ment to produce an open source product. Indus can slice
multithreaded programs, while our current prototype can
not. It is based on a context-sensitive points-to analysis,
but context-sensitivity is not fully exploited by its slicing al-
gorithm. For example, the context-sensitive points-to anal-
ysis can distinguish between different instances of internal
data structures of different Vectors, but the slicing algo-
rithm does not distinguish between modifications to two
different Vectors, thus obtaining the same precision level
resulting from the use of a context-insensitive points-to anal-
ysis. Moreover, Indus is focused on slicing Java programs.
AspectJ-specific slicing strategies could not be implemented
on top of it, so it could not be used for interference analysis.

2.1 Slicer Architecture
XCutter is built on top of Soot, a program analysis frame-
work for Java [12]. Soot provides an intermediate represen-
tation of Java bytecode called Jimple– a three-address typed
representation suitable for analysis– and supports intrapro-
cedural analyses. Moreover it is accompanied by Spark, a
framework for points-to analysis.

XCutter is structured as a series of analyses which run in-
side the Soot framework. As depicted in Figure 1, the anal-
ysis starts by compiling the AspectJ program sources and



weaving the resulting bytecode. The latter is then imported
in Soot and translated into Jimple. This intermediate rep-
resentation undergoes a series of preliminary analyses, used
to discover some information necessary to build a slice, and
is used as input for the slicing algorithm, described in Sec-
tion 2.3. The resulting slice is finally mapped back onto the
source code of the AspectJ program.

Figure 1: Architecture of XCutter

2.2 Preliminary analyses
Preliminary analyses compute data and control dependen-
cies between instructions of the program. Instructions are
annotated with information on the discovered dependencies,
which are used by the slicing algorithm to compute the back-
ward static slice.

Figure 2: Overview of analysis order

The preliminary analysis starts computing the points-to in-
formation by using the Spark framework [13]. This analysis
computes the set of Java objects that a given variable in the
program may point to. These results are then used by both
data flow and control dependence and exception analysis
(see Figure 2).

The data flow analysis computes the reaching definitions in
the program. For efficiency reasons we divided this analysis
in local data flow analysis and reference data flow analysis.
Local data flow analysis computes reaching definitions be-
tween Jimple local variables contained in a single method.

For this analysis we adapted the algorithm described in [14].
Reference data flow analysis computes data dependencies
caused by definitions and uses of static fields, object fields,
and arrays. This analysis needs a side effects analysis as a
preliminary step. The side effect analysis computes which
object fields, arrays and static fields may be used or modified
by each method in the program. Each method is, initially,
analyzed by itself, then the information found for a method
is propagated through the call graph. Reference analysis
uses the results of the side effect analysis to model the effect
of method call statements. Using this strategy the reference
analysis can be performed intraprocedurally, improving effi-
ciency.

The control dependence analysis aims at finding intraproce-
dural control dependencies. The algorithm used was adapted
from [14]. The exception analysis was adapted from the one
proposed in [15]. Exceptions may introduce intraprocedu-
ral and interprocedural control dependencies in a program.
Methods in the program are searched, from call graph leaves
to the main method, to find if they might throw exceptions.
If an exception is thrown there is a control dependence from
the throwing instruction to all the following instructions,
in the method body. Moreover the method is searched for
an appropriate catch clause. If it is found, it means there
is a control dependence from the throwing instruction to
the instructions contained in the catch block. If no catch
block is found the information about the thrown exception
is propagated to the callers. If the callers contain an ap-
propriate catch block there is an interprocedural control de-
pendence from the thrower instruction to the instructions of
the catch block, else the information is further propagated
to the callers.

The results of data flow and control dependence and excep-
tions analyses are annotated in tags associated with Jimple
instructions and methods, and are used as input for the slic-
ing algorithm.

2.3 The slicing algorithm
Existing slicing algorithms for procedural and object ori-
ented programs ([7], [8], [16]) require the construction of a
graph representing the analyzed program. Most features of
the Java language have been separately taken into account,
and algorithms to create corresponding graphs have been
proposed. However, creating a graph that correctly takes
into account the whole Java language requires theoretical
work to merge different approaches. Our slicing algorithm
is not graph-based. Instead of building a graph represent-
ing the entire program, slicing is performed using results of
preliminary analyses, which compute dependencies between
statements. This makes the slicing algorithm more com-
plex than a graph-based algorithm, because dependencies
between instructions are not represented explicitly by edges.
However, several features such as exception handling and
polymorphism are easier to manage without an unnecessary
pollution of ad-hoc edges. In the following, we describe the
engineering challenges we encountered in building a work-
ing tool: most of problems we faced are extensively studied
in the program analysis literature. Notwithstanding that,
putting together independent results in an effective proto-
type was a hard work, mostly absent in the publicly available
code.



2.3.1 Library and application methods
Any non trivial Java program uses some library method.
This means that a lot of library methods are part of the
program, because they are transitively called by applica-
tion code. Traditional algorithms require a detailed anal-
ysis of the entire program and the creation of a graph for
every library and application method. While experimenting
on small AspectJ examples, we noticed that usually a large
part of the program is composed by library methods. Our
interference analysis deals with slices containing instructions
belonging to aspects, which are not contained in the Java li-
brary. So we decided to keep the distinction between library
and application methods, and analyze them with different
precision levels. In particular, detailed data and control de-
pendence analysis is performed on application methods only.
The slicer analyzes library methods to detect which values
are used or defined by these methods, but it does not com-
pute dependencies between instructions of a library method.
This also affects how method calls are handled. Information
on side effects and thrown exceptions is necessary to take
into account data and control dependencies. However, calls
to library methods are treated atomically. In fact, when an
instruction calling a library method is put into the slice, the
whole library method, and the method it transitively calls,
are considered to be part of the slice. The difference between
library methods and application methods is decided by the
user, by choosing which packages contain application meth-
ods. Moreover, the analysis can be configured to treat some
library methods with the same level of detail used for ap-
plication methods, using a depth parameter. The increased
precision is used for library methods whose distance from
application methods in the call graph is smaller than depth.

2.3.2 Using dependencies
The slicing algorithm uses dependencies computed by pre-
liminary analyses to add instructions to the slice. Although
the slicing algorithm is not graph based, we called node the
entity used to represent instructions. However, new nodes
are created only when new instructions are added to the
slice. The algorithm uses several kinds of nodes. When a
new instruction is added to the slice, a new node is created,
whose kind depends on the included instruction. Table 1
summarizes node types and the corresponding actions, and
Figure 3 shows how the algorithm decides the type of a node
when a new instruction is added to the slice.

Simple nodes are used to represent instructions not contain-
ing method calls, while call site nodes are used for instruc-
tions containing explicit or implicit2 method calls.
Actual in and actual out nodes are used to represent val-
ues used or defined by a method at call sites. An actual in
node represents a single value used by a method, such as a
method parameter, an array, an object field or a static field.
An actual out node represents a single value defined by a
method.
Values used and defined by library methods are not repre-
sented using actual in and actual out nodes. A single pseudo
actual node is used to represent all the values used and de-
fined by a library method. In fact, since library methods
are not analyzed in detail, there is no way to determine de-
pendencies between output and input values. Using a single

2implicit method calls are calls to class static initializers

node to represent all of them provides a safe approximation,
representing the fact that any output value could depend
on any input value. Actual in nodes are only created when
actual out nodes are examined.

Figure 3: The flowchart for identifying pseudo-
actual nodes

Nodes included in the slice are put in an open list. The
algorithm extracts nodes from the open list one at a time,
and executes different actions according to the node type
(as shown in Table 1). For example, when a simple node is
extracted from the open list, the algorithm examines data
and control dependencies of the instruction represented by
the node. Instructions on which the node depends are added
to the slice, and corresponding nodes are added to the open
list. However, when a call site node is extracted from the
open list, control dependencies are examined as they are for
simple nodes, but data dependencies are treated differently.
In particular, the algorithm only examines data dependen-
cies regarding the local variable on which the method is
called. In fact, data dependencies regarding values used by
the method are examined when the corresponding actual in
nodes are examined. Once a node is examined, it is put in
a closed list, which is used to avoid re-analyzing the same
node.

2.3.3 Dependence relation
The most expensive part of the construction of the graph
is the computation of summary edges (a detailed analysis
of its cost is provided in [17]), that express the dependence
of values defined by a method on values used by the same
method. Graph-based slicing algorithms such as [7] require
computing summary edges before the slicing phase begins.
This can be very expensive in terms of required memory and
computation time. For a typical Java program, the cost is
O(CallSites × Params3), where Params is the maximum
number of method parameters and CallSites is the number
of method call instructions in the code. Method parameters
include object and static fields which are transitively used
or modified by the method. Even for example programs
using library methods, Params is greater than 10,000 and
CallSites is greater than 100,000. This is why our algo-
rithm computes and stores these dependencies during the
slicing phase, using a dependence relation that is enriched
as new dependencies are computed. When a method call
instruction is put into the slice because of a data or control
dependence, the computation of the dependence relation for



Node kind Represents Action
Simple An instruction not containing a method

call
Follow data and control dependencies

Call site An instruction containing a method call Follow control dependencies (and data dependen-
cies for the local variable representing the receiv-
ing object)

Actual in A value used by a method at a call site Follow data dependencies for the value repre-
sented by the node

Actual out A value defined by a method at a call site Compute dependence relation, generate actual in
nodes

Pseudo actual All values used and defined by a library
method at a call site

Follow data dependencies for every value used by
the library method

Table 1: Actions corresponding to different kinds of slicing nodes

the related value is started. The value can be any value de-
fined by the method, including thrown exceptions. To com-
pute the dependence relation for a given value, the algorithm
looks for the instructions that define the value. Then the al-
gorithm starts examining dependencies according to table 1.
During computation of the dependence relation, dependen-
cies are used to reach other instructions. Values used by
reached instructions are used to enrich the dependence re-
lation. In fact, since the algorithm follows data and control
dependencies, the values used by reached instructions influ-
ence the defined value. When the dependence relation is
enriched, actual out nodes related to the examined method
are analyzed again to create appropriate actual in nodes.

2.3.4 Current limitations
XCutter has currently some limitations. Some of them
have effects on the correctness of the slice.

The Java language allows the programmer to call methods
written in native languages, such as C and C++, using the
Java Native Interface [18]. The slicing engine cannot analyze
these methods, because there is no bytecode corresponding
to them and thus Soot cannot create Jimple representations
for them. Unfortunately, native methods might have side
effects and not taking into account these side effects leads
to incorrect slices. In the future we plan to add support for
side effect specification of native methods.

Our slicer works under a closed world assumption. Some
Java features do not respect this assumption, so our tool
can not handle dynamic class loading and reflection, since
they introduce in the program some elements unknown at
compile time.

The slicing engine uses data and control dependencies to
compute the slice. These two kinds of dependencies correctly
describe sequential programs. To correctly take into ac-
count concurrent programs, however, other kinds of depen-
dencies are needed. Divergence dependencies, Interference
dependencies, Synchronization dependencies, and Ready de-
pendencies, are used to model dependencies caused by syn-
chronization and concurrency mechanisms [19]. The slicing
engine does not consider these other kinds of dependencies,
potentially and incorrectly excluding some instructions from
the slice. However, data and control dependencies between
instructions executed in the same thread are correctly taken

into account.

2.3.5 Source code mapping
The computed slice is made of bytecode instructions, but it
can be mapped back onto the source code, using source line
information introduced by the weaver. Some instructions,
however, are not correctly mapped. For example, most
pointcut definitions are not mapped, because they generate
no executable bytecode. In fact they are used by the weaver
to identify join points where advice code has to be inserted.
Another mapping problem is caused by declare parents or
introduce instructions. These instructions are used by the
weaver to modify the class hierarchy or the interface of the
object oriented part of the program, but the weaver does not
leave any trace of the modification in the bytecode, so these
instructions are never included in the bytecode-level slice.
To ease the work of bytecode analysis, we suggest that the
weaver should put more information in the woven bytecode,
exploiting, for example, the opportunity of annotating byte
code introduced in Java5.

3. INTERFERENCE ANALYSIS
We exploit our slicer to study aspect interference. Consider
the example shown in Listing 1.

The aspect SpeedController is interested in the calls to the
“setters” of the Factory class: it regulates the speed, keep-
ing it under a fixed value. The aspect RotationMonitor is
in charge to log any speed change. While SpeedController

modifies a property of the underlying system, the Rotation-
Monitor is simply an observer. Thus, the RotationMonitor

aspect does not interfere with the SpeedController one.
(Conversely, the SpeedController does interfere with Rota-

tionMonitor).

We expected to be able to check this property with our slicer:
a backward slice associated to SpeedController should not
contain any of the statements of RotationMonitor. Unfor-
tunately, things are more complicated. In fact, the dynamic
nature of join-points selection means that the weaver has to
put some machinery in the code. Modern weaver implemen-
tations use to translate each piece of advice as a method and
to insert the translated code into the right point in the pro-
gram, selecting a Join point shadow (i.e. the representation
of a join point in the source code)[20]. They try, anyway,
not to inline code to let the translated bytecode have the



Listing 1: The source code of two aspects to show interference definition
1 package examples.lollypop;
2
3 public aspect SpeedController {
4
5 pointcut speedset(Factory f,int x):
6 call (public ∗ Factory.set∗ (int) ) && args(x)
7 && target(f);
8
9 after(Factory fact, int speed): speedset(fact,speed) {

10 if (speed>4) {
11 fact.setRotationSpeed(speed/2);
12 System.out.println(”check done”);
13 }
14 }
15 }
16
17
18 public aspect RotationMonitor {
19
20 pointcut speedmonitoring(Factory f,int speed):
21 call (public void Factory.set∗ (int)) &&
22 target(f) && args(speed);
23
24 after(Factory fact,int rpm): speedmonitoring(fact,rpm) {
25 System.out.println(”Lollypop stick rotation speed set to ” + rpm + ” rpms”);
26 }
27 }

same accessibility rules than regular Java bytecode.
Following this approach it is sometimes necessary duplicat-
ing pieces of advice to translate properly a pointcut. An
example of this behavior can be the After Finally Advice.
This represents advice that should run after exiting from
the selected join point, both in case of normal execution or
in case of exception throwing. The translation strategy of
the AspectJ compiler, in this case, is duplicating the call
to the method that translates the given piece of advice.
This implies the existence of a control dependence from the
join point shadow to the advice methods call present in the
normal execution branch and in the exceptional execution
branch.
Moreover aspects are usually implemented following the sin-
gleton pattern (i.e. there is only one instance of each aspect
in the system). The access to the aspect instance happens
using the aspectOf static method of the aspect, that returns
the required instance. This introduces a data dependence
that is not present in the source code of the system.
An example of after finally advice translation is shown in
listing 2. This listing shows the Jimple translation of the
piece of advice of SpeedController. The statements at lines
26 and 42 are introduced by the translation of the after fi-
nally advice. To force the system to execute the piece of
advice both in case of normal execution or in case of ex-
ception, at the end of the join-point shadow, is thrown an
exception that is caught by instructions. in lines 57 and 58
introducing control dependencies that are not present in the
source code of the system.
Lines 28 and 34 invokes the aspectOf method of RotationMo-
nitor. This method returns an instance of the aspect itself.
This is necessary since the piece of advice of RotationMonitor
needs to execute after a speed change. The method aspectOf

might throw a NoAspectBoundException. This exception

can be caught at line 42, generating a control dependence
from line 38 in listing 3 to the catch instruction at line 42
of listing 2.

These control dependencies, caused by the exception han-
dling code introduced by the weaver, cause the interference
analysis to assume that the two aspects interfere, even if,
theoretically, we would expect no interference. Finding these
dependencies is an important improvement in the accuracy
of our prototype: our first version (described in [4]) could
be successfully used to exclude interference between aspects
like RotationMonitor and SpeedController, since it per-
formed simpler, though potentially incorrect, analyses.
The spurious dependencies disappear if the pieces of ad-
vice shown in listing 1, which are of type after finally,
are transformed into after return pieces of advice. In this
case, the bytecode of the SpeedController aspect is simpli-
fied and does not use exceptions to manage control flow, as
shown in listing 4.

There is no definitive solution to this problem since the de-
pendencies are due to the semantics of the after finally ad-
vice. It should be, anyway, possible to ignore the depen-
dency introduced by the translation of this kind of advice
annotating, during the translation phase, the exceptions in-
troduced. During the slicing phase the dependencies due to
annotated exceptions can be ignored. This solution leaves
unaltered the translated bytecode and does not alter the
analysis semantics, since those exceptions, whose dependen-
cies are ignored, are used only to transfer control.

4. LESSON LEARNED
Aspect oriented programming as popularized by AspectJ
claims that cross-cutting concerns should be coded in iso-



Listing 2: The Jimple translation of the after advice of the aspect SpeedController in Listings 1
1 public class examples.lollypop.SpeedController extends java.lang.Object
2 {
3 public void ajc$after$examples lollypop SpeedController$1$fda05aef(examples.lollypop.Factory, int)
4 {
5 examples.lollypop.SpeedController r0, $r9, $r10;
6 examples.lollypop.Factory r1, r2;
7 int i0, i1;
8 java.lang.Throwable r3, r4, $r5, $r8;
9 examples.lollypop.RotationMonitor $r6, $r7;

10
11 r0 := @this: examples.lollypop.SpeedController;
12 r1 := @parameter0: examples.lollypop.Factory;
13 i0 := @parameter1: int;
14 if i0 <= 4 goto label7;
15
16 i1 = i0 / 2;
17 r2 = r1;
18
19 label0:
20 virtualinvoke r2.<examples.lollypop.Factory: void setRotationSpeed(int)>(i1);
21
22 label1:
23 goto label3;
24
25 label2:
26 $r5 := @caughtexception;
27 r3 = $r5;
28 $r6 = staticinvoke <examples.lollypop.RotationMonitor: examples.lollypop.RotationMonitor aspectOf()>();
29 virtualinvoke $r6.<examples.lollypop.RotationMonitor: void
30 ajc$after$examples lollypop RotationMonitor$1$839313f3(examples.lollypop.Factory,int)>(r2, i1);
31 throw r3;
32
33 label3:
34 $r7 = staticinvoke <examples.lollypop.RotationMonitor: examples.lollypop.RotationMonitor aspectOf()>();
35 virtualinvoke $r7.<examples.lollypop.RotationMonitor: void
36 ajc$after$examples lollypop RotationMonitor$1$839313f3(examples.lollypop.Factory,int)>(r2, i1);
37
38 label4:
39 goto label6;
40
41 label5:
42 $r8 := @caughtexception;
43 r4 = $r8;
44 $r9 = staticinvoke <examples.lollypop.SpeedController: examples.lollypop.SpeedController aspectOf()>();
45 virtualinvoke $r9.<examples.lollypop.SpeedController: void
46 ajc$after$examples lollypop SpeedController$1$fda05aef(examples.lollypop.Factory,int)>(r2, i1);
47 throw r4;
48
49 label6:
50 $r10 = staticinvoke <examples.lollypop.SpeedController: examples.lollypop.SpeedController aspectOf()>();
51 virtualinvoke $r10.<examples.lollypop.SpeedController: void
52 ajc$after$examples lollypop SpeedController$1$fda05aef(examples.lollypop.Factory,int)>(r2, i1);
53
54 label7:
55 return;
56
57 catch java.lang.Throwable from label0 to label1 with label2;
58 catch java.lang.Throwable from label0 to label4 with label5;}}

Listing 3: The Jimple partial translation of the RotationMonitor aspect
25 public static examples.lollypop.RotationMonitor aspectOf()
26 {
27 examples.lollypop.RotationMonitor $r0, $r3;
28 java.lang.Throwable $r1;
29 org.aspectj.lang.NoAspectBoundException $r2;
30
31 $r0 = <examples.lollypop.RotationMonitor: examples.lollypop.RotationMonitor ajc$perSingletonInstance>;
32 if $r0 != null goto label0;
33
34 $r2 = new org.aspectj.lang.NoAspectBoundException;
35 $r1 = <examples.lollypop.RotationMonitor: java.lang.Throwable ajc$initFailureCause>;
36 specialinvoke $r2.<org.aspectj.lang.NoAspectBoundException: void
37 <init>(java.lang.String,java.lang.Throwable)>(”examples lollypop RotationMonitor”, $r1);
38 throw $r2;
39
40 label0:
41 $r3 = <examples.lollypop.RotationMonitor: examples.lollypop.RotationMonitor ajc$perSingletonInstance>;
42 return $r3;}}



Listing 4: The Jimple translation of the after return advice of the aspect SpeedController
1 public class examples.lollypop.SpeedController extends java.lang.Object
2 {
3 public void ajc$afterReturning$examples lollypop SpeedController$1$fda05aef(examples.lollypop.Factory, int)
4 {
5 examples.lollypop.SpeedController r0, $r4;
6 examples.lollypop.Factory r1, r2;
7 int i0, i1;
8 examples.lollypop.RotationMonitor $r3;
9

10 r0 := @this: examples.lollypop.SpeedController;
11 r1 := @parameter0: examples.lollypop.Factory;
12 i0 := @parameter1: int;
13 if i0 <= 4 goto label0;
14
15 i1 = i0 / 2;
16 r2 = r1;
17 virtualinvoke r2.<examples.lollypop.Factory: void setRotationSpeed(int)>(i1);
18 $r3 = staticinvoke <examples.lollypop.RotationMonitor: examples.lollypop.RotationMonitor aspectOf()>();
19 virtualinvoke $r3.<examples.lollypop.RotationMonitor:
20 void ajc$afterReturning$examples lollypop RotationMonitor$1$839313f3(examples.lollypop.Factory,int)>(r2, i1);
21 $r4 = staticinvoke <examples.lollypop.SpeedController: examples.lollypop.SpeedController aspectOf()>();
22 virtualinvoke $r4.<examples.lollypop.SpeedController:
23 void ajc$afterReturning$examples lollypop SpeedController$1$fda05aef(examples.lollypop.Factory,int)>(r2, i1);
24
25 label0:
26 return;
27 }
28
29 }

lation and woven automatically together. However, under-
standing interaction among different aspects is hard and tool
support is still very poor.

Our experimental work shows that static analysis of woven
code has some potential for making explicit the problems
that arise due the complexity of intertwined code. However,
simplistic slicing is not sufficient to determine whether two
aspects may interfere. In fact, the machinery introduced for
the sake of the weaving itself, makes slices always overlap-
ping. Thus, our sufficient condition to exclude interference
came out to be naive, since it is likely to be always false.
Some of the dependencies, caused by the way advice weav-
ing is performed, could be avoided with a parallel source
level analysis or a suitable use of dynamic techniques. Smart
heuristics are needed, though, and they are likely to depend
heavily even on the lowest level of weaver implementation
details. A better approach would be the use of annotations
by the weaver itself, in order to keep track of the aspect
oriented abstraction layer at the bytecode level.

Moreover, slicing Java bytecode also showed us that severe
precision problems exist when real world programs are con-
cerned. A common issue is due for example to library meth-
ods: consider two calls to the add method of two different
Vectors. Unless the slicer creates multiple copies of the
same method to distinguish among different receiving ob-
jects, the static analysis will detect spurious dependencies,
resulting in large slices. Native code is almost ubiquitous in
library frameworks and this means that some dependencies
may also be neglected: big slices can even be incomplete!
Static analysis of bytecode should be used as a support to

further analyses at different levels. Furthermore, the closed
world assumption behind any static analysis is challenged
by current coding practice. Dynamic linking and reflection
are common place in most applications. However the ex-
pressive power of intertype declarations common in AspectJ
programs forces any analysis to take into account every as-
pect unit just to compute the static structure of the type
system.

The path towards having crosscutting components that can
be safely plugged into a system is still long. AspectJ as-
pects make easy to program quick pools of sparse code and
their use spread among developers. However, the next step
in dealing with complex cross-cutting concerns and their in-
teraction and evolution needs at least a better tool support.
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