
On the Horizontal Dimension of
Software Architecture in
Formal Specifications of

Reactive Systems

Mika Katara, Reino Kurki-Suonio and Tommi Mikkonen
Institute of Software Systems

Tampere University of Technology
Finland

Outline

1. Motivation
2. Two dimensions of software architecture

– vertical units
– horizontal units

3. Experiences with the DisCo method
4. Conclusions

Motivation
• In order to provide better alignment between conceptual

requirements and aspect-oriented implementations,
formal specification methods should enable the
encapsulation of logical abstractions

• Horizontal architectures, consisting of such logical
abstractions, can provide better separation of concerns
over conventional ones
– while supporting incremental development for more common

units of modularity such as classes
• We base our arguments on our experiences with the

DisCo method
– where logical abstractions are composed using the superposition

principle

Two dimensions of software
architecture

• Describing an architecture means
construction of an abstract model that
exhibits certain kinds of intended properties

• In the following we consider operational
models, which formalize executions as
state sequences:

Two dimensions…

• All variables in the model have unique
values in each state si

• In algorithmic models these state
sequences are finite, whereas in reactive
models they are usually nonterminating

Vertical units
• The algorithmic meaning of software, as

formalized by Dijkstra, has the desirable
property that it can be composed from the
meanings of the components in an architecture

• To see what this means in terms of executions in
operational models, consider state sequences
that implement a required predicate
transformation

• Independently of the design principles applied, a
conventional architecture imposes a “vertical”
slicing on these sequences, so that each unit is
responsible for certain subsequences of states

Vertical…

• The satisfaction of the precondition-
postcondition pair (P,Q) for the whole sequence
relies on the assumption that a subsequence V,
generated by an architectural unit, satisfies its
precondition-postcondition pair (P_V,Q_V)

Vertical…
• More generally, an architecture that consists of vertical

units imposes a nested structure of such vertical slices
on each state sequence

• In the generation of these sequences, there are two
basic operations between architectural units
– Sequential composition which concatenates state sequences

generated by component units
– Invocation which embeds in longer sequences some state

sequences that are generated by a component unit
• In both cases, the resulting state sequences have

subsequences for which the components are responsible

Vertical…

• In current software engineering
approaches, this view has been adopted
as the basis for designing behaviors of
object-oriented systems, leading the focus
to interface operations that are to be
invoked, and to the associated local
precondition-postcondition pairs

Horizontal units

• The meaning of a system can also be modeled
by how the values of its variables, denoted by
set X, behave in nonterminating state sequences

• In order to have modularity that is natural for
such a reactive meaning, the meanings of the
components must be of the same form
– In other words, each component must also generate

nonterminating state sequences, but the associated
set of variables can be a subset of X

Horizontal…
• An architecture of reactive units therefore

imposes a “horizontal” slicing of state
sequences, so that each unit is responsible
for some subset XH of variables in all states
si:

Horizontal…
• In the generation of state sequences, only one basic

operation is needed
• Superposition uses state sequences that are generated

by a horizontal slice embedding them in sequences that
involve a larger set of variables

• The state sequences of the resulting vertical architecture
have projections for which the horizontal components
are responsible

• Properties of horizontal slices then emphasize
collaboration between different vertical units, and the
relationships between their internal states

Experiences with the DisCo
method

• In DisCo, the horizontal dimension, as
discussed above, is used as the primary
dimension for modularity

• The internal structure of horizontal units
consists of partial classes that reflect the
vertical dimension

• For instance, each of the attributes of a
class can be introduced in different
horizontal units

Experiences…
• Horizontal components correspond to

superposition steps referred to as layers
• Formally, each layer is a mapping from a more

abstract vertical architecture to a more detailed
one

• As the design decisions are encapsulated inside
the layers, they become first-class design
elements

• Because layers represent logical, rather than
structural abstractions of the system, they serve
in capturing concepts of the problem domain

Example: mobile robot
• Mobile robot is a small microcontroller-based car
• Objective is to keep the car on a track marked

by optical tape
• From the viewpoint of the control software the

system has two inputs and two outputs
– The inputs are readings from an A/D converter

connected to infra-red sensors, and from an odometer
– The outputs are PWM (Pulse Width Modulation)

signals that drive the two servo motors controlling the
steering and the movement

• There is also a switch, which is used to start and
stop the car

Example…

• There are two main concerns that need to
be addressed:
– Basic functionality of the car including starting

and stopping
– Control part including the control algorithms

• These concerns are treated in three
separate layers, one of which is common
to both concerns, i.e. the concerns are
overlapping

Example…

dependency dependency

<<Concern>>
ControlBasic_Actions

<<Layer>>
Functionality
<<Concern>>

<<Layer>><<Layer>>
Drive_States Control_Algorithms

Example…
layer ca is import ba;

extend Data by
r_tape_ma: real;
r_tape_old: real;
e_state: (power_up, moves, normal);

end;

refined Read (r_x, r_y: real; D: Data) is
when ... do
...
if (r_x = 0.0) and (D.r_dist = 0.0) then
D.e_state -> power_up();

elsif (r_x > 0.0) and (D.r_dist = 0.0) then
D.e_state -> moves();

else
D.e_state -> normal();

end if ||
D.r_tape_ma := ((8.0 - 1.0)*D.r_tape_ma -

D.r_tape)/8.0 ||
D.r_tape_old := D.r_tape;

end Read;

end ca;

layer ba is

class Data (1) is
r_dist: real := 0.0;
r_tape: real := 0.0;

end Data;

class Output (1) is
c_engine: real := 0.0;
c_steer: real := 0.0;

end Output;

action Clear (D: Data; O: Output) is
when true do
D.r_dist := 0.0 || D.r_tape := 0.0 ||
O.c_engine := 0.0 || O.c_steer := 0.0;

end Clear;

action Read (r_x, r_y: real; D: Data) is
when true do
D.r_dist := r_x || D.r_tape := r_y;

end Read;

action Control (c_x, c_y: real; O: Output) is
when true do
O.c_engine := c_x || O.c_steer := c_y;

end Control;

end ba;

Conclusions

• The two dimensions of architecture are in
some sense dual to each other
– From the viewpoint of vertical architecture the

behaviors generated by horizontal units
represent crosscutting concerns

– From the horizontal viewpoint, on the other
hand, vertical units emerge incrementally

Conclusions…
• Since layers provide abstractions of the total

system, their explicit use seems natural in a
structured approach to specification, and also in
incremental design of systems

• At the programming language level it is,
however, difficult to develop general-purpose
support for horizontal architectures
– This means that a well-designed horizontal structure

may be lost in an implementation, or entangled in a
basically vertical architecture

– However, newer implementation techniques, including
aspect-oriented ones in particular have enabled a
wider range of options

Questions?

Further information & tools available at
disco.cs.tut.fi

	On the Horizontal Dimension of Software Architecture in Formal Specifications of Reactive Systems
	Outline
	Motivation
	Two dimensions of software architecture
	Two dimensions…
	Vertical units
	Vertical…
	Vertical…
	Vertical…
	Horizontal units
	Horizontal…
	Horizontal…
	Experiences with the DisCo method
	Experiences…
	Example: mobile robot
	Example…
	Example…
	Example…
	Conclusions
	Conclusions…
	Questions?

