Diagnosis of Harmful Aspects

!'_ Using Regression Verification

Shmuel Katz
Computer Science Department
The Technion, Haifa, Israel

Do aspects applied to an
ioriginal system cause harm?

= Assume the original system has a
specification of its essential properties

= Show that the aspects maintain those
properties (but can change others)

= Ignore the properties added by the
aspects—at least "Do No Harm”

= Limits the obliviousness of the system to
aspects applied over it; if “harm is caused”,
at least be aware of it.

i Possible Approaches

= Regression testing
= Static code type analysis
= Deductive verification

= Model checking

Aspect code analysis: consider only the aspect
code, (a) for families of systems or (b) for
one instance

Augmented code analysis: consider the
combination of the original and the aspects

i Why not regression testing?

= Aspects make many changes at many points
and can redirect control and results

= Entire computation paths/methods/fields are
not tested

= Inherently global, for augmented system,
and can demand excessive resources

Previous tests are often insufficient/irrelevant

Static aspect code analysis:
i Example—spectative aspects

= If the binding of aspect code to a system is
only through explicit parameters, can see
that only aspect fields are modified, and
original control is unaffected

= Use data-flow techniques (define-use pairs)

= Thrm: For any original system, properties
only involving original fields, methods, are
not harmed by applying a spectative aspect.

= But: New method exposing a hidden value
could be even in a spectative aspect ...

Deductive verification for aspect
i code: Invariant extension

= [F 7 is an invariant of the original system,
and is inductive, we can just show that

{I} t {1}
holds for each action ¢of the aspect code,
without considering when t is applied, and

conclude that /is an invariant of the entire
augmented system.

Useful example of aspect code analysis for a
particular application, using info on original.

Example of invariant extension
i for a particular instance

= (X>y>0) is an invariant of some system
= An aspect has the form
<complex> - double (x,y)

Then check {x>y>0} double(x,y) {x>y>0}
and conclude (x>y>0) is an invariant of the
entire augmented system

(Note: no need to analyze <complex>)

Using Aspect Validation for
* augmented system analysis
O

r situations where original system has been
proven correct for its specification using
software model checking (e.g., Bandera)

= Reprove for augmented system without new
manual setup (just push a button...)

= Reuse the specification and annotations,
given as verification aspects

= [reats all new paths/methods....
= In many cases uses the same abstractions

Conclusions

= Aspect code analysis for large families of
properties/original programs---is best

= Sometimes static data-flow and simple
inductions suffice for aspect code

= Otherwise augmented system analysis is
sometimes inevitable—and a “validation”
technique is recommended.

= Diagnosis of harm is a valuable step
towards routine application of formal
methods for aspect-oriented systems

