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ABSTRACT
An extended specification for aspects, and a new verifica-
tion method based on model checking are used to establish
the correctness of strongly-invasive aspects, independently
of any particular base program to which they may be wo-
ven. Such aspects can change the underlying base program
variables to new states, and after the aspect advice has com-
pleted, the base program code continues from states that
were previously unreachable. The needed changes in the
MAVEN model checker are described, and the soundness of
the verification method is proven. An example is shown of
its application to aspects that provide various bonus points
to student grading programs.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Model Checking ; F.3.1 [Logics and Meanings of
Programs]: Specifying and Verifying and Reasoning about
Programs

General Terms
Verification, languages

Keywords
Aspects, model-checking, specification, modularity

1. INTRODUCTION
Several works have dealt with model checking of aspect

systems [8, 12, 5, 4, 9, 6]. These works either treat a sys-
tem with aspects woven in, or try to deal with the aspects
modularly, relative to a specification. In the later case, the
motivation is either to reduce the size of the models, or to
allow convenient reuse of aspects in a library. Such an ap-
proach requires that the aspect itself have an independent
specification that can be shown to hold. In one form or an-
other, the specification of an aspect describes an assumption
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about any base system to which the aspect can be woven,
and a guarantee about the resultant system after the aspect
is woven. The aspects are shown correct relative to their
specification, and not to interfere with each other [6], and
then, for each system to be constructed with the aspects,
the base system is shown to satisfy the assumptions of the
needed aspects. The construction of a model of the entire
concrete woven system (which might be considerably larger
than either of those used in the modular verification) and
its direct verification do not have to be carried out at all.

So far, when aspects are treated separately from a specific
weaving, it has been necessary to add a restriction: that the
aspect returns control to the base system in a state that al-
ready existed for some computation of the base system with-
out the aspect woven into it. Such aspects are called weakly
invasive in [7], where the other categories of aspects men-
tioned in this paper are also defined. The reasoning behind
the restriction is easy to understand: the aspect’s assump-
tion about the base system only relates to those computation
sequences and states (known as reachable states) that can
occur for some fair execution of the base system without the
aspect. When an aspect returns control to the base system
code, but in a state of the base variables that does not occur
for any computation of the base system that begins from a
”normal” initial state, there is no restriction on the behavior
of the continuation. Instructions from the base code are ex-
ecuted, but with values that were never expected or tested,
and with no restriction on the outcome. Thus the overall
behavior of such a system is hard to analyze in a modular
manner, separating the reasoning about the base from the
reasoning about the aspects to be woven. In such cases,
modular reasoning was thought unfeasible.

On the one hand, this restriction still allowed treating
most aspects. Several kinds of aspects, including specta-
tive ones that merely gather information, and regulative
ones that merely restrict possible steps, are weakly invasive.
Moreover, often the category of such aspects can be iden-
tified using dataflow techniques, as described in [7, 11, 13],
and many commonly used aspect examples are weakly in-
vasive. Nevertheless, there are other aspects that definitely
are strongly invasive, and that occur in real applications, so
that a more complete approach is desirable.

In this paper we show that such a restriction is unneces-
sary, and that a modular approach can be realized even for
so-called strongly invasive aspects that do return control to
the base system in new states that were unreachable in the
base system executing alone. To do this, we take advan-
tage of the usual organization of model checkers for linear



time systems, and of the facilities they commonly provide.
An extension of the MAVEN aspect verification system is
presented, that can treat strongly invasive aspects, and an
example of a bonus aspect for student grades is described.

The basic idea of the new approach is to add to the speci-
fication an assumption about the base system that restricts
the computation segments that may become reachable after
a strongly invasive aspect is woven. We then show once-and-
for-all that when the aspect is woven into any base system
with a reachable part that satisfies the previous type of as-
sumption and an unreachable part that satisfies the added
one, the result of the weaving will satisfy the guarantee. For
a particular base system, we then have to show that the as-
sumptions are true for both the reachable and unreachable
parts (or at least the unreachable part that may become
reachable after weaving). These tasks are made feasible due
to the fact that many model checkers actually generate a
state transition system that includes the unreachable parts
of the computation, as a side-effect of the construction, and
that marking the reachable states is a built-in operation.

The original MAVEN system [4], over NuSMV [1], builds a
single model that can be checked to establish the correctness
of a weakly-invasive aspect relative to its assume-guarantee
specification, given in Linear Temporal Logic (LTL). (In the
examples in this paper we use only the LTL modalities G p -
for “from now on, p”, F p - for “eventually, p”, and p U q - for
“p is true until q becomes true”). The tableau state machine
of the assumption is built using a module of NuSMV, and
then the transition system of the aspect advice is woven
into it, with pointcuts defining transitions to the beginning
of advice state machine fragments, and with transitions back
to the states of the base system that match the end states
of the advice segments. It is then proven that whenever
this particular model satisfies the guarantee assertion, then
a woven system with any base satisfying the assumption,
and the model corresponding to the aspect woven into it,
satisfies the guarantee.

In the following section, precise definitions of the terms
involved are presented, the theory behind the verification al-
gorithm is described, and a proof of soundness is given, that
extends the one given for the simpler MAVEN system. In
Section 3 algorithms are given for computing the last states
of the aspect, for determining the category of the aspect,
for verifying the aspect, and for checking the base system
for the needed assumptions. In Section 4 the specification
and verification of an aspect for adding bonus points for stu-
dent exercises and exams is described, and some concluding
remarks are in Section 5.

2. VERIFICATION THEORY FOR STRONGLY
INVASIVE ASPECTS

Definition 1. An aspect A is strongly invasive relative
to a model M if a state of M that was unreachable in M
becomes reachable in the woven system M+A and transitions
of M are applied to it.

The last part of the definition is needed to ensure that the
aspect advice (sometimes) finishes in a state of M that was
previously unreachable, and then the code of M is applied
to the new state.

2.1 Refined Aspect Specification

The assumption of a strongly invasive aspect has to con-
tain more information than the assumption of a weakly in-
vasive one: it sometimes needs to define restrictions on the
behavior of the unreachable part of the base system into
which the aspect can be woven, in order to ensure an ap-
propriate behavior of the woven system from the states that
are made reachable by the strongly invasive aspect.

The specification of aspect A is now a triple: (PA, UA, RA),
where, as before (in [4]), PA is the assumption about the
reachable part of the base system and RA is the result as-
sertion guaranteed to hold in the woven base with the aspect.
The new UA statement is an LTL formula defining the re-
strictions on the unreachable part of the base system which
is made reachable by completing an aspect advice fragment.
The restriction is posed on computations of the base system
that start in the states that might be reached by completing
the aspect advice, which were previously unreachable. We
now may define the correctness of an aspect relative to such a
specification, relating to a base system S = Sreach∪Sunreach

where Sreach represents the reachable part, and Sunreach the
unreachable part.

Definition 2. An aspect A is correct with respect to its
refined assume-guarantee specification (PA, UA, RA) if, when-
ever it is woven (by itself) into a system S = Sreach ∪
Sunreach, where Sreach satisfies PA and the part of Sunreach

that might become reachable after weaving satisfies UA, the
result will satisfy the guarantee, RA.

The property of the unreachable part of the system is
relevant only for computation segments starting from a state
that can be the last state of an advice execution. The reason
is that only by an advice execution can a computation of the
woven system pass from a state that was reachable in the
base system to a state which was unreachable in the base
system. Thus in order to check that the unreachable part
of the base system satisfies the requirements of the aspect,
it is enough to verify a formula of the form LA → UA on
it, where LA is a state formula describing the set of all the
possible last states of the advice state machine, projected
on the base system variables.

With some abuse of notation, we denote by LA the set of
possible last states of aspect A (identifying the unary pred-
icate with the set it describes). Note that this set consists
exactly of all the states in the base system into which a
computation can arrive after finishing advice execution.

2.2 Refined Tableau Construction
Given an aspect A and its refined specification, (PA, UA, RA),

we need to construct a refined tableau to serve as a repre-
sentation of all the base systems into which our aspect will
possibly be woven. But now in order to build the tableau
of the assumption of the aspect, it is not enough to build
the tableau of PA: we need to restrict the unreachable part
of the tableau. The tableau needs to represent the systems,
the reachable part of which satisfies PA, and the unreachable
part of which satisfies LA → UA, where LA is the predicate
defining the set of all the possible return states of the advice.
The refined tableau, T , is constructed in three steps:

Step 1: Automatically construct the predicate LA. The
construction is shown in Section 3.1.

Step 2: Use the ltl2smv module of the NuSMV model
checker to build the tableau T1 of the LTL formula (PA ∨
(LA ∧ UA)).



Step 3: Take the tableau T to be the same as T1 ex-
cept for the initial states definition. To obtain the INIT
predicate of T , restrict the INIT predicate of T1 to include
only states that should be reachable in the base system:
INIT ∧ PA.

Note that T1 is the tableau of (PA∨(LA∧UA)) and not of
(PA ∨ (LA → UA)), because the only way to reach the part
of the base system that does not satisfy PA is by application
of an aspect advice, and this will bring the computation to a
state in which LA must hold. This intuition will be justified
during the proof of Theorem 1.

Let us denote the refined tableau constructed as above by
T(PA,(UA,LA)).

Theorem 1. Let A be an aspect with the refined assume-
guarantee specification (PA, UA, RA), and let LA be a for-
mula describing the set of all the possible last states of A.
Then A is correct with respect to (PA, UA, RA) if the result
of weaving A into T(PA,(UA,LA)) satisfies RA.

We delay the proof of the theorem until after bringing
some helpful definitions and lemmas needed for the proof.
They appear below, together with the intuition for the proof.

In order to prove the theorem we need to show that if
the result of weaving A into T(PA,(UA,LA)) satisfies RA, then
for every base system M such that its reachable part sat-
isfies PA and the unreachable part satisfies LA → UA, the
result of weaving A into M satisfies RA. For this purpose
it is enough to show that for every infinite fair path σ in
the woven system M + A there exists a corresponding in-
finite fair path π in the woven tableau, T(PA,(UA,LA)) + A,
such that label(σ) |AP = label(π) |AP . (Where AP is the
set of all the atomic propositions appearing in the specifi-
cation of A, a label of a state s, label(s), is the set of all
the atomic predicates that hold at the state s, and a la-
bel of a path τ , label(τ), is defined to be the sequence of
the labels of the states of τ , so that if τ = s0, s1, s2, . . .,
label(τ) = (label(s0), label(s1), label(s2), . . .)). In that case
indeed in order to prove that every path in the woven sys-
tem satisfies RA, it is enough to show that every path in the
woven tableau satisfies this property.

To simplify the notation, let us denote T(PA,(UA,LA)) by
T. The task of finding a fair path in T +A that corresponds
to the given fair path of M + A will be divided into steps
according to prefixes of σ, and at each step a longer prefix
will be treated. The following lemma will help to extend the
treated prefixes:

Lemma 1. Let S be a system, and let s0, . . . , sk be states
in S such that s0 and sk are reachable by a fair path from
some initial state of S (the paths and the initial states for s0

and sk might be different), and for each 0 ≤ j < k, the tran-
sition (sj , sj+1) exists in S. Then there exists a fair compu-
tation in S which contains the sequence of states s0, . . . , sk.

Proof.
A computation is fair if it visits states from the Fairness set
of the system model infinitely often. Let π0 and πk be fair
computations in S in which s0 and sk occur, respectively.
Then π0 = σ0 · s0 · . . ., and
πk = . . . · sk · σk for some σ0 and σk. Let us take
π = σ0 · s0 · s1 · . . . · sk · σk. This is obviously a path in S,
and it starts from an initial state, as did σ0. Moreover, π is
a fair computation, because it has the same infinite suffix,

σk, as the fair computation πk.
Q. E. D.(Lemma 1)

The following definition will be useful for identifying the
“interesting” prefixes of the path σ:

Definition 3. Any infinite path π in a transition system
can be represented as a sequence of path segments -
π = π0 · π1 · . . ., where each path segment πi is a sequence
of states such that:

• If i = 0, the first state of πi is the initial state of π

• If i > 0, the first state of πi is either an initial state of
an advice or a resumption state of the base system (i.e.,
a state in the base system into which the computation
arrives after an advice execution is finished)

• The last state of πi is either a pointcut state or a last
state of an advice (after which the computation returns
to the base system), or the last state of the path, if π
is finite

• There are no pointcut states and no last states of advice
inside πi (i.e., in the states of π that are not the first
or the last state)

• π is the concatenation of the path segments of π in the
order of their indices

Note that the decomposition of a path to path segments is
unique, and that, because of loops, there can be resumption
states within a segment. Note also that we could have an
infinite (last) segment - in the reachable part of the base, or
in the unreachable part, or even in the aspect. In our case
all the paths in question are infinite, so the last state of each
finite path segment will be either a pointcut or a last state
of an advice. A resumption state might be unreachable in
the system before weaving - in case of a strongly invasive
aspect.

Now if we are given a path of M+A, σ = σ0 ·σ1 · . . . where
σi-s are the path segments of σ, for each finite prefix of σ
consisting of a number of path segments we define the set of
corresponding path-segment prefixes of fair paths in T+A:

Πi = {π0 · π1 · . . . · πi|
label(π0 · . . . · πi) |AP = label(σ0 · . . . · σi) |AP ,

∃π fair path in T+A such that π = π0 · . . . · πi, . . .}
Each element in Πi is a prefix of an infinite fair computation
of T + A corresponding to the i-th prefix of σ, thus the
following lemma will show that for every finite prefix of σ
there exists a corresponding prefix of a fair computation in
T + A:

Lemma 2. Given a fair computation σ of M+A, and sets
of prefixes Πi-s as defined above, ∀i ≥ 0.Πi 6= ∅.

Proof.
The proof is by induction on i.

Base: i = 0.
To show that Π0 is not empty we need to show the exis-

tence of π0 such that label(π0) |AP = label(σ0) |AP and π0



is a prefix of some fair path π in T+A. σ0 is the first path-
segment of a fair path in M+A, thus there is no advice appli-
cation before σ0 or inside it. So σ0 is also the first path seg-
ment of a fair computation in M . According to the assump-
tion on M , M |= PA, thus for every fair path starting from
an initial state of M there exists a corresponding fair path in
T . In particular, there exists a fair path π = t0, . . . , tk, . . .
in T such that label(σ0) |AP = label(t0, . . . , tk) |AP . Then
again, as t0, . . . , tk is a beginning of a fair path in T , and
there are no pointcuts in it, except maybe for the last state,
it is also a beginning of a fair computation in T + A. So
let us take π0 = s0, . . . , sk. We are left to show that π0 is
indeed a path-segment, and then it will follow that π0 ∈ Π0,
meaning that Π0 is not empty.

label(t0) = label((σ0)0), thus t0 is an initial state of T +A.
There is no pointcut inside σ0, because it is a path-segment,
so the last state of σ0 cannot be a return state of advice
application, which means that it has to be a pointcut state.
Due to the agreement on labels, the last state of π0 will also
be marked as a pointcut state. For the same reason, there
are no pointcut states among t0, . . . , tk−1, which, in the same
way as for σ0, implies that there are no advice return states
also. Thus both ends of π0 are legal ends of a path-segment,
and there are no pointcut states and no advice return states
inside π0, which makes it, indeed, a legal path-segment.

Induction step.
Let us assume that for every 0 ≤ i < k, Πi 6= ∅. We need

to prove that Πk 6= ∅.
The induction hypothesis holds, in particular, for i = k−1,

thus there exists some prefix π0 · π1 · . . . · πk−1 of a fair
computation of T + A, corresponding to the prefix σ0 · σ1 ·
. . . · σk−1 of M + A’s computation, σ. Let us denote by
s first(i) the first, and by s last(i) the last state of i − th
path-segment of σ (σi), and symmetrically for the states
of path segments of T + A - by t first(i) the first, and by
t last(i) the last state of i− th path-segment. There are two
possibilities for s last(k-1):

1. s last(k-1) is a pointcut. Then t last(k-1) is also a
pointcut, because due to the induction hypothesis
label(s last(k-1)) |AP = label(t last(k-1)) |AP . Then in
every continuation of the computation both in M + A
and in T + A the advice of the aspect will be per-
formed, thus the k-th path-segment will in both cases
be the application of the same advice from the same
state, and the agreement on the labels of the k-th path-
segments will be trivially achieved. Moreover, for the
same reason the existence of an infinite fair path with
the prefix π0 · π1 · . . . · πk−1 implies the existence of an
infinite fair path with the prefix π0 · π1 · . . . · πk, be-
cause every continuation of the first prefix had to be
an advice application. From the above it follows that
in this case Πk 6= ∅.

2. s last(k-1) is a last state of the advice. This, in particu-
lar, implies that s last(k) is a pointcut state, and no ad-
vice has been applied between s last(k-1) and s last(k).
Here are again two possibilities:

• s last(k-1) is a reachable state in M (more pre-
cisely, the state reachable in M is the projection
of s last(k-1) on AP). As no advice is applied
between s last(k-1) and s last(k), we have that

the whole path-segment σk is in the reachable
part of M . Moreover, due to Lemma 1, as both
s last(k-1) and s last(k) are reachable by some fair
paths from some initial states of M, we also have
that there exists a fair computation of M contain-
ing the sequence s last(k-1), s first(k), . . . , s last(k).
All the fair computations of the reachable part of
M are represented in the tableau of PA, which
is exactly the reachable part of T. Thus, in par-
ticular, the above fair path has a corresponding
path in T , and, as there was no pointcut or ad-
vice application inside the sequence s last(k-1),
s first(k), . . . , s last(k), there are also no point-
cuts and advice applications in the corresponding
sequence in the computation of T, and thus there
exists a corresponding sequence of states in T +A,
πk. The first state of πk, t last(k-1), is reachable
from the initial state of T + A by some fair path,
as Πk−1 is not empty. Moreover, all the prefixes of
such fair pathes appear in Πk−1, thus at least one
of them continues to the sequence πk. So indeed
we obtain that there exists a sequence of states
πk corresponding to σk in the woven tableau, for
which a fair continuation exists. We are left to
see that the sequence of states, πk, is indeed a
path segment in the woven tableau computation.
But this is true due to the agreement on labels
of the states, label(πk) |AP = label(σk) |AP : the
path segment σk started from a return state of an
advice, ended by a pointcut, and had no advice
applications in the internal states, so the same is
true for πk and thus πk is a path segment.

• The last case left is that s last(k-1) is unreachable
in M. Additionally, s last(k-1) is the last state of
the advice, thus s first(k) is the return state of
the advice, and also is unreachable in M, because
according to the weaving algorithm
label(s last(k-1)) |AP = label(s first(k)) |AP . From
the fact that s first(k) is unreachable in M, to-
gether with the assumption on the unreachable
part of M, we have that LA → UA holds in the
suffix of any path starting from s first(k). But
from the agreement on labels with s last(k-1) we
also have that s first(k) |= LA. Together we ob-
tain that UA holds in the suffix of any computa-
tion in M starting from s first(k), and, in partic-
ular, for the computation σ′ containing the next
path segment of σ, σk (because there is no advice
application inside σk, all its states are states of
the original system, M - either in the reachable
or the unreachable part). Now let us examine
the states of the woven tableau. The tableau of
LA∧UA is included in the refined tableau T, thus
every computation satisfying UA that starts from
a state satisfying LA is represented in T (though
its initial state might be unreachable before the
aspect is woven into T). Let π′ be a computation
that corresponds to the suffix of σ′ that starts
from s first(k). The first state of π′ agrees on
its label with s first(k), and thus with s last(k-1),
which, according to the induction hypothesis, im-
plies agreement on labels with t last(k-1). Ac-
cording to the weaving algorithm, the last state



of the advice is connected to all the states in
the underlying system with which it agrees on
labels. Thus, in particular, t last(k-1) (which is
the last state of the advice, in the same way as
s last(k-1)), is connected to the first state of π′.
So we can take the first state of π′ to be the first
state of πk. Let us then take πk to be the first
path-segment of π′. It is indeed a path segment
of a fair computation (due to Lemma 1), it is con-
nected to πk−1 and agrees on labels with σk, so
we found what we needed.

Thus, indeed, the set of possible continuations, Πi, is never
empty.
Q. E. D.(Lemma 2)

Theorem 1 proof:.
Now let us return to the proof of Theorem 1. Let us be

given an infinite fair path σ in the woven system M + A.
From Lemma 2 it follows that there exists an infinite path
π in the woven tableau corresponding to the given path σ
- all the prefixes of π appear in the Πi-s above, and due
to the lemma, the Πi-s are all non-empty. So in order to
complete the proof of the theorem we need only to notice
that every path constructed from the prefixes in Πi-s above
is fair, for the following reason: There are two possibilities
for the infinite suffix of π. It either has infinitely many
advice applications, or there exists some infinite suffix in
which no aspect state is visited. If there are infinitely many
advice applications, some state of the advice must be visited
infinitely often, and all the states of the advice are defined
as fair. If there is no advice application after some state,
then there are only a finite number of path segments of π,
and the last path segment is infinite. But, as we know, this
path segment belongs to some fair path in T + A, so this
must be a fair suffix, and so the computation π is indeed
fair. This completes the proof of Theorem 1
Q. E. D.

3. ALGORITHMS

3.1 Computing LA Automatically
Given a model of the aspect, A, in MAVEN format, we

would like to automatically compute the state formula defin-
ing the set of all the possible last states of A’s advice. The
algorithm we propose consists of four steps:

Step 1: Construct a formula ϕ defining the pointcut of
the aspect: take ϕ to be the disjunction of all the POINT-
CUT expressions in A.

Step 2: Run MAVEN on a model A′ which is the same as
A except for a change in the specification. The assumption
of the aspect is replaced by ϕ, and the guarantee of the
aspect is replaced by true. The purpose of this operation is
to obtain a system in which all the possible computations of
the aspect are represented, and this goal is achieved in the
following way:

• At the first step of its work, MAVEN will automati-
cally construct the tableau of the new assumption of
the aspect, ϕ, using the ltl2smv module of NuSMV.
Note that in this tableau, Tϕ, only the initial states
are restricted, and the initial states are exactly all the
possible join-points of the aspect.

• At the second step, MAVEN will perform the weav-
ing of the aspect into the constructed tableau. The
obtained woven system, Tϕ + A, will contain all the
possible computations of the aspect, because the ini-
tial states of the tableau are all the possible pointcut
states that can occur in either reachable or unreach-
able parts of the base systems into which A will be
woven (as the ranges of all the base variables as de-
fined in the aspect model definition are the maximal
possible, and the combinations of variables values are
restricted only by the formula ϕ).

Note that if we added other restrictions on the computations
of the tableau Tϕ, we may not be able to guarantee that
all the possible runs of the advice of A will appear in the
woven tableau. For example, if we demand that the com-
putations of the tableau should satisfy PA, then after the
weaving we would not obtain the runs of the aspect from
the states that were unreachable in the base system. Since
in the unreachable part of the base system which becomes
reachable after the weaving there might be join-points of
A, we have to model the computations of the advice start-
ing from these states. However, there are cases when ad-
ditional restrictions might be posed on the computations of
the tableau built. For example, there might be some invari-
ant that holds both in the reachable and the unreachable
parts of the base system, and then it could be added to ϕ.
Additionally, there might exist an assertion that holds for
all the pointcut states, but is not explicitly written as part
of the pointcut. Then it would be possible to restrict the
initial states of the constructed tableau by this assertion.

Step 3: Take the woven system obtained in Step 2, Tϕ +
A, and use the built in functionality of NuSMV to com-
pute the set of all the reachable states of this model, (Tϕ +
A)reachable. For each of the states in (Tϕ + A)reachable, check
whether it satisfies any of the RETURN conditions of the
aspect. If it does, add it to the set LA.

Step 4: Now LA is the set of all the possible last states of
A. What is left is only to construct the predicate describing
this set. This is done by taking the disjunction of all the
predicates describing the states in LA.

Sometimes it might be easy to see a compact description
of the possible last states of the aspect. For this case we pro-
vide the user a possibility to supply a manually constructed
predicate L. But such a predicate should be checked before
use, because the intuition of the user might be wrong. Then
we use the above algorithm to construct the full LA predi-
cate, and check that the supplied predicate L is implied by
LA. If indeed LA → L holds, the verification using L will
still be sound, because it just might check additional paths,
but no relevant path will be left unverified.

3.2 Determining the Aspect Category
Before applying the full verification technique it is very

desirable to determine the category of the aspect. If the as-
pect is of the weakly invasive category (or a simpler category
included within the weakly invasive one), then the method
described in [4] is applicable to it. Otherwise, the method
described in Section 3.3 should be used.

Some ways of determining the category of the aspect us-
ing code analysis, dataflow techniques and semantic defini-
tions are described in [7, 11, 13, 3]. If none of them gives
a positive answer, the algorithm presented below can help
to determine whether the aspect is uniformly strongly inva-



sive, i.e., is always strongly invasive for every possible base
system to which it can be woven. But first some definitions
and observations are needed:

Remark 2. From Definition 1 in Section 2 it immedi-
ately follows that for any system M in which all the states
not reachable from the initial state by some fair path have
been removed, if an aspect A is strongly invasive relative to
M, there is a deadlock in the system M + A: Let s be a last
state of advice execution such that there exists no reachable
state s′ in M for which label(s′) = label(s) |AP . Then this
state is a deadlock state in the woven system.

Lemma 3. Let aspect A have the specification
(PA, UA, RA), where AP is the set of all the atomic propo-
sitions appearing in the specification and TP denotes the
tableau of PA. Aspect A is strongly invasive with respect
to PA if when A is woven into TP , there exists a state s in
TP + A such that:

• s is the last state of advice execution, and

• there exists no state s′ in TP such that s′ is reachable
by some computation of TP and label(s′) = label(s) |AP

Proof.
Immediate from the above remark.

Definition 4. Given a tableau T of an LTL formula φ,
the tableau TP obtained from T by removing all the states
that are not reachable from the initial state of T by any fair
path (and only them) is called the pruned tableau of φ.

Note that the above defined pruned tableau is equivalent
to a tableau obtained from T by removing all the states and
transitions that only lead to deadlock states.

Lemma 4. Aspect A with the specification (PA, RA) is
strongly invasive relative to PA iff there exists a deadlock
in the system TPA + A, where TPA is the pruned tableau of
PA.

Proof.
The conditions of Remark 2 above hold, in particular, for
M = TPA, so there will be a deadlock state in TPA + A.

On the other hand, if there exists a deadlock in the system
TPA + A, let s be the deadlock state. Let us denote by s′
the state of TPA such that label(s′) = label(s) |AP . There
are two possibilities: If s′ is reachable in TPA, then there
exists some infinite computation π = s′, s2, . . . from s′ in
TPA, because TPA is a pruned tableau. In particular, there
exists a state s2 in TPA (the second state of π) to which s′
is connected. However, in TPA + A the state s is no longer
connected to s2. According to the construction of TPA +A,
the only reason could be that an advice is applied at s. But
if an advice was applied at s, s would not be a deadlock
state. Thus when we assumed that the projection of s on
AP is reachable in TPA we obtained a contradiction. So we
conclude that s′ is unreachable in TPA.

But could s′ still be reachable in TP ? This can only be
if s′ has been removed from TP during the construction of
the pruned tableau. This means that all the paths starting
from s′ led to some deadlock states, and thus s′ couldn’t
be reached by any fair computation of T. But according to
Lemma 3 this exactly means that the aspect A is strongly

invasive relative to its assumption.
Q. E. D.

According to Lemma 4, the following algorithm verifies
whether the given aspect is strongly invasive relative to its
assumption:

1. Construct the pruned tableau TPA from the tableau
of the assumption of A. This is done automatically, by
an iterative procedure that we have added to MAVEN.
The procedure is as follows:

• Run NuSMV to detect deadlock states in the tableau.

• If a deadlock state is detected, construct a predi-
cate describing this state, p

• Rule out the deadlock state: Add the negation of
p to the initial state definition, and to the pred-
icate defining possible next states of the transi-
tions.

Repeat the procedure until there are no more dead-
locks in the tableau.

2. Use MAVEN to weave the aspect into the above con-
structed tableau.

3. Run NuSMV to check whether there are deadlocks in
the woven tableau. If a deadlock is detected, the aspect
is strongly invasive relative to its assumption. Other-
wise, the aspect A is weakly invasive relative to PA.

Note that the algorithm presented here gives a positive
answer only if the aspect is strongly invasive relative to the
tableau of its assumption, but not relative to a concrete base
system. Thus if the algorithm gives a positive answer, the
aspect is strongly invasive relative to all the possible base
systems into which it might be woven. But if the algorithm
gives a negative answer, there might exist a base system sat-
isfying the assumption of the aspect, with respect to which
our aspect is still strongly invasive.

Given a base system S, there is one more way for us to
check whether the given aspect, A, is strongly invasive rela-
tive to this system. Intuitively, what we would like to do is
to look at all the unreachable states of the base system, and
check whether there are last states of our aspect among these
unreachable states. For that purpose we can check satisfia-
bility of the following formula: ϕ = SU∧LA, where SU is the
formula defining the set of all the unreachable states of S,
and LA is the formula defining the set of all the possible last
states of A. ϕ can be constructed automatically: the way to
construct LA automatically is shown in Section 3.1, and the
way to construct SU automatically is shown in Section 3.4.1.
And then the satisfiability of ϕ can be automatically checked
using a SAT solver (such as, for example, Chaff [10]). If ϕ
is found unsatisfiable, it means that there are no last states
of the aspect A in the unreachable part of S, so A has to be
weakly invasive relative to S, and the simpler model check
in [4] can be used. If ϕ is found satisfiable, it doesn’t neces-
sarily imply that A is strongly invasive relative to S, because
the predicate LA is an over-approximation: it contains all
the possible last states of the aspect, but maybe some of
them will never occur in the computations of the woven sys-
tem S+A, and thus will not bring the computation to states
that were unreachable in S. But this over-approximation is
a safe one: if we declare some aspect as strongly invasive



when it is weakly invasive, we will just have to work harder
to prove its correctness than we would if we knew its exact
category, but the verification results will be sound.

3.3 Verifying the Aspect
Given an aspect A and its refined assume-guarantee spec-

ification, (PA, UA, RA), the verification of correctness of A
with respect to (PA, UA, RA) is performed as follows:

1. Construct the refined assumption tableau for A as shown
in Section 2.2 - the T(PA,(UA,LA)).

2. Use MAVEN to weave A into T(PA,(UA,LA)) and to run
the NuSMV model checker on the resulting system and
check the RA property on it.

3.4 Base System Correctness Verification

3.4.1 Non-optimized solution
Given a base system S, we need to verify that it satisfies

the refined assumption of our aspect, (PA, UA):

• Verify that the reachable part of S, Sreach, satisfies PA

• Verify that all the computations starting from the un-
reachable part of S, Sunreach, satisfy LA → UA.

The first verification task can be done by usual model-checking
of S versus PA. The meaning of the second task is as fol-
lows: we need to examine the model of Sunreach and check
all the fair computations that start from states satisfying LA

(note that a computation starting from a state in Sunreach

might return to the reachable part of S at some state). All
these computations should satisfy UA. The verification is
performed in three steps:

1. Automatically compute the state formula SU defining
the set of all the unreachable states of S: SU is the
negation of the formula SR defining all the reachable
states of S, and in NuSMV there exists a possibility to
compute SR automatically for a given system S.

2. In the model of the base system, S, automatically re-
place the initial states definition by the formula SU ∧
LA

3. Run NuSMV on the obtained model and the formula
UA. If the verification succeeds, it means that the
given base system satisfies the restriction on the un-
reachable part.

3.4.2 Optimization
In some cases, the requirement in the second part of the

verification process can be relaxed due to the structure of
UA. For example, in case when UA is some safety property,
i.e., UA has the form G ϕ, we do not have to verify that ϕ
holds all along the computations starting from resumption
states in the unreachable part of the system. We need to
check only the segments between a resumption state and
the next join-point or reachable state. So if we denote by
ptc the predicate defining the pointcut of the aspect, and
by reachable - the predicate defining the reachable states of
the base system, then it is enough to verify the following
formula on the unreachable part of the system: LA → (ϕ U
(reachable ∨ (pointcut ∧ ϕ))). The reason is that when the
computation reaches a join-point, in the woven system the

advice will be executed at that point, so the information
about the possible continuations of the computation in the
base system from that point is useless. And if a computation
leaves the unreachable part and arrives to some previously
reachable state, its continuation will behave as specified by
the assumption of the aspect about the reachable part of the
base system, and all these continuations are already checked
during the reachable part verification.

As an example of the situation described above, we can
take a look at an aspect that is in charge of the scheduling
policy of a semaphore-guarded resource. The purpose of the
aspect is to implement a possibility of a waiting queue for
the semaphore. As a result, the semaphore that could pre-
viously have only values 0 or 1 can now have negative values
(according to the number of waiting processes). Thus the
aspect is indeed strongly invasive. But there is a part of the
system invariant that we need to extend to the unreachable
part of the base system: regardless of the semaphore value
and the concrete scheduling algorithm, we demand that no
two processes hold the guarded resource at the same time.
So if the formula ψ encodes the fact that two processes hold
the resource at the same time, the assumption of the aspect
about the unreachable part of the base system should be
U = G¬ψ. But when verifying the computations starting
in the unreachable part of the base system, it is enough to
check that after each possible last state of the aspect the
computation satisfies ¬ψ until it arrives to a pointcut state
or to a reachable state.

4. EXAMPLE
In this example we discuss an aspect that can be used in

any grades-managing system. The aspect B provides a way
of giving bonus points for assignments and/or exams (thus
making it possible to have assignment/exam grades that are
more than 100), but still keeping the final grade within the
0..100 range.

The aspect has two kinds of pointcuts, and two corre-
sponding pieces of advice. The first pointcut of B is the
moment when an assignment or exam grade is entered to
the system. At this point the original system would accept
only grades between 0 and 100, but the aspect offers a pos-
sibility of giving a bonus on the grade, and stores the new
grade successfully even if it exceeds 100. The second point-
cut of B is the moment when the final grade calculation of
the base system is performed. Then if the calculation re-
sulted in a grade that exceeds 100, the aspect replaces this
grade by 100 (otherwise keeping the grade unchanged).

Aspect B is strongly invasive in the systems into which
it can reasonably be woven, because its operation results in
states in which some grades are more than 100, which is
impossible in the base systems without bonus policies. And
this example, though simple, is still of interest to us, because
the aspect here exhibits a typical behavior we would like to
treat: when it is woven into a system, the calculations there
are performed partly in the aspect, and partly in the base
system code, but using new inputs, that were impossible
before the aspect was woven in.

The specification of B can be formalized as follows:

• The assumption on the reachable part of the base sys-
tem is that all the grades appearing in the grading
system - homework assignment grades (hw i), exam
grades (exam j), final grade (f) - are between 0 and



100, and after the final grade is ready (f ready) (i.e.,
all the assignments and exams that comprise the grade
have been checked, and the final grade has been calcu-
lated from them according to the base system grading
policy), the final grade is published (f published). The
result of the final grade calculation is represented by
calc.

PB = [ G(f ready → ((f = calc) ∧ F f published))

G(f published → f = calc) ∧
G(0 ≤ f ≤ 100) ∧
G(∀1 ≤ i ≤ 10(0 ≤ hw i ≤ 100)) ∧
G(∀1 ≤ j ≤ 2(0 ≤ exam j ≤ 100))]

Here, for modeling purposes, we have to provide some
bounds on the number of assignments and exams, so
we assume that there are no more than 10 home as-
signments and no more than 2 exams in each course.
We also show the specification for the grades of a sin-
gle student (because the grades of different students
are independent, and calculations involving them can
be viewed as orthogonal). When the model of the as-
pect is built, the ranges of all the variables - both the
aspect variables and the relevant base system ones -
are defined. Let us assume, for example, that our as-
pect gives bonuses in range of 0..20 points, then all
the grade variables defined in the model of B are in
the range 0..120.

• The assumption on the unreachable part of the base
system is in our case a weakening of PB . We still want
the final grades to be published after they are ready,
but now the final and the intermediate grades do not
have to be bound by 100, but by 120. So we are left
with the following property:

UB = [ G(f ready → ((f = calc) ∧ F f published)) ∧
G(f published → f = calc) ∧
G(0 ≤ f ≤ 120) ∧
G(∀1 ≤ i ≤ 10(0 ≤ hw i ≤ 120) ∧
G(∀1 ≤ j ≤ 2(0 ≤ exam j ≤ 120))]

• The guarantee of the aspect now is that regardless of
the existence of bonuses on the components of the final
grade, the final grade will be the one calculated by
the base system function, but rounded down to 100 if
needed:

RB = [ G(f published → f = min(calc, 100))]

The guarantee of the aspect might also include a state-
ment about the bonus policy it enforces, saying that
the aspect calculates the bonuses as desired. But to
simplify the discussion, we omit it here.

• The pointcut of the aspect can be formalized using the
following predicates, which define the moments when
the grades are entered into the system: enter hw i for
homework grades, and enter exam j for exam grades.

PointcutB = [(
_
i=1

10
(enter hw i))∨

(enter exam 1) ∨ (enter exam 2)∨
(f ready ∧ (f > 100))]

Let us follow the verification algorithm, applying it to
aspect B. The first step is the refined tableau construction.
It begins with calculating the predicate LB , defining all the
possible last states of B. In our example, we get

LB = [(f ready → ((f = 100) ∧ (calc > 100))) ∧
(¬f published) ∧
∀1 ≤ i ≤ 10(¬enter hw i) ∧
∀1 ≤ j ≤ 2(¬enter exam j) ∧
(0 ≤ f ≤ 120) ∧ (0 ≤ calc ≤ 120) ∧
∀1 ≤ i ≤ 10(0 ≤ hw i ≤ 120) ∧
∀1 ≤ j ≤ 2(0 ≤ exam j ≤ 120)]

And here is the explanation: All the combinations of exams
and assignments grades values in range 0..120 are possible
at the last state of the aspect, because all the grades of
assignments and exams are independent. There is a connec-
tion between the final grade and the other grades, but only
when the final grade is declared to be ready and still is not
published. Then the final grade is equal to the minimum
between the calculated value (calc) and 100. However, as
we do not want to restrict the calculation function of the
base system, we cannot establish this connection, and at
the other states of the computation the value of the final
grade is not restricted (except by its range), so effectively
we have to enable any combination of the final grade value
and the other grades. The values of the other system vari-
ables are restricted as follows: The variables enter hw i and
enter exam j for all i-s and j-s are false, because no grade
is entered by the user at the last state of the advice. The
variable f published is also false, because the aspect does
not publish the grades - even if it was called at the moment
when the final grade was calculated, it just modifies the cal-
culated grade, but does not publish it. Publishing the grades
is done by the base system. The next variable to discuss is
f ready. If the aspect was called at the moment of grades
entering, the variable f ready is false at the join-point. The
final grade is not calculated by the aspect in this case, so
the variable remains false at the last state of the advice.
However, if the aspect was called at a join-point when the
final grade is calculated, the variable f ready is true there
and remains true after the advice finishes its execution. In
this case, as we said earlier, we will also have f = 100 and
calc > 100.

Now after the predicate LB is constructed, the tableau of
the (PB ∨(LB ∧UB)) formula is created, its initial states are
restricted to those satisfying PB (that is, the refined tableau
T(PB ,(UB ,LB)) is built), and then B is woven into the result.
The last part of the verification process is running NuSMV
on the woven tableau in order to check the RB property on
it. And for the above described aspect, with the specifica-
tion given, the verification succeeds, so our algorithm shows
that indeed it is correct with respect to its refined assume-
guarantee specification. Intuitively, the reason for the suc-
cess of the verification is that the base system performs only
some arithmetic operations on the grades the aspect mod-
ifies, and thus we can expect that the result of performing
old operations on the new arguments will be as anticipated,
if only there is no overflow or type declaration problem. (By
a type declaration problem we mean, for example, the case
when the type of the grades variables is defined in the base
code by some typedef to be 0..100, so that larger values



cause a fatal type error.) But the assertion UB ensures that
this will not happen, because UB will not hold for the base
system in case such problems arise.

Note that the aspect does not restrict the grade calcu-
lation process of the base system, so this aspect is highly
reusable, as long as the calculation can handle values greater
than 100 (as seen in UB). Moreover, this aspect can appear
in a library of aspects providing different grading policies:
different types of bonuses for homework assignments, or fac-
tors on the exam grades. All these aspects will have the
same requirements from the base system as B does, so when
some grading system is checked for applicability of one of the
aspects from this library, it is automatically inferred that all
the other aspects from the library are also applicable to this
base system. Thus the grading policy can be changed as
needed at any time, by replacing the applied aspect, with-
out any further checks on the base system.

5. CONCLUSIONS
We have shown that strongly invasive aspects can be spec-

ified and shown correct relative to their specification, inde-
pendently of a particular base system. Moreover, it is rea-
sonable to check the properties needed from the unreachable
part of the base system because the possible transitions of
the base are considered bottom up, independently of the ini-
tial states, thus generating the unreachable part of the base
system as a byproduct of model checking. Strongly inva-
sive aspects typically extend the functionality of the base
system to situations not originally covered. The examples
seen in the paper, of a semaphore with negative values, and
of aspects to give bonus points beyond the normal range,
are typical. Often some invariants true in the base system
alone will no longer hold after weaving such aspects, but
other invariants will continue to hold, and are essential to
the correctness of the woven system.

The verification method presented here is modular, and
thus has an advantage over a straightforward non-modular
verification of a woven system: the possibility of reuse with-
out proof. There are two types of such reuse we see, both of
which are demonstrated by the aspect described in Section 4.
One case is when one and the same aspect is applicable to
different base systems. Then the verification of the advice
versus the assume-guarantee specification is performed only
once, and in order to be able to apply the aspect to a given
base system we need only to perform the base system ver-
ification described in Section 3.4. Another case is when a
library of aspects is given, where all the aspects are built
for the same purpose (like defining some action policy) and
have a common assumption (P, U) about the base system.
Then if we have a base system that satisfies the above as-
sumptions, we can change the policy defined in this system
at any time, by applying different aspects from the library -
one at a time, of course - without any further checks.

When model-checking is used, the size of the verified sys-
tem and of the specification is very important, as it strongly
affects the verification time, and sometimes, if the model
verified is too large, the model-checker can even fail to pro-
vide any answer. For the complexity analysis purpose, we
denote by m the size of the base system model, by a - the
size of the aspect model (|A|), by r - the size of all the formu-
las in A’s specification (assuming, without loss of generality,
that all the formulas used in verification - PA, UA, RA - are
approximately of the same size). When a formula of size

k is verified on a model of size m, the space complexity of
the model checking is O(m · 2k) ( [2]). Thus the complex-
ity of a straightforward verification of the woven system is
O(2r · (m · a)), because a system of size m is verified against
a formula of size r (the guarantee of A, in this case). Let us
find the complexity of the modular verification method. It
is the sum of the following components:

• The verification of the base system. It is of O(2r ·m) for
the reachable part, and the same for the unreachable
part, so together we obtain 2 ·O(2r ·m) = O(2r ·m)

• Verification of the aspect. Here, first the refined as-
sumption tableau is constructed, T(PA,(UA,LA)). The

complexity of this step is O(22r) (Note that LA is al-
ways a state formula, and thus does not increase the
complexity.) Then the woven tableau is built, and we
obtain a system of size O(22r ·a). At the last step, the
woven tableau is verified against the guarantee of A,
RA, and this requires complexity of O(2r · (22r · a))

The total complexity thus is O(2r ·(22r ·a)) + O(2r ·m). But
the size of the base system model is usually very large, so
m ≥ 22r, and thus the complexity of our verification is usu-
ally not worse than that of the straightforward woven system
check. Even when this is not the case, the possibilities for
reuse make the modular approach preferable.
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