
Aspect Oriented Programming: a language for
2-categories

Nicolas Tabareau
INRIA

École des Mines de Nantes, France

ABSTRACT
Aspect-Oriented Programming (AOP) started ten years ago
with the remark that modularization of so-called crosscut-
ting functionalities is a fundamental problem for the engi-
neering of large-scale applications. Originating at Xerox
PARC, this observation has sparked the development of a
new style of programming featured that is gradually gain-
ing traction, as it is the case for the related concept of
code injection, in the guise of frameworks such as Swing
and Google Guice. However, AOP lacks theoretical founda-
tions to clarify this new idea. This paper proposes to put
a bridge between AOP and the notion of 2-category to en-
hance the conceptual understanding of AOP. Starting from
the connection between the λ-calculus and the theory of cat-
egories, we propose to see an aspect as a morphism between
morphisms—that is as a program that transforms the exe-
cution of a program. To make this connection precise, we
develop an advised λ-calculus that provides an internal lan-
guage for 2-categories and show how it can be used as a
base for the definition of the weaving mechanism of a real-
istic functional AOP language, called MinAML.

Categories and Subject Descriptors
F.3.2 [Semantics of Programming Languages]: Alge-
braic approaches to semantics

General Terms
Languages, Theory, design

Keywords
AOP, 2-category

1. INTRODUCTION

Aspect-Oriented Programming. Aspect-Oriented Pro-
gramming (AOP) [5] promotes better separation of concerns
in software systems by introducing aspects for the modular
implementation of crosscutting concerns. Indeed, AOP pro-
vides the facility to intercept the flow of control in an ap-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOAL’11, March 21, 2011, Pernambuco, Brazil.
Copyright 2011 ACM 978-1-4503-0644-7/11/03 ...$10.00.

plication and perform new computations. In this approach,
computation at certain execution points, called join points,
may be intercepted by a particular condition, called point-
cut, and modified by a piece of code, called advice, which
is triggered only when the runtime context at a join point
meets the conditions specified by a pointcut. Using aspects,
modularity and adaptability of software systems can be en-
hanced. In the AOP terminology, the algorithm that con-
trols which aspects can be executed at each join point is
called a weaving algorithm.
Much of the research on aspect-oriented programming has

focused on applying aspects in various problem domains and
on integration of aspects into full-scale programming lan-
guages such as Java. However, aspects are very powerful and
the development of a weaving mechanism becomes rapidly
a very complex task. While some research efforts [4, 15, 16]
have made significant progress on understanding some of the
semantic issues involved, the algebraic explanation of aspect
features has never reached the beauty and simplicity of the
connection between the λ-calculus and Cartesian closed cat-
egories. We believe that this is the main reason why AOP
never found its place in theoretical computer science fields.
Giving a precise meaning to aspects in AOP is a fairly

complicated task because the definition of a single piece of
code can have a very rich interaction with the rest of the
program, an interaction whose effect can come up at anytime
during the execution. The main purpose of this paper is
to formalize this interaction. Namely, we propose to put a
bridge between AOP and the notion of 2-category. Starting
from the connection between the λ-calculus and category
theory, we propose to see an aspect as a 2-cell, that is as a
morphism between morphisms. In the programming point
of view, this means that an aspect can be seen as a program
which transforms the execution of programs.
In this perspective, a weaving algorithm that defines the

interaction of a collection of aspects with a given program
will be understood as the computation of a normal form in
the underlying 2-category of interest. Thus, an algorithm
that is usually defined by hand and described coarsely in
AOP systems becomes here a basic notion of rewriting the-
ory. The definition of an internal language for Cartesian
closed 2-category (2-CCC) will be the keystone of this pa-
per, the basis to give a precise meaning to the possible in-
teractions of a single aspect with the rest of the code.

λ-calculus and Cartesian closed categories. Category
theory and programming languages are closely related. It
is now folklore that the typed λ-calculus is the internal lan-



guage of Cartesian closed categories. Recall that Cartesian
closed categories are categories equipped with a Cartesian
product and such that each hom-set can naturally be seen as
an object of the category (e.g. in the category Set of sets and
functions, functions between two sets A and B form again
a set). In this paradigm, objects of the category correspond
to types in the typed λ-calculus and morphisms between ob-
jects A and B of the category correspond to λ-terms of type
B with (exactly) one free variable of type A. The composi-
tion of morphisms corresponds to substitution, a notion that
is at the heart of β-reduction—the fundamental rule of the
λ-calculus.

This interpretation of the λ-calculus started in the early
80’s from the work of John Lambek and Philip Scott [7, 8,
11]. Soon later, Robert Seely proposed a 2-categorical inter-
pretation of the λ-calculus [12] where β-reduction constructs
2-cells between terms and their β-reduced version. This per-
spective is in line with the thought that 2-cells can be seen
as rewriting rules between morphisms (or terms). This idea
has been pushed further by Barnaby Hilken in [2] where he
developed a 2-dimensional λ-calculus that corresponds to
the free 2-category with lax exponentials.

Recall that a 2-category C is basically a category in which
the class C(A,B) of morphisms between any objects A and
B is itself a category. In other words, a 2-category is a
category in which there exists morphisms

f : A → B

between objects , and also morphisms

α : f ⇒ g

between morphisms. The morphisms f : A → B are called
1-cells and the morphisms α : f ⇒ g are called 2-cells.

Seely’s interpretation shows how typed λ-calculus can nat-
urally be viewed as a 2-category. In this paper, we define
an advised λ-calculus extending the typed λ-calculus with
2-dimensional primitives that enable to describe any 2-cell
of a 2-CCC. Those additional primitives construct a kind of
2-dimensional terms that we will (by extension) call aspects.
The resulting language, called λ2-calculus, defines an inter-
nal language for Cartesian closed 2-category and will be the
base of our explanation of aspects in AOP.

AOP and 2-categories. The keystone of this paper is to
consider aspects in AOP as 2-cells in a 2-category just as
functions (more precisely λ-terms) are interpreted as mor-
phisms in a category. But this simple idea raises interesting
and difficult issues:

• What is the good notion of variables at a 2-dimensional
level?

• What is the extended notion of β-reduction?

• How to describe vertical and horizontal composition of
a 2-category in the language of typed λ-calculi?

Once this effort to develop an internal language for Carte-
sian closed 2-categories has been done, it becomes simpler
to describe the interaction of an aspect with the rest of a
program. Indeed, the 2-dimensional constructors of the λ2-
calculus enable to faithfully describe all situations in which
an aspect can be applied to a given program.

Let us anticipate on the description of the λ2-calculus to
give an example straightaway. Suppose that we have defined

an aspect

α : sqrt ⇒ sqrt ◦ abs

which rewrites all calls to a square root function to ensure
that inputs are non-negative. This aspect can be seen as
a piece of advice whose pointcut intercepts the square root
function and proceeds with the absolute value of the original
argument of the function. The effect of α on the program

p = λx. sqrt(sqrt(x))

will be described by the composed 2-cell

β = λX. α ◦ α ◦X : p ⇒ p′

that transforms the program p into the program

p′ = λx. sqrt(abs(sqrt(abs(x)))).

The aspect β is automatically generated from the aspect α
and constructors of the λ2-calculus. Note that one could
argue that this violates one of the primary design goals of
AOP, which is to allow separation of cross-cutting concerns.
Indeed, each aspect is monomorphic in the sense that the
aspect β in the example above is specific to the program
p. It could seem unfortunate as an important goal of AOP
languages is that the aspect may be oblivious to the tar-
get program – in 2-categorical/λ-calculus terms what seems
needed is naturality/parametricity in the scaffolding. How-
ever, this is not the point of view adopted in the λ2-calculus.
The idea is that a single definition of the aspect α above will
generate all the possible combinations of this aspect with 2-
dimensional primitives of the language and other constant
aspects.
Of course, existing AOP languages do not look like the

λ2-calculus so we show how programs of a simple functional
language with aspects, introduced by David Walker and col-
leagues in [15] and called MinAML, can be translated into
the λ2-calculus. As claimed above, the semantics of such
programs is provided by a weaving algorithm that corre-
sponds to the computation of a normal form in the under-
lying 2-category.
At the end of this article, we explain how this algebraic

account of AOP can drive the definition of aspects in more
powerful languages extended with references, exceptions or
any programming primitives that are well-understood in cat-
egory theory. This could be done by using a 2-categorical
version of computational monads introduced by Eugenio
Moggi [10]—and used for example in Haskell—to extend the
λ2-calculus smoothly. This 2-categorical extension can be
seen as a particular case of the recent work of Martin Hy-
land, Gordon Plotkin and John Power on enriched Lawvere
theories [3].
Note that the work of Kovalyov [6] on modeling aspects by

category theory is in accordance with the school of category
theory for software design. In this paper, category theory
is used as a foundational model for programming languages,
which is a completely different line of work.
A full version of this article [13] is available.

2. THE λ2-CALCULUS

2.1 Types, terms and aspects
The grammar of the λ2-calculus generated by a set of

sort names S is presented in Figure 1. The sets of types



types A ::= S | Unit | A×B | A → B

terms t ::= f | x | skip | λx. t | t(t) | 〈t, t〉 | πi(t)

aspects α ::= a | X | asp. t '→ t′ | α ∗ α | α ◦ α | 〈α,α〉 | λX. α

Figure 1: The grammar of λ2-calculus

and terms is closed under the traditional λ-calculus oper-
ations. For the second dimension, we construct a set of
aspects which transform terms into other terms. An aspect
α that transforms the term t of type A into the term t′ of
type A will be noted

α : (t ⇒ t′) :: A

For every type A, we suppose given a denumerable set of
variables x, . . . that induces a denumerable set of 2-variables

X : (x ⇒ x) :: A

All the constructions for pairing, abstraction and horizontal
composition are extended to aspects and there is a notion
of vertical composition α ∗ β which means that the trans-
formations performed by α and β are applied successively.
We use the word “free” and “bound” in the usual sense for a
2-dimensional variable X in an aspect α. The main aspect
forming operation

asp. t '→ t′ : (t ⇒ t′) :: A

defines an aspect that transforms a closed term t of type A
into another closed term t′ of type A. It is crucial in the
construction that the two terms are closed. Indeed, we do
not accept aspects of the form

asp. x '→ y : (x ⇒ y) :: A

where x and y are variables. Such an aspect would transform
any term of type A into any term of type A.

We require that the class of aspects is closed under all
aspect-forming operations except for the aspect asp. t '→ t′

which must always exist only for identity aspects on constant
terms, that is when t′ = t is a constant term.

Note that there may be additional types (S), constant
terms (f) and constant aspects (a) in the language. As for
the asp. constructor, constant aspects must be defined on
closed typed terms.

2.2 Typing rules
The typing rules of the λ2-calculus are given in Figure 2.

Terms are typed in the presence of a context Γ that stipu-
lates the type of variables while aspects are typed in the pres-
ence of a context ∆ that stipulates the type of 2-variables.
The rules for terms are the standard rules for the λ-calculus.

Rule 2-Abstraction and Rule 2-Pairing are the higher
order version of closure and product in the calculus. Rule
2-Application and Rule Vertical-composition are the
reminiscence of the corresponding 2-categorical compositions.
Observe that RuleVertical-composition expects the same
term t2 at the common boundary of α and β.

Rule 2-Variable introduces a 2-variable in the context∆.
Rule Aspect checks that an aspect asp. t '→ t′ transforms a
closed typed term t into another closed term t′ of the same
type.

Additional constant terms and aspects of the language are
given with their specific typing rules. Equations between

terms and between aspects, together with properties of the
calculus are given in the long version [13].

3. CARTESIAN CLOSED 2-CATEGORIES
AND THE λ2-CALCULUS

The definition above leaves a lot of freedom. There are
many λ2-calculus. As it is the case for the traditional λ-
calculus, one can think of the λ2-calculus as the λ2-calculus
freely generated by a given set S of sort names, with no
additional type, term, aspect or equation. But there are
many more λ2-calculi, as many as 2-categories as stated by
the following proposition (details can be found in [13].

Proposition 1. The λ2-calculus is the internal language
of Cartesian closed 2-categories.

Using the correspondence between the λ2-calculus and 2-
CCCs, we can now define a weaving algorithm in terms of
categorical rewriting.
As sketched in the introduction, given a term t(x) : B of

a λ2-calculus L where x is of type A, we will consider all
the possible interactions of the (constant) aspects defined
in L with t(x) by considering the category C(L)(A,B) of
the 2-CCC C(L) associated to L. This category contains
all aspects that transform terms of type A → B and so the
execution of an aspect corresponds to the application of a
morphism in that category. Thus, the result of the weaving
algorithm is given by the normal form of the image of t(x)
in that category.

Woven(t(x)) = {(t′(x),α) | (x, t(x)) α−→ (x, t′(x))
is a maximal reduction in the category C(L)(A,B)}

Of course, such a normal form has no reason to be unique
or even to exist.

Uniqueness of the normal form. Observe that all the
work on aspect composition can be understood as a way to
combine aspects while conserving uniqueness of the defini-
tion of the woven program. For example, when multiple
pieces of advice can be applied at the same join point in
AspectJ, precedence orders are (arbitrarily) defined, based
on the order in which definitions of pieces of advice syntac-
tically appear in the code. More algebraic approaches have
been proposed (see eg. [9]).

Existence of a normal form. The absence of a normal
form is often understood as a circularity in the application
of aspects. This problem is difficult to overcome and can
arise even in simple programs. For instance, the work of
Eric Tanter on execution levels is precisely a way to intro-
duce a hierarchy in the application of aspects and thus to
avoid basic circular definition [14]. Other lines of work have
proposed to restrict the power of pieces of advice (for exam-
ple using a typing system [1]) in order to guarantee that the
execution of the program is not critically perturbed.



Variable

Γ, x : A * x : A

Abstraction
Γ, x : A * t : B

Γ * λx. t : A → B

Application
Γ * t : A → B Γ * u : A

Γ * t(u) : B

Bottom

Γ * skip : Unit

Pairing
Γ * t : A Γ * t′ : B

Γ * 〈t, t′〉 : A×B

Projection

Γ * πA1,A2
i : A1 ×A2 → Ai

2-Variable

∆, X : (x ⇒ x) :: A * X : (x ⇒ x) :: A

Aspect
* t : A * t′ : A

∆ * asp. t '→ t′ : (t ⇒ t′) :: A

2-Pairing
∆ * α : (t ⇒ t′) :: A ∆ * β : (u ⇒ u′) :: B

∆ * 〈α,β〉 : (〈t, u〉 ⇒ 〈t′, u′〉) :: A×B

2-Abstraction
∆, X : (x ⇒ x) :: A * α : (t ⇒ t′) :: B

∆ * λX. α : (λx. t ⇒ λx. t′) :: A → B

2-Application
∆ * β : (t ⇒ t′) :: A → B ∆ * α : (u ⇒ u′) :: A

∆ * β ◦ α : (t(u) ⇒ t′(u′)) :: B

Vertical-composition
∆ * α : (t1 ⇒ t2) :: A ∆ * β : (t2 ⇒ t3) :: A

∆ * α ∗ β : (t1 ⇒ t3) :: A

Figure 2: Typing rules of the λ2-calculus

4. MinAML
This section gives the semantics of a concrete AOP lan-

guage called MinAML by a translation to the λ2-calculus.
More precisely, given a program p, we will construct a λ2-
calculus λp, whose underlying 2-category defines a rewriting
system from which we can deduce the definition of a weaving
algorithm.
MinAML is a version (without conditionals and before

and after advice) of the language introduced in [15] to give
a first AOP language with a formal semantics. The absence
of before and after advice is unimportant as they can both
be encoded with an around advice.

4.1 Syntax
MinAML is an extension of the λ-calculus with products

in two steps. The first extension is usual: we introduce
declaration names that can be used to define names for terms
of the language with the let constructor

let f = t.

We suppose given a set of declaration names, noted f, g, . . .
The second extension is the introduction of aspects with

the constructor

around f(x) = t

which indicates that at execution, the application of the
function f with argument x is replaced by the term t. Using
the terminology introduced at the beginning of the article,
the term f(x) defines the pointcut of the aspect and the term
t defines its advice.
When declaring pieces of advice, the programmer can

choose either to replace f entirely or to perform some com-
putations interleaved with one (or more) execution of f (pos-
sibly with new arguments) using the keyword proceed.
In the same way, when multiple aspects intercept the same

function f , one must define an order in the weaving mech-
anism. For simplicity, we have decided to choose the order
of declaration in the program.
The grammar of MinAML is fully described in Figure 3.

A program p is constituted of a list of declarations ds, a list
of aspects α and a term t. The fact that there is only a

global scope for aspects in our calculus is enforced by the
stratified structure of a program. The term [ ] stands for
the empty list, [h] stands for the singleton list with element
h and l ! l′ denotes the concatenation of lists.
Typing rules of MinAML are given in the long version of

this article [13].

4.2 Extension to effectful aspects
So far, an aspect of MinAML is always pure. In order

to exploit the full power of the λ2-calculus, we need to add
effectful aspects. We choose here to simply add two con-
stants in the language: a logging function log : Nat → Nat
whose purpose is to be intercepted by the logging aspect
Log asp : (log ⇒ λx. x) :: Nat → Nat. that transforms
log(n) into n and prints n to the screen.

4.3 A simple example
Let us now express in this language the example devel-

oped in the introduction. To make the example richer, we
also define an aspect that applies the function log (before
the function abs) to the argument of sqrt so that the argu-
ment will then be printed out by the aspect Log asp. The
following program of MinAML (where we use some usual
primitives on integers) defines such aspects and run sqrt on
the negative value −4.

P = [let sqrt = λx.
√
x, let abs = λx. |x|] !

[around sqrt(x) = proceed(log(x)),
Log asp,
around sqrt(x) = proceed(abs(x))] !
[sqrt(−4)]

4.4 Weaving on a simple example
MinAML can be translated into the λ2-calculus (see [13]

for details) . Thus, the weaving algorithm can be deduced
from the weaving algorithm described in Section 3.
In this short version, we will just explain its behavior on

the simple program P. The computation can be described
by the following sequence of reductions (where some extra
β-reduction has been performed to make the reading easier):



types A ::= S | Unit | A×B | A → B

terms t ::= x | f | skip | λx. t | t(t) | 〈t, t〉 | πi(t) | proceed(t)
aspects α ::= [ ] | [around f(x) = t] ! α

declarations ds ::= [ ] | [let f = t] ! ds

programs p ::= ds ! α ! t

Figure 3: The grammar of the MinAML

sqrt1(−4)
a1◦id(−4)−−−−−−→ sqrt2(log(−4))
id(sqrt2)◦Log asp◦id(−4)−−−−−−−−−−−−−−−−−→ sqrt2((λx. x)(−4))

= sqrt2(−4)
a2◦id(−4)−−−−−−→ sqrt3(abs1(−4))
a3◦id(abs1(−4))−−−−−−−−−−→

√
abs1(−4)

id(
√

−)◦a4◦id(−4)−−−−−−−−−−−−→
√

|− 4| = 2

Observe the particular kind of parametricity describes in
the introduction. Indeed, a single definition of the aspect
Log asp generates all the possible combinations of that as-
pect with 2-dimensional primitives of the language, and in
particular the aspect

id(sqrt2) ◦ Log asp ◦ id(−4)

used in the computation of the weaving for sqrt1(−4).

5. CONCLUSION
The idea of the paper is to approach AOP (and more

generally type-preserving program transformation) from a
category-theoretic perspective, in order to complement the
software engineering approach. We believe that this ap-
proach could have substantial benefit at the level of con-
ceptual understanding of what AOP actually is.

More precisely, we identify (Cartesian closed) 2-categories
as a suitable setting in which programs can be seen as 1-cells
and aspects (or more generally program transformations)
can be seen as 2-cells. To make this analogy precise, we de-
velop a language for 2-categories called the λ2-calculus, as
a 2-dimensional extension of the traditional λ-calculus, and
show that it is an internal language for Cartesian closed
2-categories. We also show that the pure λ2-calculus is
strongly normalizing.

We then demonstrate the applicability of our construc-
tion by translating a more realistic functional AOP language
called MinAML into the λ2-calculus. This translation makes
it possible to interpret a program of MinAML in a Cartesian
closed 2-category and to define the weaving algorithm as the
computation of a normal form in a rewriting system based
on that 2-category. The well-foundedness of the weaving al-
gorithm is thus given by the existence of a normal form in
the corresponding rewriting system.

In the long version of this article, we discuss an algebraic
way to extend the λ2-calculus with various notions of com-
putation using enriched Lawvere theory. This nice formu-
lation of algebraic theories in an enriched setting enables
to transpose the notion of computational monads of Euge-
nio Moggi at the level of 2-categories. We believe that this
model-theoretic account of computation is necessary to un-
derstand the complex interaction between AOP mechanisms
and traditional notions of computation.

6. REFERENCES
[1] D. Dantas and D. Walker. Harmless advice. In 8th,

volume 41, page 396, 2006.
[2] B. Hilken. Towards a proof theory of rewriting: the

simply typed 2λ-calculus. Theoretical Computer
Science, 170(1-2):407–444, 1996.

[3] M. Hyland, G. Plotkin, and J. Power. Combining
effects: sum and tensor. Theoretical Computer
Science, 357(1):70–99, 2006.

[4] R. Jagadeesan, A. Jeffrey, and J. Riely. A calculus of
untyped aspect-oriented programs. In Proceedings of
ECOOP, pages 54–73. Springer-Verlag, 2003.

[5] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J. Loingtier, and J. Irwin. Aspect-Oriented
Programming. In Proceedings of ECOOP, volume
1241. Springer-Verlag, 1997.

[6] S. Kovalyov. Modeling Aspects by Category Theory.
FOAL 2010 Proceedings, page 63, 2010.

[7] J. Lambek. Cartesian closed categories and typed
lambda-calculi. In 13th Spring School on Combinators
and Functional Programming Languages, page 175.
Springer-Verlag, 1985.

[8] J. Lambek and P. Scott. Introduction to higher order
categorical logic. Cambridge University Press, 1988.

[9] R. Lopez-Herrejon, D. Batory, and C. Lengauer. A
disciplined approach to aspect composition. In
Proceedings of the 2006 ACM SIGPLAN symposium
on Partial evaluation and semantics-based program
manipulation, page 77. ACM, 2006.

[10] E. Moggi. Notions of computation and monads.
Information and Computation, 93:55–92, 1991.

[11] P. Scott. Some aspects of categories in computer
science. Handbook of algebra, 2:3–77, 2000.

[12] R. Seely. Modelling computations: a 2-categorical
framework. In 2nd, pages 65–71, 1987.

[13] N. Tabareau. Aspect oriented programming: a
language for 2-categories (long version). Technical
Report RR-7527, INRIA, 2011.
http://hal.inria.fr/inria-00470400.

[14] É. Tanter. Execution levels for aspect-oriented
programming. In Proceedings of the 9th conference on
AOSD, pages 37–48, Rennes and Saint Malo, France,
Mar. 2010. ACM Press.

[15] D. Walker, S. Zdancewic, and J. Ligatti. A theory of
aspects. In 8th, volume 38, pages 127–139, 2003.

[16] M. Wand, G. Kiczales, and C. Dutchyn. A semantics
for advice and dynamic join points in aspect-oriented
programming. ACM Transactions on Programming
Languages and Systems, 26(5):890–910, 2004.


