
FOAL 2011 Proceedings

Proceedings of the Tenth Workshop on
Foundations of Aspect-Oriented Languages

held at the
International Conference on

Aspect-Oriented Software Development

March 21, Porto de Galinhas, Pernambuco, Brazil

Gary T. Leavens, Shmuel Katz, and Hidehiko Masuhara (editors)

The papers in this proceedings are Copyright (c) 2011 by the Association for Computing Machinery, Inc. (ACM).

ACM International Conference Proceedings Series
ACM Press

http://www.eecs.ucf.edu/FOAL

The papers in this proceedings are Copyright (c) 2011 by the Association for Computing Machinery, Inc. (ACM).
Permission to make digital or hard copies of portions of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyright for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permission to republish from: Publications Dept. ACM,
Inc. Fax +1 (212) 869-0481 or permissions@acm.org.

For other copying of articles that carry a code at the bottom of the first or last page, copying is permitted provided
that the per-copy fee indicated in the code is paid through the Copyright Clearance Center, 222 Rosewood Drive,
Danvers, MA 01923, +1-978-750-8400, +1-978-750-4470 (fax).

Notice to Past Authors of ACM-Published Articles ACM intends to create a complete electronic archive of all
articles and/or other material previously published by ACM. If you have written a work that was previously published
by ACM in any journal or conference proceedings prior to 1978, or any SIG Newsletter at any time, and you do NOT
want this work to appear in the ACM Digital Library, please inform permissions@acm.org, stating the title of the
work, the author(s), and where and when published.

ACM ISBN: 978-1-4503-0644-7/11/03

permissions@acm.org

Contents
Preface . ii

Message from the Program Committee Chair . iii
Hridesh Rajan—Iowa State University, USA

Applying Translucid Contracts for Modular Reasoning about Aspect and Object-Oriented Events 1
Mehdi Bagherzadeh—Iowa State University, USA
Gary T. Leavens—University of Central Florida, USA
Robert Dyer—Iowa State University, USA

Compositional Verification of Events and Observers . 7
Cynthia Disenfeld—Technion–Israel Institute of Technology, Israel
Shmuel Katz—Technion–Israel Institute of Technology, Israel

Supporting covariant return types and generics in type relaxed weaving 13
Tomoyuki Aotani—Japan Advanced Institute of Science and Technology, Japan
Manabu Toyama—University of Tokyo, Japan
Hidehiko Masuhara—University of Tokyo, Japan

A Semantics for Execution Levels with Exceptions . 19
Ismael Figueroa—University of Chile, Chile
Eric Tanter—University of Chile, Chile

ContextFJ: A Minimal Core Calculus for Context-oriented Programming 25
Robert Hirschfeld—Hasso-Plattner-Institut Potsdam, Germany
Atsushi Igarashi—University of Kyoto, Japan
Hidehiko Masuhara—University of Tokyo, Japan

Aspect Oriented Programming: a language for 2-categories . 31
Nicolas Tabareau—École des Mines de Nantes, France

i

Preface
Aspect-oriented programming is a paradigm in software engineering and

FOAL logos courtesy of Luca Cardelli

programming languages that promises better support for separation of concerns.
The Tenth Foundations of Aspect-Oriented Languages (FOAL) workshop was
held at the Tenth International Conference on Aspect-Oriented Software Devel-
opment in Porto de Galinhas, Pernambuco, Brazil, on March 21, 2011. This
workshop was designed to be a forum for research in formal foundations of
aspect-oriented programming languages. The call for papers announced the ar-
eas of interest for FOAL as including: semantics of aspect-oriented languages,
specification and verification for such languages, type systems, static analysis,
theory of testing, theory of aspect composition, and theory of aspect translation
(compilation) and rewriting. The call for papers welcomed all theoretical and
foundational studies of foundations of aspect-oriented languages.

The goals of this FOAL workshop were to:
• Make progress on the foundations of aspect-oriented programming lan-

guages.

• Exchange ideas about semantics and formal methods for aspect-oriented
programming languages.

• Foster interest within the programming language theory and types com-
munities in aspect-oriented programming languages.

• Foster interest within the formal methods community in aspect-oriented
programming and the problems of reasoning about aspect-oriented pro-
grams.

The workshop was organized by Gary T. Leavens (University of Central Florida, USA), Shmuel Katz (Technion–
Israel Institute of Technology, Israel), and Hidehiko Masuhara (University of Tokyo, Japan). We are very grateful to
the program committee, which was chaired very ably by Hridesh Rajan.

We thank the organizers of AOSD 2011 for hosting the workshop.

ii

http://www.eecs.ucf.edu/FOAL

Message from the Program Committee Chair
The FOAL workshop in its tenth edition continues to attract foundational work on aspect-oriented software devel-
opment. As in previous years, we were pleased to assemble yet another outstanding program committee for FOAL
2011.

The members of the program committee were:

• Hridesh Rajan — Program Committee Chair, Iowa State University, USA

• Werner M. Dietl — University of Washington

• Juergen Dingel — Queen’s University

• Erik Ernst — University of Aarhus

• David Garlan — Carnegie Mellon University

• Atsushi Igarashi — Kyoto University

• Radha Jagadeesan — DePaul University

• Oscar Nierstrasz — University of Berne

• Bruno C. d. S. Oliveira — Seoul National University

• Jeremy Siek — University of Colorado, Boulder

• Neelam Soundarajan — Ohio State University

• Mario Südholt — École des Mines de Nantes

• Mitch Wand — Northeastern University

As in the past, each paper was subjected to full review by at least three reviewers between Jan. 21 and Jan. 31,
2011. Given the short turnaround time the FOAL 2011 program committee members worked really hard and provided
authors with excellent and detailed reviews. I am grateful to the program committee members for their dedication,
insightful comments, attention to detail, and the service they provided to the community and the individual authors.

I am also grateful to the authors of submitted works. Without these excellent submissions, a successful FOAL
workshop may not be realized.

Finally, I would like to thank the other members of the organizing committee of FOAL — Gary T. Leavens, Shmuel
Katz, and Hidehiko Masuhara — for their work in guiding us toward another inspiring workshop.

Hridesh Rajan
FOAL ’11 Program Committee Chair
Iowa State University, USA

iii

iv

Applying Translucid Contracts for Modular Reasoning
about Aspect and Object Oriented Events

Mehdi Bagherzadehβ Gary T. Leavensθ Robert Dyerβ

βIowa State University θUniversity of Central Florida
{mbagherz, rdyer}@iastate.edu leavens@eecs.ucf.edu

ABSTRACT
The Implicit Invocation (II) architectural style improves modularity
and is promoted by aspect-oriented (AO) languages and design pat-
terns like Observer. However, it makes modular reasoning difficult,
especially when reasoning about control effects of the advised code
(subject). Our language Ptolemy, which was inspired by II lan-
guages, uses translucid contracts for modular reasoning about the
control effects; however, this reasoning relies on Ptolemy’s event
model, which has explicit event announcement and declared event
types. In this paper we investigate how to apply translucid contracts
to reasoning about events in other AO languages and even non-AO
languages like C#.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Programming by con-
tract, Assertion checkers; F.3.1 [Specifying and Verifying and
Reasoning about Programs]: Assertions, Invariant, Pre- and post-
conditions, Specification techniques

General Terms
Design, Languages, Verification

Keywords
Translucid contracts, modular reasoning, implicit invocation,
aspect-oriented interfaces, grey-box specification, Ptolemy, quan-
tified typed events, aspect-oriented events, object-oriented events

1. INTRODUCTION
Reasoning about the control effects of aspect-oriented (AO) pro-

grams seems difficult because: (1) join point shadows are perva-
sive, and (2) advice can have interesting control effects (e.g., throw-
ing an exception or not proceeding) which are difficult to specify
using black-box behavioral contracts. One way to avoid the first
problem is to limit the application of advice to the base code. In
our previous work on Ptolemy, join point shadows are limited to
the places where events are explicitly announced [13]. To solve the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOAL’11, March 21, 2011, Pernambuco, Brazil.
Copyright 2011 ACM 978-1-4503-0644-7/11/03 ...$10.00.

second problem, we proposed translucid contracts [3]; these are
grey-box based specifications limiting the behavior of advice. The
grey-box nature of translucid contracts makes it possible to reveal
some implementation details while hiding others.

In this paper we show the extent to which translucid contracts can
be applied to several AO interface proposals as well as a non-AO
language (C#). That is, we separate the ideas of translucid contracts
from their original context, namely the Ptolemy language. The key
features of Ptolemy that are relevant are explicitly declared event
types, explicit event announcement and its quantification mecha-
nism. Ptolemy’s event announcement makes join point shadows in
the base code, explicit. The quantification mechanism allows static
computation of the set of advice at a specific place in the code.

Contributions of this work include:

• Application of translucid contracts to other AO interfaces,
specifically crosscutting programming interfaces (XPI) [17],
aspect-aware interfaces (AAI) [9] and Open Modules [1].

• A programming idiom to apply translucid contracts to a non-
AO language with built-in support for events, C#.

In the rest of the paper, Section 2 provides background infor-
mation about translucid contracts in Ptolemy. Section 3 shows
how to apply translucid contracts to other proposals for AO inter-
faces. Section 4 discusses a proposed programming idiom to apply
translucid contracts to C# events. Section 5 discusses related work
and finally Section 6 concludes the paper.

2. TRANSLUCID CONTRACTS IN
PTOLEMY

The canonical figure editor example in Figure 1, illustrates
translucid contracts in the Ptolemy language [13]. A figure ele-
ment Point sets the value of its x-coordinate in method setX.
The requirement in this example is: skip the modification of the x-
coordinate, of the figure element point, if the figure element is fixed
and not modifiable. This requirement could be implemented using
event-driven programming techniques, which announce an event
when setX is about to modify the Point and have an event han-
dler method like enforce which enforces the non-modifiability
requirement of the fixed figure element.

Our language Ptolemy, used in the implementation of the exam-
ple in Figure 1, enables event-driven programming by the introduc-
tion of quantified, typed events. Event type Changed (lines 10-20)
abstracts concrete events which represent modification to figure el-
ements, such as points. Context variable fe (line 11) is a piece of
information communicated between Point (subject), which an-
nounces Changed, and its handler Enforce (observer). The

1

1 class Fig {int isFixed;}

2 class Point extends Fig{

3 int x, y;

4 Fig setX(int x){

5 announce Changed(this){

6 this.x = x; this

7 }

8 }

9 }

5

6

}

Event

Announcement

A
O

 i
n

te
rf

a
ce

 (
E

v
e

n
t

T
y

p
e

)

10 Fig event Changed {

11 Fig fe;

12 requires fe != null

13 assumes{

14 if(fe.isFixed==0)

15 invoke(next)

16 else

17 establishes fe==old(fe)

18 }

19 ensures fe != null

20 }

requires fe != null

13 assumes{

14 if(fe.isFixed==0)

15 invoke(next)

16 else

17 establishes fe==old(fe)

18 }

ensures fe != null

Event

Declaration

21 class Enforce {

22 Enforce init(){ register(this)}

23 Fig enforce(thunk Fig rest,Fig fe){

24 if(fe.isFixed==0)

25 invoke(rest)

26 else

27 refining establishes fe==old(fe){

28 fe }

29 }

30 when Changed do enforce;

31 }

30

Quantification

register

thunk

(fe.isFixed==0)

establishes

enforce;

Registration

Translucid

Contract

Figure 1: A translucid contract for the event type Changed

translucid contract (lines 12–19) limits the behavior of the refin-
ing handler methods like enforce using pre- and post-condition
constraints phrased in requires and ensures clauses (lines
12 and 19). It also limits the control effects of the refining han-
dlers by imposing structural constraints on their implementation
using assumes block (lines 13–18). Subject Point announces
event Changed explicitly using an announce expression (lines
5–7), passing the parameter this to be mapped to the context vari-
able fe. Observer Enforce shows its interest in being notified
about announcements of event Changed using the binding decla-
ration when − do (line 30), which says to run method enforce
whenever an event of type Changed is announced. The subject
Enforce registers itself as an observer for event Changed using
the register expression (line 22).

As mentioned earlier, translucid contracts restrict the control
effects of the refining handlers by imposing constraints on the
structure of the code in their implementation. Handlers of a spe-
cific event should refine the translucid contract of the event. The
assumes block (lines 13–18) contains this information. Translu-
cid contracts are more expressive compared to black-box contracts
as they can reveal some implementation details about their refin-
ing handlers using program expressions, while hiding others us-
ing specification expressions. For example, the program expression
(line 14) is conveying the fact that each refining handler must eval-
uate the if expression in its implementation as the very first ex-
pression followed by an invoke (line 15). While program expres-
sions reveal implementation details, specification expressions (line
17) hide them, which allows for variability in the refining handlers’
implementations. The programmer of the observer module, by just
looking at the observer and the translucid contract, can conclude
that if the figure element fe is not fixed then the handler method is
called, allowing the modification of the figure (lines 14–15); other-
wise the handler is skipped and the figure is not changed (line 17).
invoke is Ptolemy’s equivalent of AspectJ’s proceed.

In terms of variability of the handlers, outside the scope
of this example, structural constraints in the assumes block
could be as liberal as establishes true which speci-
fies any handler without an invoke expression in its body
or establishes true;invoke(next);establishes true
which allows any handler, with the invoke expression somewhere
in its implementation.

Verification of the handler method’s refinement of the translu-
cid contracts is carried out via a hybrid static and dynamic ap-
proach. Static structural refinement checks for the textual match-
ing between program expressions in the translucid contract and the
handler implementation at the same structural positions in the code
and the contract [3]. For example, lines 14–16 match lines 24–

26. Specification expressions in the contract must be refined by
refining expressions carrying the same specification. For ex-
ample, line 17 is refined by the refining expression on lines 27-28.
Runtime assertions assure that refining expressions actually refine
the specification they claim to refine. Pre- and post-conditions of
the translucid contract are also enforced using runtime probes in-
serted at the beginning and end of each handler and before and after
event announcement.

The key point to notice when applying translucid contracts to the
event types in Ptolemy, is that: In Ptolemy, each handler knows
about the type of events it handles, statically at compile time.
Thus, having the handler’s implementation and the declaration of
the event type it handles, refinement of the contract by the han-
dler could be carried out modularly without any need for whole-
program analysis. This is not the case in all languages with built-in
event-driven mechanism such as C#. In these languages handlers
do not statically know about the type of events they might handle.
In this work, we propose a very simple programming idiom which
allows the handlers to know about the type of events they handle,
which in turn enables modular verification of their refinement of
the translucid contract of the events they handle.

3. APPLICABILITY TO OTHER AO IN-
TERFACES

As mentioned in Section 1, pervasive join point shadows are
one of the obstacles in the modular reasoning about AO programs.
AO interfaces tackle this problem by making join points explicit.
Ptolemy’s event types could be thought of as AO interfaces. We
show the applicability of translucid contracts to crosscutting in-
terfaces (XPI) [17], aspect-aware interfaces (AAI) [9], and Open
Modules [1] and discuss changes in the refinement rules required
to verify such programs. Other AO interfaces such as join point
types (JPT) [16] and explicit join points (EJP) are not discussed as
they are similar to Ptolemy’s event types, discussed in our previous
work [3]. For a more detailed discussion on the applicability of
translucid contracts to AO interfaces see our previous work [2].

3.1 Translucid Contracts for XPIs
The key idea in crosscut programming interfaces (XPIs) [17] is

to establish an interface, based on design rules, to decouple the
base and the aspect design. An XPI limits the exposure of join
points and also the behavior of advised and advising code using
black-box contracts in terms of provides and requires clauses, with
no mechanism to check the full compliance to the contract.

Figure 2 illustrates the applicability of translucid contracts to
XPI Changed on lines 4–11, in an AspectJ implementation of
the figure editor example introduced in Section 2. XPI Changed

2

13 aspect Enforce {

14 Fig around(Fig fe): Changed.jp(fe){

15 if(fe.fixed == 0)

16 proceed(fe);

17 else

18 refining establishes fe==old(fe){

19 return fe;

20 }

21 }

22 }

X
P
I

1 aspect Changed {

2 pointcut jp(Fig fe):

3 call(Fig Fig+.set*(..))&& target(fe);

4 requires fe != null

5 assumes{

6 if(fe.fixed == 0)

7 proceed(fe);

8 else

9 establishes fe == old(fe);

10 }

11 ensures fe != null

12 }

Figure 2: Applying translucid contract to XPI

and aspect Enforce in Figure 2 are the counterparts of Ptolemy’s
event type Changed and handler Enforce in Figure 1. The lan-
guage for expressing translucid contracts is slightly adapted to use
AspectJ’s proceed instead of Ptolemy’s invoke, on lines 7, 16.

Unlike Ptolemy, where the translucid contract is attached to the
event type (lines 12–19, Figure 1), in the XPI the contract is at-
tached to the pointcut declaration (lines 4–11, Figure 2). In the
Ptolemy example of Figure 1 only the context variable fe defined
on line 11 could be accessed in the contracts, likewise in the XPI
example, only the variable fe exposed by the pointcut (lines 2–3,
Figure 2) is used in the contract. In Ptolemy the event type of in-
terest is specified by the handler in the binding declaration (line 30,
Figure 1) whereas in the XPI example, handler Enforce reuses
the pointcut declaration in XPI Changed (line 14, Figure 2). Our
refinement rules could be added here in the AO type system enforc-
ing that the advice body on lines 15–21 must refine the translucid
contract of the pointcut declaration on line 14. As it can be seen, the
refinement rules are applicable to XPIs with only minor changes.

3.2 Translucid Contracts for AAIs
Some AO interfaces such as XPIs could be specified explicitly,

whereas others such as aspect-aware interfaces (AAIs) [9] could be
computed from the implementation, given whole-program informa-
tion. Figure 3 illustrates the AAI for the figure editor example of
Section 2. Figure 3 shows the extracted AAI for the method setX
on lines 3–4 along with a translucid contract on lines 5–12, carried
over from the pointcut to the join point shadow. In AAI the ad-
vised join point in method setX contain the details of the advising
advice on lines 3–4. Syntax and refinement rules similar to XPIs
are applicable here. Similar ideas can also be applied to aspect-
oriented development tools such as AJDT, which provide AAI-like
information at each join point shadow in an AspectJ program.

3.3 Translucid Contracts for Open Modules
Open Modules [1] allow explicit exposure of pointcuts for be-

havioral modifications by aspects, which is similar to signaling
events using the announce expression in the Ptolemy. The imple-
mentations of these pointcuts remain hidden from the aspects which
in turn reduces the impact of the base code changes on the aspect.
However, in Open Modules, each explicitly declared pointcut has
to be enumerated by the aspect for advising.

A
A
I

1 class Point extends Fig {

2 int x, y;

3 Fig setX(int x): Enforce -

4 after returning Changed.jp(Fig fe)

5 requires fe != null

6 assumes{

7 if(fe.fixed == 0)

8 proceed(fe);

9 else

10 establishes fe == old(fe);

11 }

12 ensures fe != null

13 /* body of setX */

14 }

requires fe != null

6 assumes{

7 if(fe.fixed == 0)

8 proceed(fe);

9 else

10 establishes fe == old(fe);

11 }

ensures fe != null

Figure 3: Applying translucid contract to AAI

13 aspect Enforce {

14 Fig around(Fig fe): target(fe) &&

15 call(Fig Fig+.set*(..));

16 if(fe.fixed == 0)

17 proceed(fe);

18 else

19 refining establishes fe==old(fe){

20 return fe;

21 }

22 }

23 }

O
p

e
n

 M
o

d
u

le

1 module Changed{

2 class Fig;

3 expose to Enforce: call(Fig Fig+.set*(..));

4 requires fe != null

5 assumes{

6 if(fe.fixed == 0)

7 proceed(fe);

8 else

9 establishes fe == old(fe);

10 }

11 ensures fe != null

12 }

Figure 4: Applying translucid contract to Open Modules

Figure 4 illustrates the applicability of translucid contracts, lines
4–11, to Open Module Changed in the figure editor example of
Section 2. To retain similarity with other examples in the paper,
syntax from Ongkingco et al.’s AspectJ implementation [12] is
used in the example. Compare Open Module Changed and as-
pect Enforce with event type Changed and handler Enforce
in Figure 1. Open Module Changed in Figure 4 exposes a point-
cut of class Fig on line 2 which is only advisable by the aspect
Enforce marked by expose to, line 3. The translucid contract
on lines 4–11 limits the the interaction between Enforce and the
pointcut exposed on line 3.

Like contracts in XPIs, in Open Modules the contract on lines
4–11 is attached to the pointcut declaration on line 3. Variable fe
named in the contract is the one exposed by the pointcut on line
3, again like XPIs. The proposed rules for verifying refinement
need to be modified slightly. In Ptolemy, the event type of interest
Changed is specified in the binding declaration (line 30, Figure 1),
whereas in the AspectJ implementation of Open Modules [12], as-
pects cannot reuse pointcuts exposed by the Open Module and need
to enumerate the pointcut in the advice declaration again, lines 14–
15. Refinement rules could be added here in the AO type system.
The same adaptations in the syntax and refinement rules as of XPI’s
are applicable to Open Modules. The challenge is to match aspect
Enforce pointcut definition on lines 14–15, with the Open Mod-
ule one on line 3 to pull out its contract for refinement checking.

3

4. APPLICABILITY TO NON-AO LAN-
GUAGES

Section 3 discussed the application of translucid contracts to AO
interfaces rather than Ptolemy’s event types. But the applicability
of translucid contracts is not limited to just AO languages. In this
section we discuss their applicability to a non-AO language, C#,
with built-in support for event announcement and handling.

4.1 Problem
As discussed earlier in Section 1, Ptolemy’s key feature for ap-

plicability of translucid contracts is that for any specific handler the
set of potential events it handles is statically known. In other words,
for each event type in Ptolemy, it is pretty straightforward to deter-
mine the set of its potential handlers using Ptolemy’s quantification
mechanism. Thus the translucid contract for the handler could be
easily pulled out and refinement can be checked in a modular fash-
ion using only the handler implementation and the contract.

In languages with built-in event announcement and handling,
such as C#, the set of handlers for an event is not easily known stat-
ically. In C# the event model relies on type-safe method pointers
(delegates) which could be used to dynamically register a method
as a handler for a specific event. The signature of the handler often
only includes the context variable and does not indicate the specific
type of event being handled, such as:

Fig enforce (Fig fe);

This handler could handle multiple events, as long as the events
pass in the context variable fe of type Fig. To determine the spe-
cific event being handled by each handler, we propose a simple pro-
gramming idiom which requires the event type to be passed as an
argument to the handler method. Using this idiom, by only look-
ing at the handler method’s signature, the type of event it handles
can be easily determined. The idiom resembles the quantification
mechanism in Ptolemy, as in line 30 in Figure 1.

4.2 Translucid Contracts for C#
In this section event declaration, announcement and handling in

C# is illustrated and compared with Ptolemy using the figure ed-
itor example in Figure 1. The C# example is more verbose than
needed in order to provide handlers with an Invoke statement
which causes the next applicable handler to run, like its counterpart
the invoke expression in Ptolemy. This section also discusses the
proposed programming idiom. All our proposal requires is to pass
into the handler the event type it handles, as a formal parameter.

10 class Changed:EventType <Fig, Changed.Context>{

11 class Context{

12 Fig fe;

13 Context (Fig fe){ this.fe = fe;}

14 Fig contract() {

15 Contract.Requires(fe != null);

16 Contract.Ensures(fe != null);

17 if (fe.isFixed==0)

18 return new Changed().Invoke();

19 else {

20 Contract.Assert(1==1);

21 Contract.Assert(fe==Contract.OldValue(fe));

22 }

23 }}}

Contract.Requires(fe != null);

Contract.Ensures(fe != null);

if (fe.isFixed==0)

return new Changed().Invoke();

else {

Contract.Assert(1==1);

Contract.Assert(fe==Contract.OldValue(fe));

Translucid

Contract

Figure 5: Applying translucid contract to C#

Figure 5 illustrates declaration of event type Changed, simi-
lar to Changed in Figure 1, with return type Fig, line 10, and
the context variable fe, defined on line 12 and set on line 13.

Like Ptolemy, in C# the contracts are attached to the event type,
lines 15–21. Method contract on lines 14–22 is the place-
holder for the translucid contract. Lines 15–16 state pre- and
post-conditions of the contract using the Embedded Contracts Lan-
guage [6]. Lines 17–22 illustrate the body of the assumes
block of Figure 1 lines 13–18. Lines 20–21 in Figure 5 are the
equivalent of the specification expression of line 17 in Figure 1.
Specification establishes fe == old (fe) is the sugar for
requires true ensures fe == old (fe). The Invoke
method on line 18 causes the next applicable handler to run. It is
provided by the class EventType in the C# library for Ptolemy,
which is not shown here.

1 class Fig { int isFixed; }

2 class Point:Fig {

3 int x, y;

4 void setX(int x) {

5 Changed.Announce(new Changed.Context(this),()=>{

6 this.x = x;

7 return this;});

8 }

9 }

Figure 6: Event announcement with event types in C#

Figure 6 illustrates the subject Point. Compare it with class
point in Figure 1. On line 5, Point announces the event Changed
using the Changed.Announce method, similar to event an-
nouncement on line 5 of Figure 1. The receiver of the announce
method is the event type being announced and the event body is
provided as an anonymous lambda statement, lines 6–7. The con-
text variable fe is created and set on line 5 by creating the object
Changed.Context.

24 class Enforce {

25 Enforce init(Changed.Register(enforce);}

26 Fig enforce(EventType<Fig, Changed.Context next){

27 Contract.Requires(fe != null);

28 Contract.Ensures(fe != null);

29 if (next.fe.fixed == 0)

30 return next.Invoke();

31 else {

32 Contract.Assert(1==1);

33 return next.context().fe;

34 Contract.Assert(next.Context.fe ==

35 Contract.OldValue(next.Context.fe));

36 }}}

(next.Context.fe));

Figure 7: Event handler in C#

Figure 7 illustrates the handler method enforce on lines 26–
36. Compare it with the enforce in Figure 1. Event registration
is done via the call to the register method on the event type,
line 25. The Invoke statement is similar to Ptolemy’s invoke ex-
pression, allowing the next applicable handler to be called. Lines
32-35 are the equivalent of Ptolemy’s refining expression on lines
27–28 of Figure 1. Assertion statements on lines 32 and 34–35 are
run time probes added to enforce the specification stated by spec-
ification expression on lines 20–21 of Figure 5. Ptolemy’s quan-
tification mechanism is simulated in C# by the proposed idiom of
passing the event type to the handler as a parameter, on line 26 .

4

4.3 Discussion
As previously mentioned in Section 2, runtime assertions assure

that each handler method refines the pre- and post-condition of the
event type it handles. They also check that Ptolemy’s refining
expression actually refines the specification it claims. In C# it
means the insertion of runtime probes on lines 27–28 of Figure 7
to enforce the contract’s pre- and post-conditions, stated on lines
15–16 of Figure 5. Also, the addition of assertions on lines 32 and
34-35 to make sure the specification expression on lines 20-21 of
Figure 5 is not violated by any program expression which claims to
refine it, line 33 of Figure 7. Insertion of runtime probes and struc-
tural refinement of the contract by handlers could be carried out
by a simple source to source transformation. The transformation
also makes sure that the refining handler methods and each code
block constrained by a specification expression have one exit point
to avoid unreachable code (line 33, Figure 7) . Structural similarity
is crucial to structural refinement [3, 14].

5. RELATED WORK
This work, especially the internals of the translucid contracts,

relates to works which propose: (1) behavioral contracts for aspects
and (2) modular reasoning techniques for AO interfaces.

Behavioral contracts for Aspects:. Use of behavioral contracts
to limit the behavior of aspects for the ease of reasoning is an ac-
cepted approach, exercised in the works such as crosscut program-
ming interfaces (XPI) [8, 18], Pipa [19] and Cona [10, 15] among
the others. XPI’s informal contracts in terms of constraints for the
advised and the advising code, Pipa’s JML-like annotations and
Cona’s contracts for both aspects and objects are all behavioral
contracts, which makes them incapable of specifying any control
effect of interest. Furthermore, there is no verification mechanism
proposed for XPI contracts.

Modular Reasoning for AO Interfaces:. Frequent join point
shadows are one of the obstacles in modular reasoning about AO
programs. Open Modules [1], explicit join points [7], join point
types [16] and Ptolemy [13] tackle this problem by limiting the
number of join point shadows as we have done in this work. How-
ever they do not provide any concrete specification and verification
mechanism for reasoning.

Understanding the control effects of the advice is another prob-
lem in modular reasoning. “Harmless” advice [5] assumes aspects
with no side effects. Categorizing the aspects as assistants (or spec-
tators) [4], which can(not) enhance the behavior of the base code
helps with reasoning. EffectiveAdvice [11] proposes explicit ad-
vice points and composition and its typed model enforces control
and data flow properties. However, its non-AO core makes it diffi-
cult to adapt it to II, AO and Ptolemy as it lacks quantification.

6. CONCLUSION
Although implicit invocation (II) improves modularity, it makes

modular reasoning difficult especially reasoning about control ef-
fects. In the previous work [3] translucid contracts were proposed
to enable modular reasoning in Ptolemy. In this work, we show
that translucid contracts are independent of their original context,
Ptolemy, and are applicable to other AO interfaces. We also pro-
pose a simple programming idiom to enable application of translu-
cid contracts to C#. The basic requirement when applying translu-
cid contracts is: for each handler, it should be possible to statically
tell which event types it handles. The proposed idiom meets this
requirement. The idiom is simple and general and can be applied
to other OO languages. Using the idiom makes it possible to know
what events a handler method can handle. In summary, translucid

contracts are independent of Ptolemy and are applicable to implicit
AO and explicit OO event announcement models.

Acknowledgments
Bagherzadeh and Dyer were supported in part by NSF grant CCF-
10-17334. The work of Leavens was supported in part by NSF
grant CCF-10-17262.

7. REFERENCES
[1] J. Aldrich. Open modules: Modular reasoning about advice.

In ECOOP’05.
[2] M. Bagherzadeh, H. Rajan, and G. T. Leavens. Translucid

contracts for aspect-oriented interfaces. In FOAL ’10.
[3] M. Bagherzadeh, H. Rajan, G. T. Leavens, and S. Mooney.

Translucid contracts: Expressive specification and modular
verification for aspect-oriented interfaces. In AOSD ’11.

[4] C. Clifton, G. T. Leavens, and J. Noble. Ownership and
effects for more effective reasoning about Aspects. In
ECOOP ’07.

[5] D. S. Dantas and D. Walker. Harmless advice. In POPL’06.
[6] M. Fähndrich, M. Barnett, and F. Logozzo. Embedded

contract languages. SAC ’10.
[7] K. J. Hoffman and P. Eugster. Bridging Java and AspectJ

through explicit join points. In PPPJ’07.
[8] K. J. Sullivan et al. Information hiding interfaces for

aspect-oriented design. In ESEC/FSE’05.
[9] G. Kiczales and M. Mezini. Aspect-oriented programming

and modular reasoning. In ICSE’05.
[10] D. H. Lorenz and T. Skotiniotis. Extending design by

contract for aspect-oriented programming. CoRR,
abs/cs/0501070, 2005.

[11] B. Oliveira, T. Schrijvers, and W. R. Cook. Effectiveadvice:
Disciplined advice with explicit effects. In AOSD’10.

[12] N. Ongkingco, P. Avgustinov, J. Tibble, L. Hendren,
O. de Moor, and G. Sittampalam. Adding Open Modules to
AspectJ. In AOSD’6.

[13] H. Rajan and G. T. Leavens. Ptolemy: A language with
quantified, typed events. In ECOOP’08.

[14] S. M. Shaner, G. T. Leavens, and D. A. Naumann. Modular
verification of higher-order methods with mandatory calls
specified by model programs. In OOPSLA’07.

[15] T. Skotiniotis and D. H. Lorenz. Cona: Aspects for contracts
and contracts for aspects. In OOPSLA’04.

[16] F. Steimann, T. Pawlitzki, S. Apel, and C. Kastner. Types and
modularity for implicit invocation with implicit
announcement. TOSEM, 20(1), 2010.

[17] K. J. Sullivan, W. G. Griswold, H. Rajan, Y. Song, Y. Cai,
M. Shonle, and N. Tewari. Modular aspect-oriented design
with XPIs. TOSEM, 20(2), 2009.

[18] W. G. Griswold et al. Modular software design with
crosscutting interfaces. IEEE Software’06.

[19] J. Zhao and M. Rinard. Pipa: A behavioral interface
specification language for AspectJ. In FASE’03.

5

6

Compositional Verification of Events and Observers
(Summary)

Cynthia Disenfeld and Shmuel Katz
Department of Computer Science

Technion - Israel Institute of Technology
{cdisenfe,katz}@cs.technion.ac.il

ABSTRACT
By distinguishing between events and aspects, it is possi-
ble to separate the problem of identifying when an aspect
should be applied, from what it must do. Observers (as-
pects that do not affect the state of the base system) are
already part of aspect-oriented programming and language
support is emerging for events that gather information and
announce occurrence. The goal of compositional verification
of events and observers is to prove that they are correct so
that their guarantees may be used by other events or as-
pects. Moreover, a compositional verification model allows
applying formal verification techniques in smaller models,
and also building a library of events, in which for any base
system that satisfies certain assumptions, the event detec-
tion will satisfy its guarantees. In this work compositional
verification of events and observers will be defined to aid in
the design of a framework that allows users to verify events,
providing as well flexibility in the input language of the spec-
ification.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifica-
tions; D.2.4 [Software Engineering]: Software/Program
Verification—Correctness proofs, Model checking

General Terms
Languages, Verification

Keywords
Events, Observer Aspects, Verification, Composition

1. INTRODUCTION
The goals of this work are to (1) precisely identify the

components involved in the verification of events, (2) pro-
vide a methodological way to specify and verify events com-
positionally and (3) outline a framework design in which the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOAL’11,March 21, 2011, Pernambuco, Brazil.
Copyright 2011 ACM 978-1-4503-0644-7/11/03 ...$10.00.

input to the verification process that the user must provide
is clearly defined, as are the steps performed automatically
to verify events. The full version of this summary is available
from the authors.

Aspect oriented programming (AOP) [13] allows express-
ing crosscutting concerns to the application in a modular
way. AspectJ [12] defines a set of possible joinpoints - states
where an aspect should be applied. For each aspect, point-

cuts define where the response should be applied, and ad-

vices define what must be done.
However, AspectJ does not provide an optimal notation

for a variety of problems. Most pointcuts in AspectJ can
only see the present state in the execution and the cur-
rent call stack. This does not give enough flexibility to be
able to aggregate the history of events that have occurred.
The second problem is the difficulty to share information
between events: pointcuts only expose information on the
target class, the arguments and the current aspect being ex-
ecuted. The third problem is that pointcuts are defined by
means of events in the code, and sometimes we may be inter-
ested in expressing matching joinpoints in a more abstract
way, for instance by defining events that occur as a result of
the composition of other events.

[1, 17, 4] deal with the first problem by using a restriction
of the language of aspects to regular expressions, or treating
sequences of events but still the composition of lower level
events and independence between the joinpoint and the re-
sponse are not treated.

Douence et al. [6] present a solution for these problems
by allowing to share variables between crosscuts (pointcuts),
preserving the history of execution and defining composition
between aspects. However the crosscuts are still tightly re-
lated to the inserts (advices), and this restricts reusability.

The separation of events has been presented already in the
event-based approaches of [8, 14], independently of aspects.

[15, 11, 5] have identified the need of defining event as-
pects, spectators or observers that gather information but
do not change the base system, although those aspects are
allowed to print values.

Bockisch et al. [3] introduce a solution to these problems
by syntactically distinguishing between events and aspects.
Event declarations may accumulate information and do not
affect the underlying system in any way, including printing
values. They indicate when a certain concern should be
woven and provide collected information of the system to be
used by other event declarations or aspects.

Thus, the idea of defining aspects or events that collect
information and are triggered when the collected informa-

7

tion satisfies a certain property is natural in systems. We
will focus here on showing how to verify the correctness of
event declarations, that use other events in their declara-
tion. These definitions are also useful for existing systems
already defined using observers and spectators even though
the notation presented for events in [3] will be used here.

Events and observer aspects may seem trivial due to their
spectative behavior on the base system. However, events
incorporate the logic of when they must be triggered, and
what information is exposed. They (and observer aspects)
collect information from different possible sequences in the
base system. This information may be collected from actions
on the base system, and even subjected to some internal pro-
cessing. Given that in the extension presented in [3] general
aspects now respond to states in which events are detected,
for later aspect verification it will be essential to assume
that events are detected in the correct states and that they
expose the expected information.

In this work we will focus on model checking techniques.
However, present methods are “flat” in that they relate to
aspects that directly are woven to a base system without
event dependencies defined hierarchically. Here we empha-
size the incorporation of assumed properties on used events
in the verification of an event. Moreover, standard use of
temporal logic assertions is problematic for event specifica-
tions. Thus, the framework presented gives enough liberty
to choose among different modeling languages for the specifi-
cation: regular expressions, Kripke models, Moore machines
or temporal logic formulas.

The verification of events will be presented using the assume-
guarantee model, which allows building a reference library of
available events already verified. Hence, for any base system
and set of events which satisfy the assumptions of needed
events from the library, the library events may be included
and their guarantees will hold without further verification.

1.1 Outline
This work is organized as follows: Section 2 presents back-

ground on models and simulations. Section 3 presents the
definition of events and the necessary assumptions. In sec-
tion 4 the verification steps are defined. Lastly, in Section 5
the conclusions are presented.

2. BACKGROUND
To be able to give a formal model of the specification

and apply formal verification, the definitions of structures,
homomorphism, preorder in structures, and Moore Machines
presented in [10] will be used. The concepts of LTL, fairness
and reductions presented in [7] will be used as well.

2.1 Kripke model for a Moore machine
In [10], a procedure was presented to obtain the corre-

sponding Kripke structure of a given Moore machine. This
structure contains the Cartesian product of each state with
all the transition labels that may lead to another state. In
our case we use a different construction, in which each state
contains the transition labels that caused arriving to it. The
formal definition is presented in the full version of this sum-
mary.

2.2 Model restriction
For a model M = 〈S, S0, R, L,F〉 given by a Kripke model

over the set of atomic propositions AP , the operator M ↾

AP ′ represents the restriction of the model to the atomic
propositions in AP ′. That is, for all s ∈ S, L′ (s) = L (s) ∩
AP ′.

3. EVENTS
Events collect information on the base system, are trig-

gered when an interesting situation to be detected occurs,
and may expose certain information.

3.1 Assumptions
The following is assumed:

• Event invocation and execution do not affect any vari-
able external to the event declaration, and they also
do not affect the control flow (they must return the
execution flow to the base system at the point they
were begun).

• Event internal fields are only updated within the event
declaration execution.

• There are no cycles in the event dependencies, i.e., an
event cannot depend on itself being triggered in the
correct places or its own exposed information being
correct.

• Fairness restrictions must satisfy that it is always pos-
sible to get to a returning state for each event evalua-
tion.

The first two properties may be checked by applying static
analysis tools, adapting the tools presented in [2, 5, 16, 18]
which work for identifying spectative or observer aspects.
The dependency between events define an Event Depen-
dency Graph [3], and cycle dependencies can be checked by
analyzing this graph. Event models should guarantee that
the only fair paths are those that eventually reach the end
of execution.

From now on, the previously mentioned properties are as-
sumed to hold.

3.2 Event Model
Each event contains a set of internal atomic propositions

corresponding to the values of the internal fields, a set of ex-
ternal atomic propositions representing the parameters ob-
tained from the lower level events, the initial values for the
internal atomic propositions, and which basic units form the
event.

Each basic unit u is a pair of a condition (consisting of
other events having been triggered, pointcuts or predicates
over the atomic propositions) and an event response that
may only change the internal atomic propositions, or may
trigger the event.

For the variables, fields, and parameters exposed, stan-
dard encoding and abstracting mechanisms are used, for ex-
ample, range of values, boolean variables, etc.

We will use a high-level-syntax event example. There are
well known translations from this language to the model
form. The fragment of code presented in Figure 1 serves as
an example of an event defined in terms of another event.
There are three event declarations: (1) commit, (2) TwoCommits

is an event detected every two times commit is applied,
and (3) SixCommits is an event detected every six times
commit is applied (but is defined indirectly using TwoCommits).

8

event commit () : c a l l (∗ ∗ . commit (. .)) ;
even t TwoCommits ()

i n t coun te r =0;
when () : commit ()

coun te r++;
i f (coun te r mod 2 == 0)

t r i g g e r () ;
coun te r = 0 ;

event SixCommits ()
i n t coun te r =0;
when () : TwoCommits ()

coun te r++;
i f (coun te r mod 3 == 0)

t r i g g e r () ;
coun te r =0;

Figure 1: SixCommits

4. VERIFICATION PROCESS

4.1 Event evaluation Semantics
To be able to introduce the event evaluation semantics,

the operator ⊛ is formally defined in the full version of this
article. This operator represents the evaluation of the events
in a set of events E in a base system or base system assump-
tion B.

In this semantics, all the events are evaluated immediately,
adding which events are detected to the atomic propositions
of each possible state in the base system.

The base system regards events as being evaluated all at
once, and in parallel due to their spectative nature. This
differs from the weaving of aspects into a base system as
presented in [9], where every state in the execution of the as-
pect is added to the woven model. Aspects are not instantly
evaluated as their execution is not necessarily spectative and
the state of the base system may change.

Note that in Figure 1 the basic units in the events take
several steps to execute. However, in the resulting semantics
event execution may be seen as immediate relative to the
base system because of the locality of the fields, that no
event affects the internal propositions of other events, and
that there are no dependencies cycles.

Events and observers detect interesting situations in the
base system, or collect information for certain paths of exe-
cution without affecting the state of the base system. This is
one of the more useful advantages in restricting verification
to events and observers rather than general aspects. Even
though the size of the model grows due to the possible in-
ternal states of the events, the execution of all the events
involved does not have to be represented at once, but only
the resulting internal states and detected events.

From now on, B ⊛E represents the base system with the
detection of all events in E. U will also serve to denote a
set of event declarations.

4.2 Specification

4.2.1 General idea
To prove a guarantee about an event E, E needs to assume

the correctness of the guarantees of events it uses (and the
same is true for a general aspect A).

The properties that an event must be proved to satisfy
may be categorized as:

1. The event is triggered in the correct places. This re-

quires defining exactly which sequence of situations
and contexts in the base system and previously verified
events should cause the current event to be triggered.
The specification is in terms of event detections, ex-
posed parameters and may as well include auxiliary
variables.

2. The parameters exposed by the event satisfy the in-
tended relations with the history of execution.

4.2.2 Specification definition
An event’s specification, 〈Ass,Guar〉 - representing the

assume and the guarantee - may be given in different spec-
ification languages. If the specification is given as a regular
expression, then the equivalent automaton is obtained and
it can be understood as a Moore Machine. If any of them is
given as a Moore machine, then the equivalent Kripke model
is built. If any of them is given as a CTL or LTL formula,
then its tableau is built.

In particular the specification of TwoCommits may be
expressed as 〈Ass,Guar〉 where Ass ≡ ¬commit (commit is
false in the initial state) and Guar is given in Figure 2. This
guarantee represents that every two occurrences of commit,
twocommits hold.

The guarantee of the event TwoCommits should be the
assumption of SixCommits. Then, SixCommits’ specifica-
tion is given by 〈GuarTwoCommits, GuarSixCommits〉.

The guarantee of SixCommits can be expressed as a Moore
machine, as in Figure 4 or as its equivalent Kripke model
presented in Figure 5.

When the event is intended to occur dependent on the
occurrence of other events, either after a sequence of other
events or the lack of events, the preferred specification is as a
regular expression of events or in state machines, where both
the specification and the event are given in that form. As-
pect specifications usually refer to what properties each state
must satisfy. Events, on the other hand, do not modify the
state of the base system and are specified by means of what
sequences of triggered event lead to them being detected,
and what properties their exposed parameters must satisfy.
Hence, aspects usually satisfy properties given in temporal
logic, over the atomic propositions that represent the state,
and events preserve the state so they refer to sequences of
states instead. For every possible sequence it must be de-
scribed whether it leads (or not) to the event to be detected
and which information is to be exposed. Temporal logic
expressions can be used to specify events, but become awk-
ward and unreadable very quickly when sequences of lower
level events must be expressed. Therefore we prefer regular
expressions or state machines.

Specifying a property that the parameters satisfy when
the event is detected may be defined by means of any of the
languages presented for specification and a similar verifica-
tion process can be applied.

4.3 Verification
Event verification consists in checking whether: given the

assumption Ass of E on the base system and used event
detectors, when detecting the event E, the guarantee Guar

is satisfied (expressing both when E is detected and what
must hold for parameters it then exposes).

In more formal notation, the goal in event verification is
to prove that B ⊛ E � Guar. This is, the base system
together with the event detection satisfies its specification.

9

Figure 2: Moore ma-

chine: GuarTwoCommits

Figure 3: Kripke

model: GuarTwoCommits

Figure 4: Moore machine: GuarSixCommits

However, in order to obtain a modular verification of events,
the assume guarantee model is used and the specification
will be given by 〈Ass,Guar〉. The goal will be to prove that
if Ass is the assumption about the base system and used
event detectors, and Ass ⊛ E � Guar, then for any base
system B and set of used event declarations U such that
B⊛U � Ass, it can be inferred that B⊛U ⊛E � Guar, this
is, the base system with all the event detectors incorporated
satisfies its guarantee. At this step, verification of events is
presented for a base system which has no aspects that may
affect the event woven into it. Verification of events together
with aspects woven will be analyzed in future work.

In particular, for the correctness in the detection of the
event, if there exists an assumption AssB on the base system
such that:

B � AssB

AssB ⊛ U ↾ APAss ≡ Ass (1)

Ass ⊛ E ↾ APGuar ≡ Guar (2)

Then:

AssB ⊛ U ⊛ E ↾ APGuar ≡ Guar

B ⊛ U ⊛ E � Guar

The previous inference expresses that:

• Given a base system that satisfies a certain assumption
AssB

• Given that the composition of this assumption with
the set of used event detectors is equivalent to the as-
sumption of the event, and

Figure 5: Kripke model: GuarSixCommits

Figure 6: SixCommits

Figure 7: GuarTwoCommits ⊛ SixCommits

• Given that an event E is proven to be correct with
respect to its specification

Then, the composition of the base system, used event detec-
tors and E satisfies the guarantee Guar.

In the previous inference, (1) may be proven using the
assume-guarantee model as well. In (1) and (2), proving the
bisimulation guarantees that there exist paths in the model
on the left side of the equation that behave as presented in
the guarantee. Ass, Guar and E must be given by the user
so as to verify that E satisfies its specification 〈Ass,Guar〉.

Considering the example, a base system B will be com-
posed with TwoCommits and SixCommits. The first step
is to prove TwoCommits is correct. When ¬commit is ini-
tially true, the tableau of the assumption together with the
model of the code of TwoCommits can be proven to satisfy
Figure 3. Turning to SixCommits, when its assumption
holds, the model of the code of SixCommits can be proven
to satisfy its guarantee as presented below.

The event SixCommits - with AP0 = {count = 0} con-
tains only one basic unit modeled in Figure 6. The event is
evaluated for each occurrence of twocommits. Every three
occurrences of twocommits, sixcommits is triggered.

The event evaluation of SixCommits is given by:
S = {u0, u1, u2, u3} × 2APSC where {u0, u1, u2, u3} are

the states from Figure 3 and APSC = {count = 0, count =
1, count = 2, ret, sixcommits}. S0 = {(u0, count = 0)}

Considering the definition of the relation between the states
and the event, the model in Figure 7 is obtained.

Restricting the model of GuarTwoCommits ⊛SixCommits

to the atomic propositions of the specification, it is exactly
the same model as given by the specification.

Therefore, effectively there is a homomorphism such that
GuarTwoCommits ⊛ SixCommits ≡ GuarSixCommits.

The previous procedure shows the correctness of SixCommits

with respect to its specification. Now, for any base system B

that satisfies ¬commit, B⊛TwoCommits is correct. More-
over, for any implementation of TwoCommits that satisfies
the guarantee presented in Figure 3, incorporating the eval-
uation of SixCommits will satisfy GuarSixCommits. Con-
sequently, it can be inferred that for any base system B

10

such that commit does not occur in the initial state, and
for the models of the code presented for TwoCommits and
SixCommits:

B ⊛ TwoCommits ⊛ SixCommits � GuarSixCommits

Note how the guarantee of a simpler event is used as an
assumption of one that uses it, and is incorporated into the
verification.

The previous verification may include information on what
values are exposed by the parameters. For the correctness
of the exposed parameters a simulation is enough to prove
the correctness and conclude that B ⊛ U ⊛ E � Guar.

The process of finding a homomorphism for � can be done
automatically by the algorithm presented in [10]. There are
also automatic methods for obtaining the structure equiva-
lent to a Moore machine or the tableau of a formula. The
only things remaining to the user to provide are the specifi-
cation and the model of the event expected to be verified.

5. CONCLUSIONS
Given the need to separate and abstract when an aspect

is applied from what aspects do, events were incorporated
in [3] aiming to identify when things should happen, and
being able to collect information, or be detected when par-
ticular sequences of other events occurrences. Moreover, ob-
servers and spectator aspects [5, 11] are part of current pro-
gramming practices in aspect-oriented programming. Due
to their spectative nature, events and observers may seem
trivial to be verified for correctness. However, other events
and aspects may use the information and detection of the
event, hence events must be verified to be correct when they
are triggered, and the information exposed must satisfy re-
quirements that other entities depend on.

Events may be thought of as spectative aspects with the
additional triggering action, the use of other events as con-
ditions, and restricted not to have output. This guarantees
non-interference between the events. No event can affect an-
other event - except by triggering itself, and none of them
may modify the state in the base system.

In this work a modular verification method for events is
introduced where the user is requested to present the as-
sumptions, the expected guarantees and the event itself to
be verified. Without additional intervention of the user the
property is verified relative to the specifications of the used
events. The use of the guarantees of events as assumptions
for other events is shown as well. For all the steps pre-
sented there are existing tools that perform the necessary
algorithms.

The users may follow the procedures presented in the arti-
cle to define their own specifications or use their own meth-
ods, using for example regular expressions or state machines.
Expressing sequences of events in a temporal logic formula
gets hard to read very easily.

In the full version of this summary (as noted, available
from the authors), a fuller semantic notation is presented,
as well as an additional example with Guar on the param-
eters, and detection involving the absence of other events.
In future work, the influence of events on aspects will be
analyzed, to give a complete hierarchical and compositional
formal verification algorithm for systems that include both
events and aspects. In this framework, as opposed to [9], the
assumptions about other events can be incorporated natu-
rally.

6. REFERENCES
[1] C. Allan, P. Avgustinov, A. S. Christensen,

L. Hendren, S. Kuzins, O. Lhoták, O. de Moor,
D. Sereni, G. Sittampalam, and J. Tibble. Adding
trace matching with free variables to aspectj.
SIGPLAN Not., 40:345–364, 2005.

[2] Y. Alperin-Tsimerman and S. Katz. Dataflow analysis
for properties of aspect systems. In Proceedings of 5th

Haifa Verification Conference, LNCS 6405, 2009.

[3] C. Bockisch, S. Malakuti, M. Aksit, and S. Katz.
Making aspects natural - events and composition. In
AOSD 2011 Modularity Visions Track, 2011.

[4] E. Bodden and V. Stolz. Tracechecks: Defining
semantic interfaces with temporal logic. In Software

Composition, 2006.

[5] C. Clifton and G. T. Leavens. Observers and
assistants: A proposal for modular aspect-oriented
reasoning. Technical report, Iowa State University,
Department of Computer Science, 2002.

[6] R. Douence, P. Fradet, and M. Südholt. Composition,
reuse and interaction analysis of stateful aspects. In
AOSD 2004, 2004.

[7] J. Edmund M. Clarke, O. Grumberg, and D. A. Peled.
Model Checking. MIT Press, 1999.

[8] O. Etzion and P. Niblett. Event Processing in Action.
Manning Press, 2010.

[9] M. Goldman, E. Katz, and S. Katz. Maven: modular
aspect verification and interference analysis. Formal

Methods in System Design, 37:61–92, 2010.

[10] O. Grumberg and D. E. Long. Model checking and
modular verification. ACM Trans. Program. Lang.

Syst., 16:843–871, 1994.

[11] S. Katz. Aspect categories and classes of temporal
properties. Transactions on Aspect-Oriented Software

Development I, LNCS 3880:106–134, 2006.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of aspectj.
In ECOOP, 2001.

[13] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In ECOOP, 1997.

[14] D. C. Luckham. The Power of Events: An

Introduction to Complex Event Processing in

Distributed Enterprise Systems. Addison-Wesley
Longman Publishing Co., Inc., 2001.

[15] O. Mishali and S. Katz. The highspectj framework. In
Proc. of the 8th workshop on Aspects, Components,

and Patterns for Infrastructure Software, 2009.

[16] M. Rinard, A. Salcianu, and S. Bugrara. A
classification system and analysis for aspect-oriented
programs. In Proc. of the 12th ACM SIGSOFT Symp.

on Foundations of Software Engineering, 2004.

[17] W. Vanderperren, D. Suvée, M. A. Cibrán, and B. D.
Fraine. Stateful aspects in jasco. In Software

Composition, 2005.

[18] N. Weston, F. Taiani, and A. Rashid. Interaction
analysis for fault-tolerance in aspect-oriented
programming. MeMoT’07, 2007.

11

12

Supporting covariant return types and generics
in type relaxed weaving

Tomoyuki Aotani
Japan Advanced Institute of

Science and Technology
aotani@jaist.ac.jp

Manabu Toyama
University of Tokyo

touyama@graco.c.u-
tokyo.ac.jp

Hidehiko Masuhara
University of Tokyo

masuhara@acm.org

ABSTRACT
This paper introduces our ongoing study on type safety of
the type relaxed weaving mechanism in the presence of two
Java 5 features, namely covariant return types and generics.
We point out additional conditions that are necessary to en-
sure type safety, which can be checked by a slightly modified
type checking rules for the type relaxed weaving.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-Oriented Pro-
gramming; D.3.3 [Programming Languages]: Language
Constructs and Features

General Terms
Languages

Keywords
Aspect-oriented programming, Type relaxed weaving, Co-
variant return types

1. INTRODUCTION
The around advice is one of the unique and important fea-

tures in the aspect-oriented programming (AOP) languages
based on the pointcut and advice mechanism [9] such as As-
pectJ [4,7]. It allows us to change the receiver and argument
values of method/constructor calls, and also to replace op-
erations with others without modifying the source code of
the program. There has been several studies that address
improving generality and/or applicability of around advice
[3, 8], as well as those design a formal calculus and study
type safety for AOP languages with around advice [1, 2, 6].

The type relaxed weaving [8] is a bytecode-level weaving
mechanism for AspectJ family of languages. It improves
applicability of around advice. It allows a piece of around
advice to have a different return type from those of the join
points where it is woven. We call such advice type-relaxing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOAL’11, March 21, 2011, Pernambuco, Brazil.
Copyright 2011 ACM 978-1-4503-0644-7/11/03 ...$10.00.

advice in this paper. Type safety of the type relaxed weav-
ing is proved formally based on an object-oriented calculus
called Featherweight Java for Relaxation (FJR) [8], which is
an extension to Featherweight Java [5].

This paper introduces our ongoing study on type safety
of the type relaxed weaving in the presence of advanced lan-
guage features that FJR does not have, especially, covariant
return types and generics. The covariant return type ex-
tension allows a class to override a method with a return
type smaller (more specific) than that of the method in its
superclass. The generics feature enables us to define generic
classes and methods through type parametrization.

The contributions of the paper are as follows:

• We point out additional conditions that are necessary
to ensure type safety of the type relaxed weaving in
the presence of covariant return types and generics.

• We show that a small modification to the constraint
generation algorithm for the original type relaxed weav-
ing is sufficient to support covariant return types.

The rest of the paper is organized as follows. We first visit
the type relaxed weaving and see the conditions that advice
should satisfy in Section 2. Section 3 shows the problem
to support covariant return types and generics. Section 4
explains the basic idea of our solution along with our type-
checking algorithm. Section 6 concludes the paper.

2. TYPE RELAXED WEAVING
The type relaxed weaving [8] is a type-safe bytecode-level

weaving mechanism for AspectJ. It allows around advice to
have a different return type from the join point shadows’ on
which it is woven. More specifically, it relaxes the typing
rule in AspectJ that restricts the return type of a piece of
around advice to either the return type of its target join
points or one of its subtypes.

Figure 1 is a simple example allowed by the type relaxed
weaving, but not allowed by AspectJ. Lines 1–9 are skele-
tons of three Java classes Object, Integer and BigInteger.
Lines 11–18 define the interface Stream and two classes In-

tegerStream and BigIntegerStream. Lines 20–26 defines a
method that creates a BigIntegerStream object, picks up
a BigInteger object from it and converts it into a String

object. The boxed string at line 23 is the signature of the
method call. Finally lines 29–31 define a piece of around
advice that replaces a BigIntegerStream object with an In-

tegerStream object upon creation.
If we ignore the static types of local variables, it is safe

to replace the expression new BigIntegerStream() at line

13

1 // Skeletons of Java classes

2 class Object{ String toString(){...} }

3 class Integer extends Object{

4 String toString(){...}

5 }

6 class BigInteger extends Object{

7 String toString(){...}

8 BigInteger abs(){...}

9 }

11 // Definitions of stream classes

12 interface Stream{ Object get(); }

13 class IntegerStream implements Stream{

14 Object get(){...}

15 }

16 class BigIntegerStream implements Stream{

17 Object get(){...}

18 }

20 //in a class

21 void m(){

22 BigIntegerStream bs = new BigIntegerStream();

23 Object o = bs.get(); Object BigIntegerStream.get()

24 String s = o.toString();

25 /* s is never used below */

26 }

28 //in an aspect

29 IntegerStream around():call(BigIntegerStream.new()){

30 return new IntegerStream();

31 }

Figure 1: Streams and type-relaxing advice

22 with new IntegerStream(). This is because each of the
classes is a subtype of Stream and the resulting object is
used only as a Stream object. Note that the assumption is
reasonable since local variables have no type information at
bytecode-level in Java.

Intuitively, the type relaxed weaving checks such condi-
tions in a Java bytecode program. Given a piece of around
advice a and a join point jp where a is applied to, it checks
consistency between the return type of a and the operations
that use the return value from jp. The usages are a method
(or constructor) call parameter, a method call target, a re-
turn value from a method, a field access target, an assigned
value to a field, an array access target and an exception to
throw.

In the example, the return type of the advice is Inte-

gerStream. The join point is new BigIntegerStream() at
line 22. The return value from the join point is used as the
target of a method call (line 23) whose signature is Object

BigIntegerStream.get().
We can safely change the receiver’s type in the signature

to Stream because the former overrides the latter and it
does not change the behavior of the program with respect
to the semantics of invokevirtual/invokeinterface. For
the same reason, we can safely invoke Stream.get() on an
IntegerStream object.

3. PROBLEM

1 // Redefining IntegerStream and BigIntegerStream

2 class IntegerStream{

3 Integer get(){...} //refining return type

4 }

5 class BigIntegerStream{

6 BigIntegerStream get(){...} //refining return type

7 }

8 //in a class

9 void m(){

10 BigIntegerStream s = new BigIntegerStream();

11 BigInteger i = s.get(); BigInteger BigIntegerStream.get()

12 BigInteger absi = i.abs();

13 /* s is never used */

14 }

15 /* and the same aspect*/

Figure 2: An example using covariant return types
that goes type-unsafe after the advice in Figure 1 is
woven

The type relaxed weaving is based on the Java 1.4 lan-
guage, which lacks recent features covariant return types and
generics. Supporting those features in type relaxed weaving
is not straightforward as we discuss below.

3.1 Support for covariant return types
It is not enough to care about the usage of the return

value from a join point when a class can override its super-
class’s method with a smaller return type. In this section
we assume that the language that employs the type relaxed
weaving, i.e., RelaxAJ [8], is slightly extended so that it can
accept covariance of the return type of a method in the base
code.

Figure 2 is a part of the program modified from Figure 1
in which IntegerStream and BigIntegerStream override the
method get with the smaller return types, namely Integer

and BigInteger in IntegerStream and BigIntegerStream,
respectively. The method m is also changed so that it calls
abs defined in BigInteger.

The around advice shown in Figure 1 can still be wo-
ven on the join point shadow new BigIntegerStream() at
line 10 in Figure 2 because the return value from the join
point is only used as the receiver object to invoke BigIn-

tegerStream.get(), which overrides Stream.get(). Again
invoking Stream.get() on IntegerStream is safe and thus
the condition of the type relaxed weaving is satisfied.

The woven code is, however, no longer type-safe. In fact,
invoking abs at line 12 fails because the receiver s is now
an Integer object, which is the return value of get invoked
on the return value of the around advice, that is, Inte-

gerStream.

3.2 Support for generics
Relaxing return types with type parameters has the same

problem to the covariant return types case.
Figure 3 shows an example from which the type relaxed

weaving would generate type-unsafe code by applying type-
relaxing advice. Lines 3–7 define a generic Stream class,
which is intended to be used instead of the Stream class and
the classes implementing it defined in the previous exam-

14

1 ...

2 // Stream class using generics

3 class Stream<X>{

4 X x;

5 Stream(X x){ this.x=x; }

6 X get(){...}

7 }

8 ...

9 //in some class

10 void m(){

11 Stream<BigInteger> s =

12 new Stream<BigInteger>(new BigInteger("0"));

13 BigInteger i = s.get(); Object Stream.get()

14 BigInteger absi = i.abs(); BigInteger BigInteger.abs()

15 /* s is never used below */

16 }

18 //in some aspect

19 Stream<Integer> around():

20 call(Stream.new(Object))&&!within(/*the aspect*/){

21 return new Stream<Integer>(new Integer("0"));

22 }

Figure 3: An example using generics that goes type-
unsafe after the advice is woven

ples. The method m is also modified so that it now uses the
generic Stream class instead of BigIntegerStream. It in-
vokes the method get at line 13, whose signature is Object

Stream.get().
Here we cannot know with which type the type parameter

X of Stream<X> should be replaced because such information
is erased in Java bytecode. The around advice is modified
similarly (lines 19–22), i.e., its pointcut specifies creations
of Stream objects and it returns a Stream<Int> object.

Because the pointcut matches new Stream at line 12 and
Object Stream.get() can be invoked on a Stream<Int> ob-
ject, it is allowed to weave the advice on the shadow.

The generated code is again no longer type-safe; it has an
invocation to abs on Integer, which always fails.

4. OUR APPROACH
This section first shows the basic idea of our solution to the

problems, and then gives the algorithm Gc for Featherweight
Java for Relaxation with covariant return types (FJRc) to
generate subtyping constraints from a given expression and
a type environment. The algorithm is a small extension to
the constraint generation algorithm G for FJR. Although
our algorithm does not support generics, it would be easy if
the base calculus FJRc is extended to support it.

4.1 Basic idea
The basic idea of our solution is to extend the consistency

checking rules so that they check the usage of the return val-
ues not only from the target join point but also the method
calls that uses values derived from it. The definition of de-
rived values is given below. If any inconsistencies are found,
the advice is rejected.

Let v and w be values. We say that a method m directly
derives v from w if w is the return value from a method call
v.m. We also say that w is derived from v if

Gc(Γ, x) = (∅,Γ(x))

Gc(Γ, let x = e1 in e2) =
let (Rc

1 , U1) = Gc(Γ, e1) in
let (Rc

2 , U2) = Gc((Γ, x:U1), e2) in
(Rc

1 ∪Rc
2 , U2)

Gc(Γ, e0.m(e1, · · · ,en)) =
let (Rc

0 , U0) = Gc(Γ, e0) in
let (Rc

1 , U1) = Gc(Γ, e1) in
...

let (Rc
n, Un) = Gc(Γ, en) in

let T→T = mtype(m, typeOf (e0)) in
let V =

⋃
mdeftypes(m, typeOf (e0)) in

(Rc
0 ∪Rc

1 ∪ · · · ∪ Rc
n ∪ {U <: T}

∪{U0 <: X, X <: V, λs.mrtype(m, sX) <: Y},
Y)
(for fresh X and Y)

Gc(Γ, new C()) = (∅, C)

Gc(Γ, (?e1:e2)) =
let (Rc

1 , U1) = Gc(Γ, e1) in
let (Rc

2 , U2) = Gc(Γ, e2) in
(Rc

1 ∪Rc
2 , U1 ∪ U2)

Figure 4: Modified constraint generation algorithm

• some method m directly derives w from v, or

• w is derived from v’ and v’ is derived from v for some
value v’.

In Figure 2, the return value from the join point new Big-

IntegerStream() at line 12 is assigned to s. We use the
variable names to denote the return values for simplicity. i

and absi are derived from s because i is directly derived
from s and absi is directly derived from i.

Our extended rules check whether the return type of the
method that directly derives i (resp. absi) and the opera-
tions that use i (resp. absi) are consistent if s is an Inte-

gerStream object. The operation s.get() directly derives i
and its return type is Object. i.abs() at line 12 uses i and
its signature is BigInteger BigInteger.abs(), which can
be no more relaxed and inconsistent with Object. Hence
the rules rejects the around advice (lines 29–31 in Figure 1).

4.2 Constraint generation algorithm
We design an algorithm for the extended consistency check-

ing rules on a small object-oriented language called Feath-
erweight Java for Relaxation with covariant return types
(FJRc), which is a simple extension to FJR [8]. In this sec-
tion we first give the syntax rules of FJRc, which is the same
to the ones of FJR, and the typing rules that are modified
to support covariant return types. Then we give the algo-
rithm Gc and explain it through a simple example. Proving
its formal correctness is not completed yet, which is left for
our future work.

15

The syntax rules of FJRcare the same to the ones of FJR:

CL ::= class C extends C implements I { M }

M ::= T m(T x) { return e; }

IF ::= interface I { S }

S ::= T m(T x);

e ::= x | e.m(e) | new C()

| let x = e in e | (?e:e)
S, T ::= C | I
U, V ::= T | U ∪ U

An overline denotes a sequence, e.g., x is shorthand for
x1,. . . ,xn. The metavariable C ranges over class names; I

ranges over interface names; m ranges over method names;
and x and y range over variables, which include the special
variable this.
CL is a class declaration, consisting of its name, a super-

class name, interface names that it implements, and methods
M; IF is an interface declaration, consisting of its name and
method headers S.

The syntax of expressions includes let expressions to il-
lustrate the cases when a value returned from around ad-
vice is used as values of different types. let is the only
binding construct of an expression and the variable x in
let x = e1 in e2 is bound in e2. It also includes non-
deterministic choice (?e:e) to handle the cases when a vari-
able contains values of different types.
S and T stand for simple types, i.e., class and interface

names, and will be used for types written down in classes
and interfaces. U and V stand for union types. For example,
a local variable of type C ∪ D may point to either an object
of class C or that of D.

To support covariant return types, we need to change
the typing rule T-Class, the predicate override and the
constraint generation algorithm G to allow each overriding
method to have a return type that is a subtype of the one
of the method in its superclass and interfaces.

The modified typing rule T-Class is given as follows:

∀m, I ∈ I.{
(mtype(m, I) = T→T0) =⇒ (mtypeC(m, C) = T→S0)
and S0<:T0

}
M OK IN C

class C extends D implements I { M } OK

(T-Class)

where mtype(m, I) and mtypeC(m, C) are the functions that
return It defines C is well-typed if all methods are well typed
and all methods declared in I are implemented in C with
signature that has a smaller return type.

The predicate override(m, C, T→T0), which checks whether
m is correctly overrides the method of the same name in C,
is modified similarly as follows:

(mtype(m, C) = S→S0) =⇒ S = T and S0<:T0

override(m, C, T→T0)

The modified constraint generation algorithm Gc (Figure
4) takes a type environment Γ and an expression e and re-
turns a set Rc of extended subtyping constraints and a type
U. An extended subtyping constraint is an inequality of the

1 Object m(){

2 return

3 let s = (?new BigIntegerStream():

4 new IntegerStream())

5 in let i = s.get() BigInteger BigIntegerStream.get()

6 in let absi = i.abs() BigInteger BigInteger.abs()

7 in new Object();

8 }

Figure 5: An example code of FJRc

form U <: V or λs.mrtype(m, sX) <: U where U and V range
over either simple types or variables X and Y, mrtype(m, T)
returns the return type of the method m in the simple type T,
and λs.mrtype(m, sX) is a function that takes a substitution
S of simple types T for type variables X and returns a simple
type mrtype(m, SX). typeOf (e) denotes the simple type of a
receiver e of a method invocation. mdeftypes(m, T) collects
the set of T’s supertypes that define m.

The case for method invocations is different from the orig-
inal constraint generation algorithm G. The type variable X

stands for the receiver type, which has to be a supertype
of the expression e0. X <: V guarantees that the receiver
type has method m whose argument types are T. The type
variable Y stands for the return type, which depends on the
receiver type. λs.mrtype(m, sX) <: Y represents this fact.

Example.
The method m in Figure 2 can be written in FJRc as

Figure 5. The return type is changed from void to Object

because FJRc does not have it. The around advice is woven
manually to lines 3–4 by using non-deterministic choice.

Our algorithm Gc correctly rejects the program as follows.
Applying Gc to lines 3–4, we get to know that the type
of s is BigInteger∪Integer. At line 5, Gc generates the
constraints: BigIntegerStream ∪ IntegerStream <: X1,

X1 <: BigIntegerStream ∪ Stream,
λs.mrtype(get, sX)<:Y1

Because BigIntegerStream∪Stream can be reduced to Stream,
Stream is the only candidate for X1. We can also reduce the
constraint for Y1 and get Object<:Y1, which indicates that
Y1 must be Object.

Evaluating Gc on i.abs() at line 6, we get the constraint:{
Y1 <: X2, X2 <: BigInteger, λs.mrtype(abs, sX2)<:Y2

}
It is not satisfiable because there is no simple type such that
Object <: X2 <: BigInteger.

5. RELATED WORK
Featherweight Aspect GJ (FAGJ) [6] is a small calculus

based on Featherweight GJ [5], which supports covariant
return types and generics. Its focus is on studying the in-
corporation of generic types in AspectJ family of languages,
i.e., the authors discuss about typeability and type safety
of aspect-oriented programs with generics for the case when
the information about type parameters is not available (as
in Java bytecode) as well as when it is (as in source code).

16

StrongAspectJ [3] is another calculus based on Feather-
weight Java, which focuses on improving generality of ad-
vice in a type-safe manner. It supports covariant return
types and generics, as FAGJ.

Our study can be seen as a first attempt to connect these
work and the type relaxed weaving.

6. CONCLUSIONS AND FUTURE WORK
In order to support the Java 5 features such as the covari-

ant return types and the generics, the type relaxed weaving
should be extended to check, in addition to the type us-
ages of the return value from a target join point, those of
the derived values from the return value. The additional
checks are straightforwardly incorporated into the type re-
laxed weaving by slightly modifying a rule for overriding a
method.

We also gave an extended constraint generation algorithm
for Featherweight Java for Relaxation with covariant return
types. Although the paper does not include the formaliza-
tion of the generics support, we presume that no special
extension is needed with respect to the consistency checks
of the derived values.

As well as proving the correctness of our constraint gen-
eration algorithm and implementing the compiler, generics
is left for our future work. An interesting technical chal-
lenge is to find a type parameters from an object creation
expression in Java bytecode, which employ the type-erasure
strategy for generics.

7. REFERENCES
[1] Curtis Clifton and Gary T. Leavens. MiniMAO1: An

imperative core language for studying aspect-oriented
reasoning. Science of Computer Programming,
63(3):321–374, 2006.

[2] Bruno De Fraine, Erik Ernst, and Mario Südholt.
Essential AOP: the A calculus. In Proceedings of
ECOOP’10, pages 101–125, 2010.

[3] Bruno De Fraine, Mario Südholt, and Viviane Jonckers.
StrongAspectJ: Flexible and safe pointcut/advice
bindings. In Proceedings of AOSD’08, pages 60–71,
2008.

[4] Erik Hilsdale and Jim Hugunin. Advice weaving in
AspectJ. In Proceedings of AOSD’04, pages 26–35,
2004.

[5] Atsushi Igarashi, Benjamin C. Pierce, and Philip
Wadler. Featherweight Java: a minimal core calculus
for Java and GJ. TOPLAS, 23(3):396–450, 2001.

[6] Radha Jagadeesan, Alan Jeffrey, and James Riely.
Typed parametric polymorphism for aspects. Science of
Computer Programming, 63(3):267–296, 2006.

[7] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik
Kersten, Jeffrey Palm, and William G. Griswold. An
overview of AspectJ. In Proceedings of ECOOP’01,
pages 327–353, 2001.

[8] Hidehiko Masuhara, Atsushi Igarashi, and Manabu
Toyama. Type relaxed weaving. In Proceedings of
AOSD’10, pages 121–132, 2010.

[9] Hidehiko Masuhara and Gregor Kiczales. Modeling
crosscutting in aspect-oriented mechanisms. In
Proceedings of ECOOP’03, pages 2–28, 2003.

17

18

A Semantics for Execution Levels with Exceptions

Ismael Figueroa
∗

PLEIAD Laboratory

Computer Science Department (DCC)

University of Chile – Santiago, Chile

ifiguero@dcc.uchile.cl

Éric Tanter
†

PLEIAD Laboratory

Computer Science Department (DCC)

University of Chile – Santiago, Chile

etanter@dcc.uchile.cl

ABSTRACT
Aspect-oriented languages are usually formulated as an extension
to existing languages, without paying any special attention to the
underlying exception handling mechanisms. Consequently, aspect
exceptions and handlers are no different than base exceptions and
handlers. Conflation between aspect and base exceptions and han-
dlers may inadvertently trigger execution of unintended handlers,
changing the expected program behavior: aspect exceptions are
accidentally caught by base handlers or vice-versa. Programmers
cannot state the desired interaction between aspect and base excep-
tions and handlers. Specific instances of this issue have been identi-
fied by others researchers. We distill the essence of the problem and
designate it as the exception conflation problem. Consequently, we
propose a semantics for an aspect-oriented language with execution
levels and an exception handling mechanism that solves the excep-
tion conflation problem. By default, the language ensures there is
no interaction between base and aspect exceptions and handlers,
and provides level-shifting operators to flexibly specify interaction
between them when required. We illustrate the benefits of our pro-
posal with a representative set of examples.

Categories and Subject Descriptors: D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms: Languages, Design

Keywords: Exception handling, aspect-oriented programming, ex-
ception conflation, execution levels

1. INTRODUCTION
Aspect-oriented languages aim at modularizing crosscutting con-

cerns. Well-known aspect-oriented languages, like AspectJ, define
crosscutting behavior using pointcuts and advices: join points are
interesting events raised during program execution, pointcuts are
predicates over join points to determine the application of advice.
Advice is code that executes after, before or instead of the compu-

∗Funded by a CONICYT Doctoral Scolarship.
†Partially funded by FONDECYT Project 1110051.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOAL’11, March 21, 2011, Pernambuco, Brazil.
Copyright 2011 ACM 978-1-4503-0644-7/11/03 ...$10.00.

1 class A {

2 public void foo() {

3 Integer configValue;

4 try { configValue = getConfiguration();

5 } catch(Exception ex) { configValue = DEFAULT}}

6 }

7 aspect Logging {

8 Object around() : call(Integer getConfiguration()) {

9 logger.append("Calling getConfiguration’’); // FileNotFoundException

10 return proceed();}

11 }

Listing 1: Base handler catches aspect exception

tation represented by a join point. An aspect is an abstraction to
specify crosscutting behavior.

Exceptions are a mechanism to deal with abnormal states of
computation in a uniform and modular way by a lexical separa-
tion between normal and error handling code. When an abnormal
situation ocurrs, an exception is thrown and then propagates dy-
namically through the call stack in search for a suitable handler. A
handler is a special code section which executes receiving an ex-
ception as parameter. If a handler is not found the exception is
uncaught, usually aborting program execution.

Subtle interactions between aspect and base exceptions and han-
dlers may arise. Aspect exceptions may be inadvertently handled
by base handlers. Conversely, base exceptions may be caught by as-
pect handlers. For example, consider the AspectJ code of Listing 1.
The foo method calls getConfiguration to set configValue. In case of
failure, a default value is used. A Logging aspect advises around
the getConfiguration method. If the logger object cannot find the
log file it shall fail and throw a FileNotFoundException, which is
caught by the base handler. Thus, the default value is used because
the aspect failed, even in cases where getConfiguration would have
returned normally.

This situation arises because the exception handling mechanism
merges aspect and base handlers and exceptions in a flat structure.
We call this situation the exception conflation problem. The ex-
ception conflation problem is a generalization of the Late Binding
Handler Pattern of Coelho et al., which is described as: “...happens
when an aspect is created to handle an exception, but the aspect in-
tercepts a point in the program execution where the exception to be
caught was already caught by a handler in the method call chain
that connects the exception signaler to the aspect handler” [4].

In this paper we propose a semantics for an aspect-oriented lan-
guage that discriminates aspect and base exceptions using execu-
tion levels, extending Tanter’s original proposal [10]. The language
ensures that by default there is no interference between aspect and
base exceptions and provides level-shifting operators to flexibly

19

pc()

..move(..)..

call

pcexec

..setX(..)..

call

ctx
adv(..ctx..)

advexec

..before.. (proceed p) ..after..

Figure 1: Execution levels in action: pointcut and advice are
evaluated at level 1, proceed goes back to level 0 (from [10]).

specify their interactions when required. We illustrate the bene-
fits of our proposal showing representative examples of interaction
between aspect and base exceptions and handlers.

The rest of this paper is structured as follows: Section 2 recalls
the notion of execution levels, Section 3 defines the semantics of
the proposed language, Section 4 shows the applications of this
language to exception handling issues, Section 5 discusses related
work, and Section 6 concludes.

2. EXECUTION LEVELS IN A NUTSHELL
We first summarize the proposal of execution levels. An aspect

observes the execution of a program through its pointcuts, and af-
fects it with its advice. An advice is a piece of code, and there-
fore its execution also produces join points. Similarly, pointcuts
as well can produce join points. For instance, in AspectJ, one can
use an if pointcut designator to specify an arbitrary Java expres-
sion that ought to be true for the pointcut to match. The evaluation
of this expression is a computation that produces join points. In
higher-order aspect languages like AspectScript [12] and others,
all pointcuts and advice are standard functions, whose application
and evaluation produce join points as well.

The fact that aspectual computation produces join points raises
the crucial issue of the visibility of these join points. In most lan-
guages, aspectual computation is visible to all aspects—including
themselves. This of course opens the door to infinite regression
and unwanted interference between aspects. These issues are typ-
ically addressed with ad-hoc checks (e.g. using !within and cflow
checks in AspectJ) or primitive mechanisms (like AspectScheme’s
app/prim). However, all these approaches eventually fall short for
they fail to address the fundamental problem, which is that of con-
flating levels that ought to be kept separate [2].

In order to address the above issue, Tanter proposed execution
levels for AOP [10]. A program computation is structured in lev-
els. Computation happening at level 0 produces join points observ-
able at level 1 only. Aspects are deployed at a particular level, and
observe only join points at that level. This means that an aspect
deployed at level 1 only observes join points produced by level-0
computation. In turn, the computation of an aspect (i.e. the eval-
uation of its pointcuts and advice) is reified as join points visible
at the level immediately above: therefore, the activity of an aspect
standing at level 1 produces join points at level 2.

An aspect that acts around a join point can invoke the original
computation. For instance, in AspectJ, this is done by invoking
proceed in the advice body. The original computation ought to run
at the same level at which it originated!1 In order to address this

1This issue is precisely why using control flow checks in AspectJ
in order to discriminate advice computation is actually flawed.
See [10] for more details.

issue, it is important to remember that when several aspects match
the same join point, the corresponding advice are chained, such
that calling proceed in advice k triggers advice k + 1. Therefore,
the semantics of execution levels guarantees that the last call to
proceed in a chain of advice triggers the original computation at
the lower original level.

This is shown in Figure 1. A call to a move method in the pro-
gram produces a call join point (at level 1), against which a point-
cut pc is evaluated. The evaluation of pc produces join points at
level 2. If the pointcut matches, it passes context information ctx
to the advice. Advice execution produces join points at level 2,
except for proceed: control goes back to level 0 to perform the
original computation, then goes back to level 1 for the after part of
the advice.
Level-shifting operators. The default semantics of execution levels
treats aspects as a meta-level computation. However, in some cases,
advice execution should be visible to aspects that observe base level
execution. To reconcile both approaches, Tanter proposed explicit
level-shifting operators: up and down. Shifting an expression us-
ing up or down moves its computation one level above or below, af-
fecting the visibility of its join points. With these operators the pro-
grammer can specify the level at which computation is performed,
according to specific needs.
Level-capturing functions. Certain applications require delayed
execution of operations, for example: a prioritized command queue
may accumulate a number of requests before executing them or a
task scheduler may execute certain tasks at determined time inter-
vals. In these cases, the operations may not be performed in the
same execution thread in which they were declared, so the control
flow checks to avoid regression problems fail. In addition, the exe-
cution may be performed at a different level than when it was post-
poned. To address this issue Tanter introduces level-capturing func-
tions that keep track of the level at which they were declared. When
a level-capturing function is executed, the execution level shifts to
the function-captured level, and then shifts back afterwards.

By separating execution into levels, unwanted interactions be-
tween aspects are avoided. For instance, it becomes possible to
reuse off-the-shelf dynamic analysis aspects and apply them to a
given program, and/or aspects, with consistent semantics [11].

3. SEMANTICS
In this section we first recall the core syntax and semantics of

Tanter’s original proposal [10], which we then extend with excep-
tion handling. The complete semantics for the original language
and the exception handling extensions are defined using PLT Re-
dex, a domain-specific language for specifying reduction seman-
tics [5]. The complete semantics implementation, along an exe-
cutable test suite, and examples shown in Section 4 are available at
http://pleiad.cl/research/scope.

3.1 Original Semantics
Tanter’s proposal defines a simple Scheme-like language with

higher-order aspects, and execution levels as described in Section 2.
The language has booleans, numbers and lists, primitives functions
to operate on these, and an internal app/prim operator to apply
functions without generating join points [10]. Figure 2 shows the
core syntax and reduction rules of the language. The user-visible
expressions are values, identifiers, if statements, multi-arity func-
tion application, and aspect deployment. These are shown in bold
font. The other expressions shown in the figure are related to level-
shifting operations, and are shown with typewriter font.

A reduction relation �→ describes the operational semantics of

20

V alue v ::= (λ(x · · ·) e) | (λ•(x · · ·) e)
| n | #t | #f
| (list v · · ·) | prim | unspecified

prim ::= deploy | list | cons | car | cdr
| empty? | eq? | + | − | . . .

Expr e ::= v | x | (e e · · ·) | (if e e e)

| (up e) | (down e)
| (in-up e) | (in-down e)
| (in-shift(e))
| (app/prim e e · · ·)

v ∈ V , the set of values
n ∈ N , the set of numbers
list ∈ L , the set of lists
x ∈ X , the set of variable names
e ∈ E , the set of expressions

EvalCtx E ::= [] | (v · · · E e · · ·) | (if E e e)
| (up E) | (down E)
| (in-up E) | (in-down E)
| (in-shift(l) E)
| (app/prim v · · · E e · · ·)

�l, J, E[(up e)]� �→ �l + 1, J, E[(in-up e)]� INUP
�l, J, E[(in-up v)]� �→ �l − 1, J, E[v]� OUTUP

�l, J, E[(down e)]� �→ �l − 1, J, E[(in-down e)]� INDWN
�l, J, E[(in-down v)]� �→ �l + 1, J, E[v]� OUTDWN
�l, J, E[(λ•(x · · ·) e)� CAPTURE

�→ �l, J, E[(λl(x · · ·) e)]�

�l, J, E[(app/prim (λ(x · · ·) e) v · · ·)]� APPPRIM

�→ �l, J, E[e{v · · · /x · · · }]�
�l1, J, E[(app/prim (λl2(x · · ·) e) v · · ·)]� APPSHIFT

�→ �l2, J, E[(in-shift(l1) e{v · · · /x · · · })]�

�l2, J, E[(in-shift(l1) v)� �→ �l1, J, E[v]� SHIFT

Figure 2: Core syntax and reduction rules of the language.

our language using reduction steps. The relation �→ is defined as
follows2: �→: L ×J × E → L ×J × E

An evaluation context consists of an execution level l ∈ L , a
join point stack J ∈ J and an expression e ∈ E . The reduc-
tion relation takes a level, a join point stack, and an expression and
maps this to a new evaluation step. Join point definition, aspect
deployment and the weaving mechanism is described in [10]. The
exception handling extension does not alter these definitions nor
any reduction rules of the original language.
Primitive application. The language features a primitive function
application, app/prim, that does not generate join points. It per-
forms a simple βv reduction of the expression. This mechanism is
required for tasks such as the initial application of the composed ad-
vice chain (and its recursive calls), and to perform the original com-
putation when all aspects (if any) have proceeded. This is shown in
rule APPPRIM.
Level-shifting operators. The up (down) level-shifting operator
embeds its inner expression in an in-up (in-down) expression,
which increases (lowers) the current execution level. When the
embedded expression is reduced to a value, the execution level is
decreased (increased) to the original level. This is specified by the

2The complete semantics we provide includes the aspect environ-
ment in the reduction rules, omitted here for simplicity.

rules INUP, INDWN, OUTUP, OUTDWN. Aspect weaving ensures
that pointcuts and advices are evaluated with up, and that the last
proceed in the chain is evaluated with down [10].
Level-capturing functions. Level-capturing functions are defined
using λ•. A function value bound to level l is denoted λl. Rule
CAPTURE shows that when a level-capturing function is defined, it
is tagged with the current execution level. Rule APPSHIFT shows
that when a level-capturing function is applied, it embeds the reduc-
tion of the application in an in-shift expression. By rule SHIFT,
when the expression reduces to a value, the execution level shifts
back to the level embedded in the in-shift form.
Aspect deployment. Aspects can be dynamically deployed. The de-
ploy expression takes a pointcut and an advice and adds the aspect
to the current aspect environment. To deploy aspects of aspects we
use the level-shifting operators to shift the level at which the deploy
expression is evaluated. The complete rules for aspect deployment
are shown in Tanter’s proposal [10], and are not changed in our
proposal.

3.2 Exception Handling Semantics
We introduce a standard exception handling mechanism [9], us-

ing the extensions shown in Figure 3. We extend the user-visible
syntax with the raise and try-with expressions and their respective
evaluation contexts. We also define an Exception normal form an-
notated with the level at the which the exception was raised. Then
we add reduction rules to specify the semantics of the raise and
try-with expression. In essence, our proposal consists in tagging
exceptions and handlers with their respective execution level; then,
an exception is only caught by a suitable handler if they are both
bound at the same level.
Safe default. A try e with eh expression contains a protected ex-
pression e and a handler expression eh. If an exception is raised
during the reduction of e, eh is evaluated, and the resulting func-
tion is applied to the exception, only if the level of the exception
matches the level of the handler. This default semantics ensures
that there is no interaction between aspect and base exceptions and
handler. For instance, if there are no explicit level shifts, the com-
putation of e happens at level 0. If an exception is thrown by the
base code, it will be a level-0 exception, which will therefore be
caught by the handler. Conversely, if the exception is thrown in an
aspect (at level 1), the handler will not catch the exception.

Certainly, there are situations where interaction is desired. To
this end, we exploit the fact that the handler is an expression to
be evaluated to install a handler in an upper (or lower) level us-
ing level-capturing functions and level shifting operators. This is
illustrated in Section 4.
Raising exceptions. The raise expression signals an exception that
embeds a value to carry information to the handler. Rule RAISE-
CAPTURE creates a tagged exception, which holds the execution
level at which the exception is raised. An exception bound at level
l is denoted (raiselv).
Exception propagation. The rule RERAISE deals with exception
propagation in nested raise expressions. An exception propagates
through the in-up and in-down expressions maintaining its tagged
level. For simplicity we omit the propagation rules here. They are
present in the downloadable complete semantics specification.
Handling exceptions. As reflected by rule TRYV, if the protected
expression of a try-with reduces to a value, the whole try-with
expression reduces to that value. Otherwise, the reduction is de-
termined by one of these rules: HNDEX1, HNDPROP1, HNDEX2
and HNDPROP2. It is important to observe that the try ex with E
execution context ensures that the handler expression is only eval-

21

Expr e ::= · · · | (raise e) | (try e with e)

Exception ex ::= (raisel v)

EvalCtx E ::= · · · | (raise E) | (try E with e)
| (try ex with E)

�l, J, E[(raise v)]� RAISECAPTURE

�→ �l, J, E[(raisel v)]�

�l, J, E[(raise (raisel1 e))]� RERAISE

�→ �l, J, E[(raisel1 e)]�

�l, J, E[(try v with e)]� TRYV

�→ �l1, J, E[v]�

�l, J, E[(try (raisel v) with (λ(x · · ·) e)]� HNDEX1

�→ �l, J, E[((λ(x · · ·) e) v)]�

�l, J, E[(try (raisel1 v) with (λ(x · · ·) e))]� HNDPROP1

�→ �l, J, E[(raisel1 v)]� where l1 �= l

�l, J, E[(try (raisel1 v) with (λl1(x · · ·) e)]� HNDEX2

�→ �l1, J, E[(in-shift(l) ((λl1(x · · ·) e) v))]�

�l, J, E[(try (raisel1 v) with (λl2(x · · ·) e))]� HNDPROP2

�→ �l, J, E[(raisel1 v)]� where l1 �= l2

Figure 3: Exception handling extensions.

uated when an exception is raised in the evaluation of the protected
expression.

The HNDEX1 and HNDPROP1 rules deal with normal function
handlers: if the exception level matches the current execution level,
the handler is applied; else, the exception propagates in search of a
suitable handler. Rules HNDEX2 and HNDPROP2 deal with level-
capturing function handlers: regardless of the current execution
level, if the exception and handler level match then the handler is
applied shifting the current execution level to the level of the han-
dler; otherwise the exception keeps its propagation.

4. APPLICATIONS
To illustrate the benefits of our proposal, in this section we show

a set of four representative examples of interaction between aspect
and base exceptions and handlers: no interference between base ex-
ceptions and aspect handlers (Listing 2); no interference between
base handlers and aspect exceptions (Listing 3); an aspect han-
dler catching a base level exception (Listing 4), and a base handler
catching an aspect exception (Listing 5). These minimal examples
show that the semantics proposed in Section 3.2 solve the exception
conflation problem, while still enabling interesting programming
patterns, like aspects explicitly handling base exceptions.

For all the examples we assume that the pointcut associated to
the advice matches any function call. The advice is a function
which receives at least two parameters: p is the call to proceed, and
c is the return value of the pointcut application to the join point. We
also assume that the aspect is bound at level 1, so it observes only
joint points emitted from base function calls.

Additional parameters are required for each parameter of the ad-

vised function. In all the examples each function takes exactly one
argument, so each advice has three parameters: p, c, and arg which
holds the value of the advised function parameter.

In Listing 2 the function of the normal expression in the try-with
generates a call join point at level 1; the pointcut matches the join
point and the advice raises an exception at level 1. The exception
propagates back to the try-with expression and as the handler is
at level 0, the exception is not caught. In consequence, the base
expression reduces to (raise1

#f).

1 ;; Advice

2 (λ (p c arg) (raise #f))

3

4 ;; Base code

5 (try ((λ (x) x) #t) with (λ (ex) ex))

Listing 2: By default there is no interference between base
exceptions and aspect handlers. Base expression evaluates to
(raise1 #f).

In Listing 3 the base generates a call join point at level 0; when
the advice calls the proceed function p, an exception is raised at
level 0 (remember that the last call to proceed executes at the orig-
inal level, see Section 2) and as the handler in the advice is at level
1 the exception is uncaught. Thus, the base expression reduces to
(raise0

#f).

1 ;; Advice

2 (λ (p c arg) (try (p arg) with (λ (ex) ex)))

3

4 ;; Base code

5 ((λ (x) (raise #f)) #f)

Listing 3: By default there is no interference between aspect
exceptions and base handlers. Base expression evaluates to
(raise0 #f).

Listing 4 shows the same situation as in Listing 3, except for the
handler in the advice code. In this case, we shift down the eval-
uation of a level-capturing function using the down level-shifting
operator. This causes the handler function to be bound at level 0.
When the call to proceed raises the exception bound at level 0, the
handler catches it because they are both bound to the same level.
Note that the handler execution is a function application that hap-
pens at the level the handler is bound. This application also gen-
erates a call join point at level 0, and the advice applies again, but
in this case no exception is raised in the call to proceed. Hence the
original base code expression reduces to #f.

1 ;; Advice

2 (λ (p c arg) (try (p arg) with (down (λ• (ex) ex))))

3

4 ;; Base code

5 ((λ (x) (raise #f)) #f)

Listing 4: Using a level-capturing function and the down level-
shifting operator to catch a base exception in an aspect handler.
Base expression evaluates to #f.

Finally, Listing 5 shows the same situation as in Listing 2, but
with a different handler. In this case we use the up level-shifting
operator to bind the handler function at level 1. When the aspect ex-
ception propagates to the try-with expression, the handler catches
the exception and executes at level 1. In this case the advice does

22

not execute again because the call join generates at level 2, and the
aspect does not see it.

1 ;; Advice

2 (λ (p c arg) (raise #f))

3

4 ;; Base code

5 (try ((λ (x) x) #t) with (up (λ• (ex) ex))

Listing 5: Using a level-capturing function and the up level-
shifting operator to catch an aspect exception in a base handler.
Base expression evaluates to #t.

For each example, the handler has a normal function or a level-
capturing function. The dual situation in which the handler is of the
other kind is omitted. In the examples of Listing 2 and Listing 3
the program evaluates to the same result using a level-capturing
function. In the other two examples, using a non level-capturing
function the handler level does not match the exception level so the
exception propagates.

The examples show the key interactions between aspect and base
handlers and exceptions, and the mechanism that our semantics
provide to the programmer to specify the desired interaction. Other
situations like aspects of aspects can be reduced to one of the ex-
amples.

5. RELATED WORK
The first approach dealing with exception handling as a cross-

cutting concern was the study done by Lippert and Lopes [8]. They
refactored a Java business application framework, called JWAM,
using an old version of AspectJ to separate normal code from er-
ror handling code, in order to promote independent evolution and
reusability of each section. They significantly reduced the LOC
in the framework, managed to reuse common exception handling
code and described several limitations of the AspectJ version used.

Castor Filho et al. [7] studied the adequacy of AspectJ for mo-
dularizing and reusing exception-handling code. They studied five
systems: four object-oriented and one aspect-oriented. The object-
oriented systems had their exception-handling code refactored to
exception aspects. They obtained quantitative results applying a
metrics suite based on four quality attributes: separation of con-
cerns, coupling, cohesion and conciseness, to the systems. They
also obtained qualitative results, they discuss several issues like
best practices for aspect-oriented exception handling, interaction
between exception-handling aspects and other aspects and scala-
bility issues. Their main conclusions are that the mere use of as-
pects to handle exceptions is not sufficient to improve the quality
of software, a careful design from the early phases of development
is required to properly aspectize exception handling. A follow-up
study addresses different design scenarios to aspectize exception
handling in object-oriented systems [6].

Coelho et al. [3] study the interaction between aspects and ex-
ceptions in three systems with a Java and AspectJ versions avail-
able. They categorized the exception paths in the systems and the
most common handlers strategies. Using their own static analysis
tool they compare the object-oriented and aspect-oriented versions
of each system. Using this information they developed a catalogue
of exception-handling bug patterns in aspect-oriented programs [4].

6. CONCLUSION AND FUTURE WORK
In this paper we showed that interaction between aspect and base

exceptions and handlers is prone to unintended execution of han-
dlers and a lack of flexibility for the programmer. This situation

ocurrs because the exception handling mechanisms do not distin-
guish between aspect and base exceptions. As a solution, we de-
signed and described the semantics of a higher-order aspect lan-
guage with execution levels and exceptions. Our language by de-
fault ensures there is no interaction between aspect and base han-
dlers and exceptions and provides level-shifting operators to spec-
ify the interaction between them. We then showed four represen-
tative examples of interaction between aspects and base exceptions
and how our language solves the exception conflation problem by
default, and still provides the necessary flexibility when needed.

To further illustrate the benefits of our proposal, we plan to ex-
tend the AspectJ implementation with execution levels described
by Tanter et al. in [11] with our exception handling semantics. Us-
ing this implementation we will make case studies similar to the
ones done by Coelho et al. in [3], as well as some others like using
the Contract4J design-by-contract framework. Other issues to con-
sider are the interactions between exception handling mechanisms
and the type system, the contrasts between languages with checked
and unchecked exceptions, such as Java and C#; and the presence
of finally blocks.

7. REFERENCES
[1] Proceedings of the 9th ACM International Conference on

Aspect-Oriented Software Development (AOSD 2010), Rennes and
Saint Malo, France, Mar. 2010. ACM Press.

[2] S. Chiba, G. Kiczales, and J. Lamping. Avoiding confusion in
metacircularity: The meta-helix. In Proceedings of the 2nd
International Symposium on Object Technologies for Advanced
Software (ISOTAS’96), volume 1049 of Lecture Notes in Computer
Science, pages 157–172. Springer-Verlag, 1996.

[3] R. Coelho, A. Rashid, A. Garcia, N. Cacho, U. Kulesza, A. Staa, and
C. Lucena. Assessing the impact of aspects on exception flows: An
exploratory study. In J. Vitek, editor, Proceedings of the 22nd
European Conference on Object-oriented Programming (ECOOP
2008), number 5142 in Lecture Notes in Computer Science, pages
207–234, Paphos, Cyprus, july 2008. Springer-Verlag.

[4] R. Coelho, A. Rashid, A. von Staa, J. Noble, U. Kulesza, and
C. Lucena. A catalogue of bug patterns for exception handling in
aspect-oriented programs. In PLoP ’08: Proceedings of the 15th
Conference on Pattern Languages of Programs, pages 1–13, New
York, NY, USA, 2008. ACM.

[5] M. Felleisen, R. B. Findler, and M. Flatt. Semantics Engineering
with PLT Redex. MIT Press, 2009.

[6] F. Filho, A. Garcia, and C. Rubira. Extracting error handling to
aspects: A cookbook. In Software Maintenance, 2007. ICSM 2007.
IEEE International Conference on, pages 134 –143, Oct. 2007.

[7] F. C. Filho, N. Cacho, E. Figueiredo, R. Maranhão, A. Garcia, and
C. M. F. Rubira. Exceptions and aspects: the devil is in the details. In
Proceedings of the 14th ACM SIGSOFT international symposium on
Foundations of software engineering, SIGSOFT ’06/FSE-14, pages
152–162, New York, NY, USA, 2006. ACM.

[8] M. Lippert and C. V. Lopes. A study on exception detection and
handling using aspect-oriented programming. In ICSE ’00:
Proceedings of the 22nd international conference on Software
engineering, New York, NY, USA, 2000. ACM.

[9] B. C. Pierce. Types and programming languages. MIT Press,
Cambridge, MA, USA, 2002.

[10] É. Tanter. Execution levels for aspect-oriented programming. In
AOSD 2010 [1], pages 37–48. Best Paper Award.

[11] É. Tanter, P. Moret, W. Binder, and D. Ansaloni. Composition of
dynamic analysis aspects. In Proceedings of the 9th ACM SIGPLAN
International Conference on Generative Programming and
Component Engineering (GPCE 2010), pages 113–122, Eindhoven,
The Netherlands, Oct. 2010. ACM Press.

[12] R. Toledo, P. Leger, and É. Tanter. AspectScript: Expressive aspects
for the Web. In AOSD 2010 [1], pages 13–24.

23

24

ContextFJ:
A Minimal Core Calculus for Context-oriented Programming

Robert Hirschfeld
Hasso-Plattner-Institut Potsdam
hirschfeld@hpi.uni-potsdam.de

Atsushi Igarashi
Kyoto University

igarashi@kuis.kyoto-u.ac.jp

Hidehiko Masuhara
The University of Tokyo

masuhara@acm.org

Abstract
We develop a minimal core calculus called ContextFJ to model lan-
guage mechanisms for context-oriented programming (COP). Un-
like other formal models of COP, ContextFJ has a direct operational
semantics that can serve as a precise description of the core of COP
languages. We also discuss a simple type system that helps to pre-
vent undefined methods from being accessed via proceed.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features

General Terms Language, Theory

Keywords Context-oriented programming, operational semantics

1. Introduction
Context-oriented programming (COP) is an approach to improv-
ing modularity of behavioral variations that depend on the dynamic
context of the execution environment [7]. In traditional program-
ming paradigms, such behavioral variations tend to be scattered
over several modules, and system architectures that support their
dynamic composition are often complicated.

Many COP extensions including those designed on top of
Java [2], Smalltalk [6], Common Lisp [4] and JavaScript [10], are
based on object-oriented programming languages and introduce
layers of partial methods for defining and organizing behavioral
variations, and layer activation mechanisms for layer selection and
composition. A partial method in a layer is a method that can run
before, after, or around the same (partial) method defined in a dif-
ferent layer or a class. A layer groups related partial methods and
can be (de)activated at run-time. It so contributes to the specific be-
havior of a set of objects in response to messages sent and received.

In this paper, we report on our ongoing work on a formal model
of core language features of COP. We present a small calculus
called ContextFJ that is an extension of Featherweight Java (FJ) [8].
As the first step, we severely limit the supported language features
in ContextFJ so as to make the calculus simple yet expressive
enough to add more interesting features in future. In addition to
the usual features of FJ, it supports around-type (i.e., overriding)
partial methods, dynamic activation and deactivation of layers, and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
FOAL’11, March 21, 2011, Pernambuco, Brazil.
Copyright c© 2011 ACM 978-1-4503-0644-7/11/03. . . $10.00

proceed and super calls. Aside from the Java features FJ already
omits, ContextFJ does not (yet) support first-class layers that can be
passed around via arguments or variables, stateful layers that allow
to share state between partial methods or associated objects, and
before and after methods.

We give a small-step reduction semantics to model the behavior
of COP programs directly without using translation to a language
without COP features. As far as we know, this is a first direct
semantics of COP features. Such direct semantics can serve as a
precise specification of the core of COP languages.

We also discuss a type system for ContextFJ. As usual, the
task of a type system is to statically guarantee the absence of
run-time field-not-found and method-not-found errors. However,
since in COP the presence of a method definition in a given class
may depend on whether a particular layer is activated or not, this
task is much harder. As a starting point, we develop a simple
but restrictive type system, which allows partial methods only for
existing methods in classes. We state that this simple type system is
sound; a full version of the paper, available at http://www.sato.
kuis.kyoto-u.ac.jp/~igarashi/papers/, includes proofs.

The rest of the paper is organized as follows. We first start with
reviewing the language mechanisms for COP in Section 2. Sec-
tion 3 defines the syntax and operational semantics of ContextFJ
and Section 4 defines a simple type system. We discuss related and
future work in Section 5.

2. Language Constructs for COP
2.1 Partial Method Definitions and Layers
We briefly review basic constructs along with their usage. In our
example, behavioral variations are expressed as partial method
definitions and related method definitions are grouped in layers.

class Person {
String name, residence, employer;
Person(String _name, String _residence,

String _employer) {
name = _name; residence = _residence;
employer = _employer;

}
String toString() { return "Name: " + name; }
layer Contact {
String toString() {

return
proceed() + "; Residence: " + residence;

}}
layer Employment {
String toString() {

return proceed() + "; Affil.: " + employer;
}}}

25

Class Person defines three fields name, residence, and
employer (all of type String) that will be initialized during object
creation. It also defines the toString() method to show object-
specific information referred to in its fields.

The base definition incorporates the name field in the textual
representation. It belongs to the so-called base layer and with that
is effective for all instances of Person (and its subclasses).

The one refinement is implemented as a partial definition of the
same method in class Person and associated with the Contact
layer. (COP layers are usually used to group more than one par-
tial method definition, but as an illustrating example for ContextFJ,
having one layer holding on to one partial method definition will
suffice.) Our partial definition of toString() appends informa-
tion from the residence field that might be useful for further cor-
respondence. It belongs to the Contact layer and is only effective
if Contact is active.

The other refinement is associated with the Employment layer
and differs from the second refinement in the field, now employer,
that it deals with.

In our example, the partial definitions of toString() call the
special method proceed() to invoke other partial definitions of
toString() contributed by layers that were already active before
the activation of the Contact or the Employment layer, or to
invoke the base-level implementation of this method (here provided
by class Person).

proceed(...) is similar to super as it allows for call-
ing other behavior previously defined in the composition path:
Whereas super changes the starting point of the method lookup
to the superclass of the class the (partial) method was defined in,
proceed(...) will try to find the next partial or base-level def-
inition of the same method. If proceed(...) cannot find such a
partial method in the current receiver class or the active layers as-
sociated with it, lookup continues in the superclass of the current
lookup class. Lookup is statically guaranteed to succeed as we will
see in Section 4.

2.2 Layer Activation and Deactivation
Layers are explicitly activated or deactivated using the with and
without constructs respectively. In the following transcript, we
show the application of theses constructs to an instance of class
Person.

Person atsushi =
new Person("Atsushi", "Kyoto", "Kyodai");

Printing our object to the standard output stream via println(...)
with no layers activated leads to directly calling our base-level im-
plementation that returns a description covering only the name of
the object.

System.out.println(atsushi);
=> "Name: Atsushi"

However, if we put a with statement activating the Contact
layer around this code, the same attempt to print out our object
leads to first calling our partial definition of toString() con-
tributed by the Contact layer which is responsible for providing
contact information from the residence field, and then calling our
base-level implementation providing the person’s name.

with (Contact) { System.out.println(atsushi); }
=> "Name: Atsushi; Residence: Kyoto"

The nesting of with (or without) statements leads to nested
layer activations, where “inner” layers gain precedence over “outer”
ones.

with (Employment) {
with (Contact) { System.out.println(atsushi); }

}
=> "Name: Atsushi; Residence: Kyoto; Affil.: Kyodai"

With that, the change of the order of with or without state-
ments corresponds directly to the partial method definitions ob-
tained by the method lookup.

with (Contact) {
with (Employment) { System.out.println(atsushi); }

}
=> "Name: Atsushi; Affil.: Kyodai; Residence: Kyoto"

Previously activated layers using with can be deactivated by
without and vice versa.

with (Contact) {
without (Contact) { System.out.println(atsushi); }

}
=> "Name: Atsushi"

An attempt to deactivate a layer that is not active will not affect
the current layer composition.

without (Contact) { System.out.println(atsushi); }
=> "Name: Atsushi"

As in most COP language extensions and also in ours, layer
compositions are effective for the dynamic extent of the execu-
tion of the code block enclosed by their corresponding with or
without statements1.

3. Syntax and Semantics of ContextFJ
3.1 Syntax
Let metavariables C, D, and E range over class names; L over layer
names; f and g over field names; m over method names; and x and y
over variables, which contain a special variable this. The abstract
syntax of ContextFJ is given as follows:

CL ::= class C / C { C f; K M } (classes)
K ::= (constructors)

C(C f){ super(f); this.f = f; }
M ::= C m(C x){ return e; } (methods)
e, d ::= x | e.f | e.m(e) | new C(e) (expressions)

| with L e | without L e
| proceed(e) | super.m(e)
| new C(v)<C,L,L>.m(e)

v, w ::= new C(v) (values)

Following FJ, we use overlines to denote sequences: so, f stands
for a possibly empty sequence f1, · · · , fn and similarly for C, x, e,
and so on. The empty sequence is denoted by •. We also abbreviate
pairs of sequences, writing “C f” for “C1 f1, · · · , Cn fn”, where
n is the length of C and f, and similarly “C f;” as shorthand for the
sequence of declarations “C1 f1;. . .Cn fn;” and “this.f=f;”
for “this.f1=f1;. . .;this.fn=fn;”. We use commas and semi-
colons for concatenations. Sequences of field declarations, param-
eter names, layer names, and method declarations are assumed to
contain no duplicate names.

A class definition CL consists of its name, its superclass name,
field declarations C f, a constructor K, and method definitions M.
A constructor K is a trivial one that takes initial values of all fields
and sets them to the corresponding fields. Unlike the examples in

1 Variants of COP languages allow to manage layer compositions on a per-
instance basis [9, 10], which is left as future work in the paper.

26

the last section, we do not provide syntax for layers; partial meth-
ods are registered in a partial method table, explained below. A
method M takes x as arguments and returns the value of expres-
sion e. As ContextFJ is a functional calculus like FJ, the method
body consists of a single return statement and all constructs includ-
ing with and without return values. An expression e can be a
variable, field access, method invocation, object instantiation, layer
activation/deactivation, proceed/super call, or a special expres-
sion new C(v)<C,L,L>.m(e), which will be explained shortly. A
value is an object of the form new C(v).

The expression new C(v)<D,L′,L>.m(e), where L′ is as-
sumed to be a prefix of L, is a special run-time expression and
not supposed to appear in classes. It basically means that m is go-
ing to be invoked on new C(v). The annotation <D,L′,L>, which is
used to model super and proceed, indicates where method lookup
should start. More concretely, the triple <D,(L1; · · · ; Li),(L1; · · · ; Ln)>
(i ≤ n) means that the search for the method definition will start
from class D of layer Li. So, for example, the usual method invoca-
tion new C(v).m(e) (without annotation) is semantically equiva-
lent to new C(v)<C,L,L>.m(e), where L is the active layers when
this invocation is to be executed. This triple also plays the role of a
“cursor” in the method lookup procedure and proceeds as follows

<D,(L1; · · · ; Li),(L1; · · · ; Ln)>

⇒ <D,(L1; · · · ; Li−1),(L1; · · · ; Ln)> ⇒ · · ·
⇒ <D, • ,(L1; · · · ;Ln)>

⇒ <E,(L1; · · · ; Ln),(L1; · · · ; Ln)> (E is a direct superclass of D)
⇒ <E,(L1; · · · ; Ln−1),(L1; · · · ;Ln)> ⇒ · · ·

until the method definition is found. Notice that the third element
is needed when the method is not found in D in any layer including
the base: the search continues to layer Ln of D’s direct superclass.

With the help of this form, we can give a semantics of super
and proceed by simple substitution-based reduction. For example,
consider method invocation new C().m(v). As in FJ, this expres-
sion reduces to the method body where parameters and this are
replaced with arguments v and the receiver new C(), respectively.
Now, what happens to super in the method body? It cannot be re-
placed with the receiver new C() since it would confuse this and
super. Method lookup for super is different from usual (virtual)
method lookup in that it has to start from the direct superclass of
the class in which super appears. So, if the method body contain-
ing super.n() is found in class D, then the search for n has to start
from the direct superclass of D. To express this fact, we replace
super with new C()<E,...> where E is the direct superclass
of D. We can deal with proceed similarly. Suppose the method
body is found in layer Li in D. Then, proceed(e) is replaced
with new C()<D,(L1; · · · ; Li−1),L>.m(e), where L1; · · · ; Li−1

are layers activated before Li.
A ContextFJ program (CT, PT, e) consists of a class table CT ,

which maps a class name to a class definition, a partial method
table PT , which maps a triple C, L, and m of class, layer, and
method names to a method definition, and an expression, which
corresponds to the body of the main method. In what follows, we
assume CT and PT to be fixed and satisfy the following sanity
conditions:

1. CT(C) = class C ... for any C ∈ dom(CT).

2. Object 6∈ dom(CT).

3. For every class name C (except Object) appearing anywhere in
CT , we have C ∈ dom(CT);

4. There are no cycles in the transitive closure of the extends
clauses.

5. PT(m, C, L) = ... m(...){...} for any (m, C, L) ∈ dom(PT).

fields(C) = C f

fields(Object) = •

class C / D { C f; ... } fields(D) = D g

fields(C) = D g, C f

mbody(m, C, L′, L) = x.e in D, L′′

class C / D { ... C0 m(C x){ return e; } ...}

mbody(m, C, •, L) = x.e in C, •

PT(m, C, L0) = C m(C x){ return e; }

mbody(m, C, (L′; L0), L) = x.e in C, (L′; L0)

class C / D { ... M } m 6∈ M
mbody(m, D, L, L) = x.e in E, L′

mbody(m, C, •, L) = x.e in E, L′

PT(m, C, L0) undefined mbody(m, C, L′, L) = x.e in D, L′′

mbody(m, C, (L′; L0), L) = x.e in D, L′′

Figure 1. ContextFJ: Lookup functions.

Lookup functions. As in FJ, we define a few auxiliary functions
to look up field and method definitions. They are defined by the
rules in Figure 1. The function fields(C) returns a sequence C f of
pairs of a field name and its type by collecting all field declarations
from C and its superclasses. The function mbody(m, C, L1, L2) re-
turns the parameters and body x.e of method m in class C when the
search starts from L1; the other layer names L2 keep track of the
layers that are activated when the search initially started. It also re-
turns the information on where the method has been found—the in-
formation will be used in reduction rules to deal with proceed and
super. As we mentioned already, the method definition is searched
for in class C in all activated layers and the base definition and, if
there is none, then the search continues to C’s superclass. By read-
ing the rules in a bottom-up manner, we can read off the recursive
search procedure. The first rule means that m is found in the base
class definition C (notice the third argument is •) and the second
that m is found in layer L0. The third rule, which deals with the sit-
uation where m is not found in a base class (expressed by the con-
dition m 6∈ M), motivates the fourth argument of mbody. The search
goes on to C’s superclass D and has to take all activated layers into
account; so, L is copied to the third argument in the premise. The
fourth rule means that, if C of L0 does not have m, then the search
goes on to the next layer (in L′) leaving the class name unchanged.

3.2 Operational Semantics
The operational semantics of ContextFJ is given by a reduction
relation of the form L ` e −→ e′, read “expression e reduces
to e′ under the activated layers L”. Here, L do not contain duplicate
names, as we noted earlier. The main rules are shown in Figure 2.

The first four rules are the main computation rules for field
access and method invocation. The first rule for field access is
straightforward: fields tells which argument to new C(..) corre-
sponds to fi. The next three rules are for method invocation. The
second rule is for method invocation where the cursor of the method
lookup procedure has not been “initialized”; the cursor is set to be
at the receiver’s class and the currently activated layers. In the third
rule, the receiver is new C(v) and <C′,L′,L> is the location of
the cursor. When the method body is found in the base-layer class

27

fields(C) = C f

L ` new C(v).fi −→ vi

L ` new C(v)<C,L,L>.m(w) −→ e

L ` new C(v).m(w) −→ e

mbody(m, C′, L′, L) = x.e in C′′, • class C′′/ D{...}

L′′′ ` new C(v)<C′,L′,L>.m(w) −→ new C(v) /this,
w /x,
new C(v)<D,L,L>/super

 e

mbody(m, C′, L′, L) = x.e in C′′, (L′′; L0)
class C′′/ D{...}

L′′′ ` new C(v)<C′,L′,L>.m(w) −→ new C(v) /this,
w /x,
new C(v)<C′′,L′′,L>.m/proceed,
new C(v)<D,L,L> /super

 e

remove(L, L) = L′ L′; L ` e −→ e′

L ` with L e −→ with L e′

remove(L, L) = L′ L′ ` e −→ e′

L ` without L e −→ without L e′

L ` with L v −→ v L ` without L v −→ v

Figure 2. ContextFJ: Reduction rules.

C′′ (denoted by “in C′′, •”), the whole expression reduces to the
method body where the formal parameters x and this are replaced
by the actual arguments w and the receiver, respectively. Further-
more, super is replaced by the receiver with the cursor pointing to
the superclass of C′′. The fourth rule, which is similar to the third,
deals with the case where the method body is found in layer L0

in class C′′. In this case, proceed in the method body is replaced
with the invocation of the same method, where the receiver’s cur-
sor points to the next layer L′′ (dropping L0). Since the meaning of
the annotated invocation is not affected by the layers in the context
(note that L′′′ are not significant in these rules), the substitution
for super and proceed also means that their meaning is the same
throughout a given method body, even when they appear inside
with and without. Note that, unlike FJ, reduction in ContextFJ
is call-by-value, requiring receivers and arguments to be values.
This evaluation strategy reflects the fact that arguments should be
evaluated under the caller-side context.

The following rules are related to context manipulation. The
fifth rule means that e in with L e should be executing by ac-
tivating L. The auxiliary function remove(L, L), which removes L
from L (or returns L if L is not in L), is used to avoid duplication of
L. The next rule is similar: e is evaluated under the context where
L is absent. The last two rules mean that, once the evaluation of the
body of with/without is finished, it returns the value of the body.

There are other trivial congruence rules to allow subexpressions
to reduce, but we omit them for brevity.

4. Type System
As usual, the role of a type system is to guarantee type soundness,
namely, to prevent statically field-not-found and method-not-found
errors from happening at run-time. In ContextFJ, it also means that
a type system should ensure that every proceed() or super() call
succeeds. However, it is not trivial to ensure this property, due to
the dynamic nature of layer activation—the existence of a method

definition in a given class may depend on whether a particular layer
is activated.

Here, we give a simple type system, which is mostly a straight-
forward extension of FJ’s type system but prohibits layers from in-
troducing new methods that do not exist in the base-layer class—in
other words, every partial method has to override a method of the
same name in the base-layer class. As a result, the function mtype to
retrieve a method type is the same as FJ’s: it takes a method name
and a class name as arguments and returns a pair, written C→C0,
of a sequence of the argument types C and the return type C0. Its
definition is given by the following rules.

class C / D {... C0 m(C x){ return e; } ...}

mtype(m, C) = C→C0

class C / D {... M } m 6∈ M mtype(m, D) = C→C0

mtype(m, C) = C→C0

Subtyping. The subtyping relation C <: D is defined as the reflex-
ive and transitive closure of the extends clauses.

C <: C

C <: D D <: E

C <: E

class C / D {...}

C <: D

Typing. The type judgment for expressions is of the form L; Γ `
e : D, read “e, which appears in L, is given type D under Γ”. Here,
Γ denotes a type environment, which assigns types to variables—
more formally, it is a finite mapping from variables to class names.
L, which stands for the location where e appears, is either •,
which means the top-level (i.e., under execution), C.m, which
means method m in base class C, or L.C.m, which means m in
class C in layer L. It is used in the typing rules for proceed() and
super() calls. The type judgment for methods is of the form either
M ok in C, read “method M is well-formed in base-layer class C”,
or M ok in L.C, read “partial method M is well-formed in layer
L of class C.” Finally, the type judgment for classes is of the form
CL ok, read “class CL is well-formed.” The typing rules are given
in Figure 3.

The typing rules for expressions are straightforward. The first
four rules for variables, field access, method invocation, and object
instantiation are the same as those in FJ (except L). The fifth and
sixth rules for with and without, respectively, mean that a layer
(de)activation is well typed if its body is well typed. The next rule
means that super.m′(e) has to appear in a method definition in
some class C (not at the top level) and the type of m′ is retrieved
from C’s superclass E. Otherwise, it is similar to the rule for method
invocations. The rule for proceed(e) is similar. The expression
has to appear in a partial method definition, hence the location
should be L.C.m. The final rule combines the rules for object
instantiation and method invocation. Although the run-time type
of the receiver is C0, the current cursor is at class D, which is a
superclass of C0. So, the type of m is retrieved from D.

The typing rules for method definitions are straightforward also.
Both rules check that the method body is well typed under the
assumption that formal parameters x are given declared types C
and this is given the name of the class name where the method
appears. The type of the method body has to be a subtype of the
declared return type. One notable difference in these rules is in
the last premise. The first rule for base-layer methods means that
the method may or may not be overriding; if it is overriding, the
usual overriding condition is checked. Note that we allow covariant
overriding of the return type. On the other hand, the second rule for
a partial method means that it has to override the base-layer method
with exactly the same type. We cannot allow covariant overriding
because the order of layer composition vary at run-time.

A program (CT, PT, e) is well-formed if CT(C) ok for any
C ∈ dom(CT) and PT(m, C, L) ok in L.C for any (m, C, L) ∈

28

Expression typing: L; Γ ` e : C

(Γ = x:C)
L; Γ ` xi : Ci

L; Γ ` e0 : C0 fields(C0) = C f

L; Γ ` e0.fi : Ci

L; Γ ` e0 : C0 mtype(m, C0) = D → D0

L; Γ ` e : E E <: D

L; Γ ` e0.m(e) : D0

fields(C0) = D f L; Γ ` e : C C <: D

L; Γ ` new C0(e) : C0

L; Γ ` e0 : C0

L; Γ ` with L e0 : C0

L; Γ ` e0 : C0

L; Γ ` without L e0 : C0

L = C.m or L.C.m class C / E {...}
mtype(m′, E) = D → D0 L; Γ ` e : E E <: D

L; Γ ` super.m′(e) : D0

L = L.C.m
mtype(m, C) = D → D0 L; Γ ` e : E E <: D

L; Γ ` proceed(e) : D0

fields(C0) = D f L; Γ ` v : C C <: D
C0 <: D mtype(m, D) = F→F0 L; Γ ` e : F E <: F

L; Γ ` new C0<D,L
′,L′′>(v).m(e) : F0

Method/class typing: M ok in C M ok in L.C CL ok

C.m; x : C, this : C ` e0 : D0

D0 <: C0 class C / D {...}
if mtype(m, D) = E → E0, then E = C and C0 <: E0

C0 m(C x) { return e0; } ok in C

L.C.m; x : C, this : C ` e0 : D0

D0 <: C0 mtype(m, C) = C → C0

C0 m(C x) { return e0; } ok in L.C

K = C(D g, C f){ super(g); this.f=f; }
fields(D) = D g M ok in C

class C / D { C f; K M } ok

Figure 3. ContextFJ: Typing rules.

dom(PT) and •; ∅ ` e : C for some C, where ∅ is the empty type
environment.

This type system is sound with respect to the operational se-
mantics given in the last section:

THEOREM 1 (Subject Reduction). Suppose given class and par-
tial method tables are well-formed. If •; Γ ` e : C and L ` e −→
e′, then •; Γ ` e′ : D for some D such that D <: C.

THEOREM 2 (Progress). Suppose given class and partial method
tables are well-formed. If •; ∅ ` e : C, then either e is a value or
L ` e −→ e′ for some e′.

5. Discussion
Related Work The operational semantics of cj, a context-oriented
extension to the j language family, is expressed using a delegation-
based calculus [14]. Another approach to providing an operational
semantics of COP layer constructs and their application is based

on graph transformations [11]. Both approaches to representing
context-dependent behavior encode COP programs into more gen-
eral calculi. Our semantics, on the other hand, directly expresses
context-dependent behavior.

Feature-oriented programming (FOP) [3] and delta-oriented
programming (DOP) [12] also advocate the use of layers or delta
modules respectively to describe behavioral variations. In both ap-
proaches, various similar software artifacts are obtained by stati-
cally composing layers with base-level classes. Thus, formal mod-
els of FOP [1, 5] and DOP [13] typically give translational se-
mantics. Since they usually allow layers to add new methods, type
systems that guarantee the translated program to be well typed with
respect to the base language’s type system are more sophisticated
than ours.

Future Work The present type system may be too restrictive
since it does not allow layers to introduce new methods. We are
currently working on a more sophisticated type system that does
not prevent method introduction by exploring some ideas from type
systems for FOP.

References
[1] Sven Apel, Christian Kästner, and Christian Lengauer. Feature Feath-

erweight Java: a calculus for feature-oriented programming and step-
wise refinement. In GPCE, 2008. doi:10.1145/1449913.1449931.

[2] Malte Appeltauer, Robert Hirschfeld, Michael Haupt, and Hidehiko
Masuhara. ContextJ: Context-oriented programming with Java. Com-
puter Software, 28(1):272–292, January 2011.

[3] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling step-
wise refinement. TSE, 2004. doi:10.1109/TSE.2004.23.

[4] Pascal Costanza and Robert Hirschfeld. Language constructs for
context-oriented programming - an overview of ContextL. In DLS,
2005. doi:10.1145/1146841.1146842.

[5] Benjamin Delaware, William Cook, and Don Batory. A
machine-checked model of safe composition. In FOAL, 2009.
doi:10.1145/1509837.1509846.

[6] Robert Hirschfeld, Pascal Costanza, and Michael Haupt. An intro-
duction to context-oriented programming with ContextS. In GTTSE,
2008.

[7] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-
oriented programming. JOT, 2008.

[8] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Feather-
weight Java: A minimal core calculus for Java and GJ. TOPLAS, 2001.
doi:10.1145/503502.503505.

[9] Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko Masuhara. EventCJ:
A context-oriented programming language with declarative event-
based context transition. In Proc. of AOSD, 2011. (to appear).

[10] Jens Lincke, Malte Appeltauer, Bastian Steinert, and Robert
Hirschfeld. An open implementation for context-oriented layer com-
position in ContextJS. SCP, 2010. doi:10.1016/j.scico.2010.11.013.

[11] Tim Molderez, Hans Schippers, Dirk Janssens, Michael Haupt, and
Robert Hirschfeld. A platform for experimenting with language con-
structs for modularizing crosscutting concerns. In WASDeTT, 2010.

[12] Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and
Nico Tanzarella. Delta-oriented programming of software product
lines. In SPLC, 2010.

[13] Ina Schaefer, Lorenzo Bettini, and Ferruccio Damiani. Compositional
type-checking for delta-oriented programming. In AOSD, 2011. (to
appear).

[14] Hans Schippers, Dirk Janssens, Michael Haupt, and Robert
Hirschfeld. Delegation-based semantics for modularizing crosscutting
concerns. In OOPSLA, 2008. doi:10.1145/1449764.1449806.

29

30

Aspect Oriented Programming: a language for
2-categories

Nicolas Tabareau
INRIA

École des Mines de Nantes, France

ABSTRACT
Aspect-Oriented Programming (AOP) started ten years ago
with the remark that modularization of so-called crosscut-
ting functionalities is a fundamental problem for the engi-
neering of large-scale applications. Originating at Xerox
PARC, this observation has sparked the development of a
new style of programming featured that is gradually gain-
ing traction, as it is the case for the related concept of
code injection, in the guise of frameworks such as Swing
and Google Guice. However, AOP lacks theoretical founda-
tions to clarify this new idea. This paper proposes to put
a bridge between AOP and the notion of 2-category to en-
hance the conceptual understanding of AOP. Starting from
the connection between the λ-calculus and the theory of cat-
egories, we propose to see an aspect as a morphism between
morphisms—that is as a program that transforms the exe-
cution of a program. To make this connection precise, we
develop an advised λ-calculus that provides an internal lan-
guage for 2-categories and show how it can be used as a
base for the definition of the weaving mechanism of a real-
istic functional AOP language, called MinAML.

Categories and Subject Descriptors
F.3.2 [Semantics of Programming Languages]: Alge-
braic approaches to semantics

General Terms
Languages, Theory, design

Keywords
AOP, 2-category

1. INTRODUCTION

Aspect-Oriented Programming. Aspect-Oriented Pro-
gramming (AOP) [5] promotes better separation of concerns
in software systems by introducing aspects for the modular
implementation of crosscutting concerns. Indeed, AOP pro-
vides the facility to intercept the flow of control in an ap-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOAL’11, March 21, 2011, Pernambuco, Brazil.
Copyright 2011 ACM 978-1-4503-0644-7/11/03 ...$10.00.

plication and perform new computations. In this approach,
computation at certain execution points, called join points,
may be intercepted by a particular condition, called point-
cut, and modified by a piece of code, called advice, which
is triggered only when the runtime context at a join point
meets the conditions specified by a pointcut. Using aspects,
modularity and adaptability of software systems can be en-
hanced. In the AOP terminology, the algorithm that con-
trols which aspects can be executed at each join point is
called a weaving algorithm.

Much of the research on aspect-oriented programming has
focused on applying aspects in various problem domains and
on integration of aspects into full-scale programming lan-
guages such as Java. However, aspects are very powerful and
the development of a weaving mechanism becomes rapidly
a very complex task. While some research efforts [4, 15, 16]
have made significant progress on understanding some of the
semantic issues involved, the algebraic explanation of aspect
features has never reached the beauty and simplicity of the
connection between the λ-calculus and Cartesian closed cat-
egories. We believe that this is the main reason why AOP
never found its place in theoretical computer science fields.

Giving a precise meaning to aspects in AOP is a fairly
complicated task because the definition of a single piece of
code can have a very rich interaction with the rest of the
program, an interaction whose effect can come up at anytime
during the execution. The main purpose of this paper is
to formalize this interaction. Namely, we propose to put a
bridge between AOP and the notion of 2-category. Starting
from the connection between the λ-calculus and category
theory, we propose to see an aspect as a 2-cell, that is as a
morphism between morphisms. In the programming point
of view, this means that an aspect can be seen as a program
which transforms the execution of programs.

In this perspective, a weaving algorithm that defines the
interaction of a collection of aspects with a given program
will be understood as the computation of a normal form in
the underlying 2-category of interest. Thus, an algorithm
that is usually defined by hand and described coarsely in
AOP systems becomes here a basic notion of rewriting the-
ory. The definition of an internal language for Cartesian
closed 2-category (2-CCC) will be the keystone of this pa-
per, the basis to give a precise meaning to the possible in-
teractions of a single aspect with the rest of the code.

λ-calculus and Cartesian closed categories. Category
theory and programming languages are closely related. It
is now folklore that the typed λ-calculus is the internal lan-

31

guage of Cartesian closed categories. Recall that Cartesian
closed categories are categories equipped with a Cartesian
product and such that each hom-set can naturally be seen as
an object of the category (e.g. in the category Set of sets and
functions, functions between two sets A and B form again
a set). In this paradigm, objects of the category correspond
to types in the typed λ-calculus and morphisms between ob-
jects A and B of the category correspond to λ-terms of type
B with (exactly) one free variable of type A. The composi-
tion of morphisms corresponds to substitution, a notion that
is at the heart of β-reduction—the fundamental rule of the
λ-calculus.

This interpretation of the λ-calculus started in the early
80’s from the work of John Lambek and Philip Scott [7, 8,
11]. Soon later, Robert Seely proposed a 2-categorical inter-
pretation of the λ-calculus [12] where β-reduction constructs
2-cells between terms and their β-reduced version. This per-
spective is in line with the thought that 2-cells can be seen
as rewriting rules between morphisms (or terms). This idea
has been pushed further by Barnaby Hilken in [2] where he
developed a 2-dimensional λ-calculus that corresponds to
the free 2-category with lax exponentials.

Recall that a 2-category C is basically a category in which
the class C(A, B) of morphisms between any objects A and
B is itself a category. In other words, a 2-category is a
category in which there exists morphisms

f : A → B

between objects , and also morphisms

α : f ⇒ g

between morphisms. The morphisms f : A → B are called
1-cells and the morphisms α : f ⇒ g are called 2-cells.

Seely’s interpretation shows how typed λ-calculus can nat-
urally be viewed as a 2-category. In this paper, we define
an advised λ-calculus extending the typed λ-calculus with
2-dimensional primitives that enable to describe any 2-cell
of a 2-CCC. Those additional primitives construct a kind of
2-dimensional terms that we will (by extension) call aspects.
The resulting language, called λ2-calculus, defines an inter-
nal language for Cartesian closed 2-category and will be the
base of our explanation of aspects in AOP.

AOP and 2-categories. The keystone of this paper is to
consider aspects in AOP as 2-cells in a 2-category just as
functions (more precisely λ-terms) are interpreted as mor-
phisms in a category. But this simple idea raises interesting
and difficult issues:

• What is the good notion of variables at a 2-dimensional
level?

• What is the extended notion of β-reduction?

• How to describe vertical and horizontal composition of
a 2-category in the language of typed λ-calculi?

Once this effort to develop an internal language for Carte-
sian closed 2-categories has been done, it becomes simpler
to describe the interaction of an aspect with the rest of a
program. Indeed, the 2-dimensional constructors of the λ2-
calculus enable to faithfully describe all situations in which
an aspect can be applied to a given program.

Let us anticipate on the description of the λ2-calculus to
give an example straightaway. Suppose that we have defined

an aspect

α : sqrt ⇒ sqrt ◦ abs

which rewrites all calls to a square root function to ensure
that inputs are non-negative. This aspect can be seen as
a piece of advice whose pointcut intercepts the square root
function and proceeds with the absolute value of the original
argument of the function. The effect of α on the program

p = λx. sqrt(sqrt(x))

will be described by the composed 2-cell

β = λX. α ◦ α ◦X : p ⇒ p′

that transforms the program p into the program

p′ = λx. sqrt(abs(sqrt(abs(x)))).

The aspect β is automatically generated from the aspect α
and constructors of the λ2-calculus. Note that one could
argue that this violates one of the primary design goals of
AOP, which is to allow separation of cross-cutting concerns.
Indeed, each aspect is monomorphic in the sense that the
aspect β in the example above is specific to the program
p. It could seem unfortunate as an important goal of AOP
languages is that the aspect may be oblivious to the tar-
get program – in 2-categorical/λ-calculus terms what seems
needed is naturality/parametricity in the scaffolding. How-
ever, this is not the point of view adopted in the λ2-calculus.
The idea is that a single definition of the aspect α above will
generate all the possible combinations of this aspect with 2-
dimensional primitives of the language and other constant
aspects.

Of course, existing AOP languages do not look like the
λ2-calculus so we show how programs of a simple functional
language with aspects, introduced by David Walker and col-
leagues in [15] and called MinAML, can be translated into
the λ2-calculus. As claimed above, the semantics of such
programs is provided by a weaving algorithm that corre-
sponds to the computation of a normal form in the under-
lying 2-category.

At the end of this article, we explain how this algebraic
account of AOP can drive the definition of aspects in more
powerful languages extended with references, exceptions or
any programming primitives that are well-understood in cat-
egory theory. This could be done by using a 2-categorical
version of computational monads introduced by Eugenio
Moggi [10]—and used for example in Haskell—to extend the
λ2-calculus smoothly. This 2-categorical extension can be
seen as a particular case of the recent work of Martin Hy-
land, Gordon Plotkin and John Power on enriched Lawvere
theories [3].

Note that the work of Kovalyov [6] on modeling aspects by
category theory is in accordance with the school of category
theory for software design. In this paper, category theory
is used as a foundational model for programming languages,
which is a completely different line of work.

A full version of this article [13] is available.

2. THE λ2-CALCULUS

2.1 Types, terms and aspects
The grammar of the λ2-calculus generated by a set of

sort names S is presented in Figure 1. The sets of types

32

types A ::= S | Unit | A×B | A → B

terms t ::= f | x | skip | λx. t | t(t) | 〈t, t〉 | πi(t)

aspects α ::= a | X | asp. t '→ t′ | α ∗ α | α ◦ α | 〈α, α〉 | λX. α

Figure 1: The grammar of λ2-calculus

and terms is closed under the traditional λ-calculus oper-
ations. For the second dimension, we construct a set of
aspects which transform terms into other terms. An aspect
α that transforms the term t of type A into the term t′ of
type A will be noted

α : (t ⇒ t′) :: A

For every type A, we suppose given a denumerable set of
variables x, . . . that induces a denumerable set of 2-variables

X : (x ⇒ x) :: A

All the constructions for pairing, abstraction and horizontal
composition are extended to aspects and there is a notion
of vertical composition α ∗ β which means that the trans-
formations performed by α and β are applied successively.
We use the word “free” and “bound” in the usual sense for a
2-dimensional variable X in an aspect α. The main aspect
forming operation

asp. t '→ t′ : (t ⇒ t′) :: A

defines an aspect that transforms a closed term t of type A
into another closed term t′ of type A. It is crucial in the
construction that the two terms are closed. Indeed, we do
not accept aspects of the form

asp. x '→ y : (x ⇒ y) :: A

where x and y are variables. Such an aspect would transform
any term of type A into any term of type A.

We require that the class of aspects is closed under all
aspect-forming operations except for the aspect asp. t '→ t′

which must always exist only for identity aspects on constant
terms, that is when t′ = t is a constant term.

Note that there may be additional types (S), constant
terms (f) and constant aspects (a) in the language. As for
the asp. constructor, constant aspects must be defined on
closed typed terms.

2.2 Typing rules
The typing rules of the λ2-calculus are given in Figure 2.

Terms are typed in the presence of a context Γ that stipu-
lates the type of variables while aspects are typed in the pres-
ence of a context ∆ that stipulates the type of 2-variables.
The rules for terms are the standard rules for the λ-calculus.

Rule 2-Abstraction and Rule 2-Pairing are the higher
order version of closure and product in the calculus. Rule
2-Application and Rule Vertical-composition are the
reminiscence of the corresponding 2-categorical compositions.
Observe that Rule Vertical-composition expects the same
term t2 at the common boundary of α and β.

Rule 2-Variable introduces a 2-variable in the context∆.
Rule Aspect checks that an aspect asp. t '→ t′ transforms a
closed typed term t into another closed term t′ of the same
type.

Additional constant terms and aspects of the language are
given with their specific typing rules. Equations between

terms and between aspects, together with properties of the
calculus are given in the long version [13].

3. CARTESIAN CLOSED 2-CATEGORIES
AND THE λ2-CALCULUS

The definition above leaves a lot of freedom. There are
many λ2-calculus. As it is the case for the traditional λ-
calculus, one can think of the λ2-calculus as the λ2-calculus
freely generated by a given set S of sort names, with no
additional type, term, aspect or equation. But there are
many more λ2-calculi, as many as 2-categories as stated by
the following proposition (details can be found in [13].

Proposition 1. The λ2-calculus is the internal language
of Cartesian closed 2-categories.

Using the correspondence between the λ2-calculus and 2-
CCCs, we can now define a weaving algorithm in terms of
categorical rewriting.

As sketched in the introduction, given a term t(x) : B of
a λ2-calculus L where x is of type A, we will consider all
the possible interactions of the (constant) aspects defined
in L with t(x) by considering the category C(L)(A, B) of
the 2-CCC C(L) associated to L. This category contains
all aspects that transform terms of type A → B and so the
execution of an aspect corresponds to the application of a
morphism in that category. Thus, the result of the weaving
algorithm is given by the normal form of the image of t(x)
in that category.

Woven(t(x)) = {(t′(x), α) | (x, t(x))
α−→ (x, t′(x))

is a maximal reduction in the category C(L)(A, B)}

Of course, such a normal form has no reason to be unique
or even to exist.

Uniqueness of the normal form. Observe that all the
work on aspect composition can be understood as a way to
combine aspects while conserving uniqueness of the defini-
tion of the woven program. For example, when multiple
pieces of advice can be applied at the same join point in
AspectJ, precedence orders are (arbitrarily) defined, based
on the order in which definitions of pieces of advice syntac-
tically appear in the code. More algebraic approaches have
been proposed (see eg. [9]).

Existence of a normal form. The absence of a normal
form is often understood as a circularity in the application
of aspects. This problem is difficult to overcome and can
arise even in simple programs. For instance, the work of
Eric Tanter on execution levels is precisely a way to intro-
duce a hierarchy in the application of aspects and thus to
avoid basic circular definition [14]. Other lines of work have
proposed to restrict the power of pieces of advice (for exam-
ple using a typing system [1]) in order to guarantee that the
execution of the program is not critically perturbed.

33

Variable

Γ, x : A * x : A

Abstraction
Γ, x : A * t : B

Γ * λx. t : A → B

Application
Γ * t : A → B Γ * u : A

Γ * t(u) : B

Bottom

Γ * skip : Unit

Pairing
Γ * t : A Γ * t′ : B
Γ * 〈t, t′〉 : A×B

Projection

Γ * πA1,A2
i : A1 ×A2 → Ai

2-Variable

∆, X : (x ⇒ x) :: A * X : (x ⇒ x) :: A

Aspect
* t : A * t′ : A

∆ * asp. t '→ t′ : (t ⇒ t′) :: A

2-Pairing
∆ * α : (t ⇒ t′) :: A ∆ * β : (u ⇒ u′) :: B

∆ * 〈α, β〉 : (〈t, u〉 ⇒ 〈t′, u′〉) :: A×B

2-Abstraction
∆, X : (x ⇒ x) :: A * α : (t ⇒ t′) :: B

∆ * λX. α : (λx. t ⇒ λx. t′) :: A → B

2-Application
∆ * β : (t ⇒ t′) :: A → B ∆ * α : (u ⇒ u′) :: A

∆ * β ◦ α : (t(u) ⇒ t′(u′)) :: B

Vertical-composition
∆ * α : (t1 ⇒ t2) :: A ∆ * β : (t2 ⇒ t3) :: A

∆ * α ∗ β : (t1 ⇒ t3) :: A

Figure 2: Typing rules of the λ2-calculus

4. MinAML
This section gives the semantics of a concrete AOP lan-

guage called MinAML by a translation to the λ2-calculus.
More precisely, given a program p, we will construct a λ2-
calculus λp, whose underlying 2-category defines a rewriting
system from which we can deduce the definition of a weaving
algorithm.

MinAML is a version (without conditionals and before
and after advice) of the language introduced in [15] to give
a first AOP language with a formal semantics. The absence
of before and after advice is unimportant as they can both
be encoded with an around advice.

4.1 Syntax
MinAML is an extension of the λ-calculus with products

in two steps. The first extension is usual: we introduce
declaration names that can be used to define names for terms
of the language with the let constructor

let f = t.

We suppose given a set of declaration names, noted f, g, . . .
The second extension is the introduction of aspects with

the constructor

around f(x) = t

which indicates that at execution, the application of the
function f with argument x is replaced by the term t. Using
the terminology introduced at the beginning of the article,
the term f(x) defines the pointcut of the aspect and the term
t defines its advice.

When declaring pieces of advice, the programmer can
choose either to replace f entirely or to perform some com-
putations interleaved with one (or more) execution of f (pos-
sibly with new arguments) using the keyword proceed.

In the same way, when multiple aspects intercept the same
function f , one must define an order in the weaving mech-
anism. For simplicity, we have decided to choose the order
of declaration in the program.

The grammar of MinAML is fully described in Figure 3.
A program p is constituted of a list of declarations ds, a list
of aspects α and a term t. The fact that there is only a

global scope for aspects in our calculus is enforced by the
stratified structure of a program. The term [] stands for
the empty list, [h] stands for the singleton list with element
h and l ! l′ denotes the concatenation of lists.

Typing rules of MinAML are given in the long version of
this article [13].

4.2 Extension to effectful aspects
So far, an aspect of MinAML is always pure. In order

to exploit the full power of the λ2-calculus, we need to add
effectful aspects. We choose here to simply add two con-
stants in the language: a logging function log : Nat → Nat
whose purpose is to be intercepted by the logging aspect
Log asp : (log ⇒ λx. x) :: Nat → Nat. that transforms
log(n) into n and prints n to the screen.

4.3 A simple example
Let us now express in this language the example devel-

oped in the introduction. To make the example richer, we
also define an aspect that applies the function log (before
the function abs) to the argument of sqrt so that the argu-
ment will then be printed out by the aspect Log asp. The
following program of MinAML (where we use some usual
primitives on integers) defines such aspects and run sqrt on
the negative value −4.

P = [let sqrt = λx.
√

x, let abs = λx. |x|] !
[around sqrt(x) = proceed(log(x)),
Log asp,
around sqrt(x) = proceed(abs(x))] !
[sqrt(−4)]

4.4 Weaving on a simple example
MinAML can be translated into the λ2-calculus (see [13]

for details) . Thus, the weaving algorithm can be deduced
from the weaving algorithm described in Section 3.

In this short version, we will just explain its behavior on
the simple program P. The computation can be described
by the following sequence of reductions (where some extra
β-reduction has been performed to make the reading easier):

34

types A ::= S | Unit | A×B | A → B

terms t ::= x | f | skip | λx. t | t(t) | 〈t, t〉 | πi(t) | proceed(t)
aspects α ::= [] | [around f(x) = t] ! α

declarations ds ::= [] | [let f = t] ! ds

programs p ::= ds ! α ! t

Figure 3: The grammar of the MinAML

sqrt1(−4)
a1◦id(−4)−−−−−−→ sqrt2(log(−4))
id(sqrt2)◦Log asp◦id(−4)−−−−−−−−−−−−−−−−−→ sqrt2((λx. x)(−4))

= sqrt2(−4)
a2◦id(−4)−−−−−−→ sqrt3(abs1(−4))
a3◦id(abs1(−4))−−−−−−−−−−→

√
abs1(−4)

id(
√
−)◦a4◦id(−4)−−−−−−−−−−−−→

√
|− 4| = 2

Observe the particular kind of parametricity describes in
the introduction. Indeed, a single definition of the aspect
Log asp generates all the possible combinations of that as-
pect with 2-dimensional primitives of the language, and in
particular the aspect

id(sqrt2) ◦ Log asp ◦ id(−4)

used in the computation of the weaving for sqrt1(−4).

5. CONCLUSION
The idea of the paper is to approach AOP (and more

generally type-preserving program transformation) from a
category-theoretic perspective, in order to complement the
software engineering approach. We believe that this ap-
proach could have substantial benefit at the level of con-
ceptual understanding of what AOP actually is.

More precisely, we identify (Cartesian closed) 2-categories
as a suitable setting in which programs can be seen as 1-cells
and aspects (or more generally program transformations)
can be seen as 2-cells. To make this analogy precise, we de-
velop a language for 2-categories called the λ2-calculus, as
a 2-dimensional extension of the traditional λ-calculus, and
show that it is an internal language for Cartesian closed
2-categories. We also show that the pure λ2-calculus is
strongly normalizing.

We then demonstrate the applicability of our construc-
tion by translating a more realistic functional AOP language
called MinAML into the λ2-calculus. This translation makes
it possible to interpret a program of MinAML in a Cartesian
closed 2-category and to define the weaving algorithm as the
computation of a normal form in a rewriting system based
on that 2-category. The well-foundedness of the weaving al-
gorithm is thus given by the existence of a normal form in
the corresponding rewriting system.

In the long version of this article, we discuss an algebraic
way to extend the λ2-calculus with various notions of com-
putation using enriched Lawvere theory. This nice formu-
lation of algebraic theories in an enriched setting enables
to transpose the notion of computational monads of Euge-
nio Moggi at the level of 2-categories. We believe that this
model-theoretic account of computation is necessary to un-
derstand the complex interaction between AOP mechanisms
and traditional notions of computation.

6. REFERENCES
[1] D. Dantas and D. Walker. Harmless advice. In 8th,

volume 41, page 396, 2006.
[2] B. Hilken. Towards a proof theory of rewriting: the

simply typed 2λ-calculus. Theoretical Computer
Science, 170(1-2):407–444, 1996.

[3] M. Hyland, G. Plotkin, and J. Power. Combining
effects: sum and tensor. Theoretical Computer
Science, 357(1):70–99, 2006.

[4] R. Jagadeesan, A. Jeffrey, and J. Riely. A calculus of
untyped aspect-oriented programs. In Proceedings of
ECOOP, pages 54–73. Springer-Verlag, 2003.

[5] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J. Loingtier, and J. Irwin. Aspect-Oriented
Programming. In Proceedings of ECOOP, volume
1241. Springer-Verlag, 1997.

[6] S. Kovalyov. Modeling Aspects by Category Theory.
FOAL 2010 Proceedings, page 63, 2010.

[7] J. Lambek. Cartesian closed categories and typed
lambda-calculi. In 13th Spring School on Combinators
and Functional Programming Languages, page 175.
Springer-Verlag, 1985.

[8] J. Lambek and P. Scott. Introduction to higher order
categorical logic. Cambridge University Press, 1988.

[9] R. Lopez-Herrejon, D. Batory, and C. Lengauer. A
disciplined approach to aspect composition. In
Proceedings of the 2006 ACM SIGPLAN symposium
on Partial evaluation and semantics-based program
manipulation, page 77. ACM, 2006.

[10] E. Moggi. Notions of computation and monads.
Information and Computation, 93:55–92, 1991.

[11] P. Scott. Some aspects of categories in computer
science. Handbook of algebra, 2:3–77, 2000.

[12] R. Seely. Modelling computations: a 2-categorical
framework. In 2nd, pages 65–71, 1987.

[13] N. Tabareau. Aspect oriented programming: a
language for 2-categories (long version). Technical
Report RR-7527, INRIA, 2011.
http://hal.inria.fr/inria-00470400.

[14] É. Tanter. Execution levels for aspect-oriented
programming. In Proceedings of the 9th conference on
AOSD, pages 37–48, Rennes and Saint Malo, France,
Mar. 2010. ACM Press.

[15] D. Walker, S. Zdancewic, and J. Ligatti. A theory of
aspects. In 8th, volume 38, pages 127–139, 2003.

[16] M. Wand, G. Kiczales, and C. Dutchyn. A semantics
for advice and dynamic join points in aspect-oriented
programming. ACM Transactions on Programming
Languages and Systems, 26(5):890–910, 2004.

35

	Contents
	Preface
	Message from the Program Committee Chair
	Applying Translucid Contracts for Modular Reasoning about Aspect and Object-Oriented Events
	Compositional Verification of Events and Observers
	Supporting covariant return types and generics in type relaxed weaving
	A Semantics for Execution Levels with Exceptions
	ContextFJ: A Minimal Core Calculus for Context-oriented Programming
	Aspect Oriented Programming: a language for 2-categories

