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Motivation
• In order to provide better alignment between conceptual 

requirements and aspect-oriented implementations, 
formal specification methods should enable the 
encapsulation of logical abstractions

• Horizontal architectures, consisting of such logical 
abstractions, can provide better separation of concerns 
over conventional ones
– while supporting incremental development for more common 

units of modularity such as classes 
• We base our arguments on our experiences with the 

DisCo method
– where logical abstractions are composed using the superposition 

principle



Two dimensions of software 
architecture

• Describing an architecture means 
construction of an abstract model that 
exhibits certain kinds of intended properties  

• In the following we consider operational
models, which formalize executions as 
state sequences:



Two dimensions…

• All variables in the model have unique 
values in each state si

• In algorithmic models these state 
sequences are finite, whereas in reactive
models they are usually nonterminating



Vertical units
• The algorithmic meaning of software, as 

formalized by Dijkstra, has the desirable 
property that it can be composed from the 
meanings of the components in an architecture

• To see what this means in terms of executions in 
operational models, consider state sequences 
that implement a required predicate 
transformation

• Independently of the design principles applied, a 
conventional architecture imposes a “vertical”
slicing on these sequences, so that each unit is 
responsible for certain subsequences of states



Vertical…

• The satisfaction of the precondition-
postcondition pair (P,Q) for the whole sequence 
relies on the assumption that a subsequence V, 
generated by an architectural unit, satisfies its 
precondition-postcondition pair (P_V,Q_V)



Vertical…
• More generally, an architecture that consists of vertical 

units imposes a nested structure of such vertical slices 
on each state sequence

• In the generation of these sequences, there are two 
basic operations between architectural units
– Sequential composition which concatenates state sequences 

generated by component units
– Invocation which embeds in longer sequences some state 

sequences that are generated by a component unit
• In both cases, the resulting state sequences have 

subsequences for which the components are responsible



Vertical…

• In current software engineering 
approaches, this view has been adopted 
as the basis for designing behaviors of 
object-oriented systems, leading the focus 
to interface operations that are to be 
invoked, and to the associated local 
precondition-postcondition pairs



Horizontal units

• The meaning of a system can also be modeled 
by how the values of its variables, denoted by 
set X, behave in nonterminating state sequences  

• In order to have modularity that is natural for 
such a reactive meaning, the meanings of the 
components must be of the same form
– In other words, each component must also generate 

nonterminating state sequences, but the associated 
set of variables can be a subset of X 



Horizontal…
• An architecture of reactive units therefore 

imposes a “horizontal” slicing of state 
sequences, so that each unit is responsible 
for some subset XH of variables in all states 
si:



Horizontal…
• In the generation of state sequences, only one basic 

operation is needed
• Superposition uses state sequences that are generated 

by a horizontal slice embedding them in sequences that 
involve a larger set of variables

• The state sequences of the resulting vertical architecture 
have projections for which the horizontal components 
are responsible

• Properties of horizontal slices then emphasize 
collaboration between different vertical units, and the 
relationships between their internal states 



Experiences with the DisCo
method

• In DisCo, the horizontal dimension, as 
discussed above, is used as the primary 
dimension for modularity 

• The internal structure of horizontal units 
consists of partial classes that reflect the 
vertical dimension

• For instance, each of the attributes of a 
class can be introduced in different 
horizontal units 



Experiences…
• Horizontal components correspond to 

superposition steps referred to as layers
• Formally, each layer is a mapping from a more 

abstract vertical architecture to a more detailed 
one

• As the design decisions are encapsulated inside 
the layers, they become first-class design 
elements

• Because layers represent logical, rather than 
structural abstractions of the system, they serve 
in capturing concepts of the problem domain 



Example: mobile robot
• Mobile robot is a small microcontroller-based car  
• Objective is to keep the car on a track marked 

by optical tape 
• From the viewpoint of the control software the 

system has two inputs and two outputs 
– The inputs are readings from an A/D converter 

connected to infra-red sensors, and from an odometer
– The outputs are PWM (Pulse Width Modulation) 

signals  that drive the two servo motors controlling the 
steering and the movement 

• There is also a switch, which is used to start and 
stop the car



Example…

• There are two main concerns that need to 
be addressed: 
– Basic functionality of the car including starting 

and stopping
– Control part including the control algorithms 

• These concerns are treated in three 
separate layers, one of which is common 
to both concerns, i.e. the concerns are 
overlapping



Example…

dependency dependency

<<Concern>>
ControlBasic_Actions

<<Layer>>
Functionality
<<Concern>>

<<Layer>><<Layer>>
Drive_States Control_Algorithms



Example…
layer ca is import ba;

extend Data by
r_tape_ma: real;
r_tape_old: real;
e_state: (power_up, moves, normal);

end;

refined Read (r_x, r_y: real; D: Data) is 
when ... do 
...
if (r_x = 0.0) and (D.r_dist = 0.0) then 
D.e_state -> power_up();

elsif (r_x > 0.0) and (D.r_dist = 0.0) then 
D.e_state -> moves();                

else
D.e_state -> normal(); 

end if || 
D.r_tape_ma := ((8.0 - 1.0)*D.r_tape_ma -

D.r_tape)/8.0 ||
D.r_tape_old := D.r_tape; 

end Read;

end ca;

layer ba is

class Data (1) is
r_dist: real := 0.0; 
r_tape: real := 0.0; 

end Data;

class Output (1) is
c_engine: real := 0.0; 
c_steer: real := 0.0;

end Output;

action Clear (D: Data; O: Output) is
when true do
D.r_dist := 0.0 || D.r_tape := 0.0 ||
O.c_engine := 0.0 || O.c_steer := 0.0; 

end Clear;

action Read (r_x, r_y: real; D: Data) is
when true do
D.r_dist := r_x || D.r_tape := r_y; 

end Read;

action Control (c_x, c_y: real; O: Output) is
when true do
O.c_engine := c_x || O.c_steer := c_y;

end Control; 

end ba;



Conclusions

• The two dimensions of architecture are in 
some sense dual to each other 
– From the viewpoint of vertical architecture the 

behaviors generated by horizontal units 
represent crosscutting concerns

– From the horizontal viewpoint, on the other 
hand, vertical units emerge incrementally



Conclusions…
• Since layers provide abstractions of the total 

system, their explicit use seems natural in a 
structured approach to specification, and also in 
incremental design of systems

• At the programming language level it is, 
however, difficult to develop general-purpose 
support for horizontal architectures
– This means that a well-designed horizontal structure 

may be lost in an implementation, or entangled in a 
basically vertical architecture

– However, newer implementation techniques, including 
aspect-oriented ones in particular have enabled a 
wider range of options



Questions?

Further information & tools available at 
disco.cs.tut.fi
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