
Fundamentals of Concern Manipulation
Talk Abstract

 Harold Ossher
IBM T. J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10590, USA

+1-914-784-7975

ossher@us.ibm.com

ABSRACT
This talks describes a number of principles and key concepts un-
derlying concern manipulation, the use of concerns to aid in a
variety of software development tasks. Concern modeling and
exploration, query and composition are considered. The principles
and concepts guided work on the Concern Manipulation Envi-
ronment (CME), which provides both prototype tools supporting
aspect-oriented software development, and flexible components
for use in building such tools.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features, D.2.3 [Software Engineering]: Coding Tools and Tech-
niques, D2.13 [Software Engineering]: Reusable Software, D.2.2
[Software Engineering]: Design Tools and Techniques.

General Terms
Languages, Design.

Keywords
Aspect-oriented software development, separation of concerns,
software queries, software decomposition and composition.

1. INTRODUCTION
As its name suggests, concern manipulation is about the use of
concerns in any and all ways that are useful. This includes:

• Writing software that is modularized by concern.

• Identifying or mining concerns that were not modular-
ized

• Modeling concerns and their relationships, and using
these models to aid in development activities, such as
assessing impact of change.

• Extracting concerns that are tangled with others.

• Composing concerns in flexible ways to yield full sys-

tems.

This talk is about general principles and key concepts of concern
manipulation.

The principles were key considerations in the design and imple-
mentation of the Concern Manipulation Environment (CME) [5].
It provides both a set of prototype tools and a set of flexible com-
ponents. The tools are for use during aspect-oriented develop-
ment, and include a Concern Explorer for navigating and populat-
ing an underlying concern model [4], a query tool for searching
for software elements using a variety of attributes and relation-
ships [8], and a composition tool for composing concerns as
guided by high-level, mostly simple specifications. The compo-
nents are for tool builders to build upon and researchers to use for
experimentation and prototyping. They include components for
concern modeling [4], query [8], composition [7, 2] and related
sub-activities. Extraction was planned but not implemented. The
components are general and flexible, intended to be tailorable to a
variety of AOSD approaches applied to a variety of different
types of artifacts.

The CME is an open source project, though not currently under
active development. It was developed as an Eclipse Technology
Project, and is now available on SourceForge [1].

The rest of this abstract merely lists the principles and concepts
covered, or alluded to, in the talk. In a few cases, it identifies
architectural implications for tools aimed at supporting general
concern manipulation. Further explanation and details, as well as
discussion of and references to related work, are available in the
referenced publications.

2. PRINCIPLES AND KEY CONCEPTS
This section begins with some general principles and concepts,
and then discusses concerns, query and composition in separate
subsections.

• The various concern-manipulation tools and compo-
nents should provide a unified view and experience.
This implies sharing of concepts wherever possible,
such as regarding the body of software being worked
on.

• The body of software being worked on is in a universe
consisting of container spaces of containers made up of
elements.

o In the important special case of object-
oriented software, the container spaces are
type spaces (e.g., Java class paths), the con-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
Workshop FOAL '07, March 12-13, 2007 Vancouver, BC, Canada.
Copyright 2007 ACM 1-59593-661-5/07/03…$5.00.

tainers are types (e.g., classes and interfaces),
and the elements are members (methods and
fields).

o Containers that are referenced but are not to
be manipulated themselves, such as Java li-
brary classes in most contexts, can be in-
cluded in a special library container space,
which is considered to be included in all con-
tainer spaces.

o All names used within a container space must
be uniquely defined within that space (per-
haps in the automatically-included library
space). This is necessary for names to be
properly understood and processed.

• The universe can, and usually does, involve software ar-
tifacts/elements of various kinds.

o Architectural implication: Artifact-kind-
specific code should be isolated, so that the
bulk of the concern-manipulation support is
generic.

• Methoid: a pattern identifying material inside element
bodies, allowing the matching material to be treated as
extractable methods for the purpose of identification,
searching and composition. This allows support for
code-level join points such as calls, throws and excep-
tion handler bodies.

• Correspondence: a tuple of corresponding entities (con-
tainer spaces, containers, elements or methoids) that are
to be composed with one another to form a composed
entity. Correspondences identify join points in a sym-
metric way, and correspondence queries are the sym-
metric analogy of pointcuts.

• Each entity has attributes, which can be used in queries.
When corresponding entities are composed, their attrib-
utes must be combined. Attributes include:

o Modifiers: keyword attributes, e.g., “public.”
o Classifiers: modifiers that serve to classify

their entities, e.g., “interface.”

2.1 Concerns
• Concerns should be first-class entities, explicitly repre-

sented (modeled) and manipulable by users and tools.

• An underlying symmetric model should be used, with a
convenient asymmetric façade available. Both symmet-
ric and asymmetric scenarios [6] are important: some
concerns are naturally peers, possibly freestanding,
whereas others are naturally extensions or specializa-
tions of base concerns. This approach provides conven-
ient, unified support for both. It is possible because
asymmetric models are restrictions of symmetric mod-
els.

• An individual concern can be heterogeneous, involving
artifacts/elements of multiple kinds.

• A concern has an intension, indicating the meaning of
the concern, and an extension, the set of software ele-

ments that currently pertain to it. The intension might
be expressed by a query. In the degenerate case, the in-
tension can be merely a comment and the extension
specified explicitly.

• Software can be written explicitly encapsulated in con-
cerns, such as in modules or packages that represent
concerns. Concerns can also be obtained by identifying
or mining elements scattered across other concerns.

• A concern, unlike a container space, may contain names
that resolve to definitions not included in the concern.
In general, obtaining container spaces from concerns
requires extraction, which must deal with such names
(perhaps by including definitions, or requires declara-
tions, within the space).

2.2 Query
• Queries are needed in many contexts, such as for explo-

ration, definition of concern intensions, and correspon-
dence identification for composition.

• Uniform query support should be available in all con-
texts, and the same query language(s) be usable
throughout.

• Different query languages and underlying engines are
appropriate for different AOSD approaches and experi-
ments.

o Architectural implication: Query languages
and engines should be extensible and plug-
gable.

• Despite this variation, to provide the uniform support
desired, a query language must provide at least the fol-
lowing capabilities:

o Selection of elements based on names (includ-
ing parameter signatures for methods), modi-
fiers, classifiers, attributes and containment.

o Selection of methoids, based on their patterns.

o Selection of relationships, based on their
names and characteristics of their end points.

o Selection of correspondences: tuples of corre-
sponding elements related as desired (e.g.,
having the same unqualified names in differ-
ent scopes).

o Navigation via relationships, including transi-
tive closure.

o Predicates and set operations.

o Variables and unification. This is absolutely
required for correspondence queries used for
composition, and us useful in other contexts
also.

2.3 Composition
• Static composition is sufficient to support dynamic join

points and pointcuts. Dynamic residue, where the para-
digm requires runtime tests (or other activities) to be

performed at join points during execution, is handled by
generating code to perform the appropriate tests and
composing it statically at the right locations. This is, in
fact, what aspect compilers typically do.

• Three composition levels are important, with different
needs and tradeoffs:

o Concern assembly level: the lowest level, at
which the key issue is the nitty-gritty details
of composing specific artifacts, such as Java
class files.

o Reusable component level: the middle level,
at which the key issue is providing tool build-
ers with flexible alternatives, allowing them
to realize different composition paradigms.

o Tool level: the highest level, at which the key
issue is providing AOSD developers with
convenient language constructs that support a
particular paradigm.

2.3.1 Concern Assembly
Concern assembly involves some concepts specific to the low-
level details of synthesizing composed artifacts from source arti-
facts:

• Mapping and translation, enabling a formal element,
such as a method body, to be copied correctly from its
source context to the composed context with proper
name resolution.

• Relationships among elements, such as subtyping.

• Method combination graphs, specifying the details of
how multiple, corresponding methods should be com-
bined, including such issues as sequencing, exception
handling and parameter mapping.

• Primitives for:
o Container and element creation.
o Mapping and relationship specification.
o Copying and translating formal elements.
o Generating code based on method combina-

tion graphs.

2.3.2 Reusable Composition Component
The CME composition component provides great flexibility by
allowing composition to be specified in terms of the following
concepts:

• Weaving directives specify composition details.

• What elements are to be joined: correspondences.

• How elements are to be joined:
o Selection, indicating which are to be included.
o Ordering, specified by combination graphs.
o Structure, specifying how the component ele-

ments are to be related in the composed result
(e.g., facets of the same object, separate ob-
jects, separate object and aspect, etc.) [3].

• Making assumptions explicit:

o Encapsulation indicates at what level name-
matching is to be applied, if at all.

o Opacity indicates whether class hierarchy
structure is to be taken into consideration dur-
ing composition, or if all classes are to be
“flattened” before composition by having
their inherited members explicitly included.

• Resolving multiple weaving directives that apply to the
same element:

o Exclusivity indicates whether multiple direc-
tives can cooperate to produce a single com-
posed result, or whether just one must be se-
lected.

o Precedence determines the order of selection.

2.3.3 Tool-level composition
The concepts at the tool level are dependent on the paradigms
(aspect languages or approaches) being implemented: the whole
intent is that each tool be able to provide its own model and con-
cepts. There is thus great variation at this level, but the following
general concepts apply:

• Ideally, a composition tool should provide composition
capabilities that are convenient and easy to understand.
It need not necessarily provide the full flexibility of the
lower levels, which are intended to be able to support
multiple paradigms.

• Concerns should be first-class elements in composition
specifications.

o In general, obtaining container spaces needed
for the lower levels of composition from con-
cerns requires extraction, as noted earlier.

• For full integration with concern modeling, the compo-
sition specifications should be expressed as composition
relationships between elements of the concern model.

• The composition specifications supported by the tool
should be compiled down to the directives offered by
the reusable composition component.

• Dynamic residues are handled at the tool level, since
their details are paradigm-specific. The tool should gen-
erate methods that perform the desired runtime tests or
other activities, together with directives causing the
composition component to include them where appro-
priate.

• An attribute rewriting system, capable of transforming
attributes of high-level composition specifications to
those of mid-level weaving directives can provide some
generic support for implementing diverse composition
paradigms. The transformation is based on rules that
(partially) define the paradigm.

3. CONCLUSION
This abstract described a number of principles and key concepts
of concern manipulation. They were used in the design and im-
plementation of the CME, but validation is limited due to the

limited number of tools built on the CME and limited experience
obtained with them.
Follow-on research is an open area, including: validation and
improvement of these concepts, exploration of alternatives and of
design and implementation details, implementation of varied
AOSD paradigms in terms of them, and exploration of new issues,
such as handling of concerns containing artifacts that are ver-
sioned in an SCM system.

4. ACKNOWLEDGMENTS
The principles and concepts listed here were the product of joint
work with Bill Harrison and Peri Tarr. Many of them derive from
earlier work, by us or others. The CME was designed and imple-
mented by a joint team from the IBM T.J. Watson Research Cen-
ter and IBM Hursley Park. People involved at various stages of
the project were: Matthew Chapman, Bill Chung, Andrew Clem-
ent, Adrian Colyer, Bill Harrison, Helen Hawkins, Sian January,
Vincent Kruskal, Harold Ossher, Tova Roth, Stanley Sutton, Peri
Tarr, and Frank Tip,

5. REFERENCES
This abstract refers only to our own detailed publications about
the CME and the underlying concepts. Discussion of and refer-
ences to related work can be found in each of them.
[1] CME web site: http://sourceforge.net/projects/cme/.
[2] William Harrison, Vincent Kruskal, Harold Ossher, Peri Tarr

and Frank Tip, “Common Low-Level Support for Composi-

tion and Weaving.” OOPSLA ’02 Workshop on Tools for
Aspect-Oriented Software Development.

[3] William Harrison and Harold Ossher, “Member-Group Rela-
tionships Among Objects.” AOSD ’02 Workshop on Founda-
tions Of Aspect-Oriented Languages (FOAL).

[4] William Harrison, Harold Ossher, Stanley M. Sutton Jr., and
Peri Tarr, “Concern Modeling in the Concern Manipulation
Environment,” ICSE ’05 workshop on Modeling and Analy-
sis of Concerns in Software (MACS ’05).

[5] W. Harrison, H. Ossher, S. Sutton, P. Tarr, “The Concern
Manipulation Environment – Supporting Aspect-Oriented
Software Development.” IBM Systems Journal 44(2): 309--
318, 2005, special issue on Open Source Software.

[6] William Harrison, Harold Ossher and Peri Tarr, “Asymmet-
rically vs. Symmetrically Organized Paradigms for Software
Composition.” Research Report RC22685, IBM Thomas J.
Watson Research Center, Yorktown Heights, NY, December,
2002.

[7] William Harrison, Harold Ossher and Peri Tarr, “General
Composition of Software Artifacts.” In Proceedings of the
5th International Symposium on Software Composition (SC
’06), March 2006, Springer, LNCS 4089.

[8] Peri Tarr, William Harrison, and Harold Ossher, “Pervasive
Query Support in the Concern Manipulation Environment.”
IBM Research Report RC23343, 2005.

