
< > - +

Formal AOP: Opportunity Abounds

James Riely

http://www.depaul.edu/∼jriely

DePaul CTI, Chicago, USA

Much of this talk reports on joint work with

Glen Bruns

Radha Jagadeesan

Alan Jeffrey

FOAL ’04 – p.1/68

http://www.depaul.edu/~jriely
http://www.depaul.edu/~jriely

< > - +

Thanks for Inviting Me

I will try to say something interesting.

FOAL ’04 – p.2/68

< > - +

Thanks for Inviting Me

I will try to say something interesting.

Waffle.

Limiting the power of AOP — Equational Reasoning

FOAL ’04 – p.2/68

< > - +

Thanks for Inviting Me

I will try to say something interesting.

Waffle.

Limiting the power of AOP — Equational Reasoning

Cheese and Ham.

Class-based AOP and Weaving (with types)

“Pure” AOP

FOAL ’04 – p.2/68

< > - +

Thanks for Inviting Me

I will try to say something interesting.

Waffle.

Limiting the power of AOP — Equational Reasoning

Cheese and Ham.

Class-based AOP and Weaving (with types)

“Pure” AOP

Waffle.

Increasing the power of AOP — Temporal Logics

Focus of attention: aspects as method/function call interceptors.

FOAL ’04 – p.2/68

< > - +

Opening Waffle

FOAL ’04 – p.3/68

< > - +

The “Right” Abstractions

More complex programs require more expressive abstractions (ie,
better tools).

FORTRAN/ALGOL: expressions/recursive functions

Structured Programming: first order control structures

Labelled Break Statements/Exceptions: finally eliminate goto

Higher-Order Programming: programmable control structures

Modules/OO Programming: encapsulation of data and control

Patterns: popularize higher-order OO

AO Programming: encapsulation of “concerns” (Flavors)

FOAL ’04 – p.4/68

< > - +

Concerns

So what are we concerned about?

Primary functionality (in its many aspects)

Synchronization

Persistence/Distribution

User Interfaces

Caching

Security

...

How do we code using OOP/FP?

FOAL ’04 – p.5/68

< > - +

OOP/FP Solutions

Hooks (Publish/Subscribe, Visitors) — must be placed ahead

Wrappers (Decorators) — can be circumvented

FOAL ’04 – p.6/68

< > - +

OOP/FP Solutions

Hooks (Publish/Subscribe, Visitors) — must be placed ahead

Wrappers (Decorators) — can be circumvented

AOP to the Rescue

Obliviousness — no need to plan ahead

Quantification — no way to circumvent

FOAL ’04 – p.6/68

< > - +

Why Aren’t We All Programming in Prolog?

Programming with quantification is a pain.

FOAL ’04 – p.7/68

< > - +

Why Aren’t We All Programming in Prolog?

Programming with quantification is a pain.

Why Aren’t We All Programming in Assembly
Language?

Programming without equational reasoning is a pain.

FOAL ’04 – p.7/68

< > - +

Why Aren’t We All Programming in Prolog?

Programming with quantification is a pain.

Why Aren’t We All Programming in Assembly
Language?

Programming without equational reasoning is a pain.

Why Aren’t We All Programming in the Pi Calculus?

Same question.

Abstractions of the language need to support the way we work.

FOAL ’04 – p.7/68

< > - +

AOP: The Declarative Imperative

Fillman and Friedman: The cleverness of classical AOP is augmenting
conventional sequentiality with quantification, rather than supplanting it
wholesale.

FOAL ’04 – p.8/68

< > - +

AOP: The Declarative Imperative

Fillman and Friedman: The cleverness of classical AOP is augmenting
conventional sequentiality with quantification, rather than supplanting it
wholesale.

How can we reasonably quantify over programs?

How can we reason about programs over which we quantify?

FOAL ’04 – p.8/68

< > - +

AOP: The Declarative Imperative

Fillman and Friedman: The cleverness of classical AOP is augmenting
conventional sequentiality with quantification, rather than supplanting it
wholesale.

How can we reasonably quantify over programs?

How can we reason about programs over which we quantify?

Obliviousness is a two edged sword:

Code providers should be oblivious to aspects — attach them
where you like

Code clients should be oblivious to aspects — assure that
contracts will be validated

In both cases equational reasoning is essential.

FOAL ’04 – p.8/68

< > - +

Aspects Break Equational Reasoning: I

class C { void foo() { } }

class D1 extends C { }

class D2 extends C { void foo() { super.foo(); } }

aspect Diff {

void around(): execution(D.foo()) {

System.out.println("aspect in action");

}

}

D1.foo() 6= D2.foo().

FOAL ’04 – p.9/68

< > - +

Aspects Break Equational Reasoning: II

class E1 {

void f() { f(); }

void g() { g(); }

}

class E2 {

void f() { g(); }

void g() { f(); }

}

aspect Diff {

void around(): execution(E.f()) {

System.out.println("aspect in action");

}

}

E1.f() 6= E2.f().

Also consider “jumping” and “vanishing” aspects.

(example from Mitch Wand)

FOAL ’04 – p.10/68

< > - +

Aspects Interfere with Each Other

Alice calls Bob using a Server
A S B

send(B,M)
-

accept(M)
-

�
ack

�
ack

Bob Forwards to Charlie Bob blocks calls from Alice

A S B C
send(B,M)

-

accept(M)
×

accept(M)
-

�
ack

�
ack

A S B
send(B,M)

-

accept(M)
×

�
blocked

FOAL ’04 – p.11/68

< > - +

WWDD?

Are aspects the new goto?

FOAL ’04 – p.12/68

< > - +

WWDD?

Are aspects the new goto?

goto problem “solved” by finding sufficiently expressive
abstractions for control.

Sanity of Hoare Logic mostly restored.

Aspects will inevitably follow the same path. (Much work done in
this direction, eg [Aldrich, thirty minutes ago].)

[Wand ICFP 2003]: Need general support for domain-specific
aspect languages. Need specification-level joint-point ontologies
(AspectJ is implementation level.)

Connections with behavioral types, behavioral subtyping.

Contextual equivalence [Gordon’s applicative bisimulation] as
useful tool. What are the observable events?

FOAL ’04 – p.12/68

< > - +

A Continuum of Approaches

Meta-Object Protocols/Full-blown Introspection with Intercession

Compile-time

Load-time

Run-time

Clearbox AOP (a lá AspectJ [Kiczales, et al])

Blackbox AOP (a lá Composition Filters [Aksit, et al])

Domain-Specific AOP

Traditional OO/FP

What is the sweet spot?

FOAL ’04 – p.13/68

< > - +

AOP in the Wild Wild West

AOP is exploring its power.

Wither formal aspects of aspects?

FOAL ’04 – p.14/68

< > - +

AOP in the Wild Wild West

AOP is exploring its power.

Wither formal aspects of aspects?

Local sheriff — calls it like it is

FOAL ’04 – p.14/68

< > - +

AOP in the Wild Wild West

AOP is exploring its power.

Wither formal aspects of aspects?

Local sheriff — calls it like it is

School marm — drawing in the reigns

FOAL ’04 – p.14/68

< > - +

AOP in the Wild Wild West

AOP is exploring its power.

Wither formal aspects of aspects?

Local sheriff — calls it like it is

School marm — drawing in the reigns

Stranger without name — enabling new conquests

FOAL ’04 – p.14/68

< > - +

AOP in the Wild Wild West

AOP is exploring its power.

Wither formal aspects of aspects?

Local sheriff — calls it like it is

School marm — drawing in the reigns

Stranger without name — enabling new conquests

Hooker with heart of gold, if you prefer

FOAL ’04 – p.14/68

< > - +

Some Examples (Quickly)

FOAL ’04 – p.15/68

< > - +

Lopes Example: Bounded Buffer

FOAL ’04 – p.16/68

< > - +

Lopes Example: Distributed Book Locator

FOAL ’04 – p.17/68

< > - +

Walker Example: Composable Security

FOAL ’04 – p.18/68

< > - +

Aldrich Example: Dynamic Programming

FOAL ’04 – p.19/68

< > - +

Clifton/Leavens Example: Visitors are Painful

FOAL ’04 – p.20/68

< > - +

Flatt/Krishnamurthi/Felleisen Example: Mixins as Wrappe rs

FOAL ’04 – p.21/68

< > - +

Semantics

FOAL ’04 – p.22/68

< > - +

Understanding Pointcuts and Advice

Much work has been done.

Connections with other things: Predicate Dispatching,
Multimethods, MOPs, Reflection, Dynamically Scoped Functions,
Subject Oriented Programming, Coordination Languages?, Logic
and constraint programming?

FOAL ’04 – p.23/68

< > - +

Understanding Pointcuts and Advice

Much work has been done.

Connections with other things: Predicate Dispatching,
Multimethods, MOPs, Reflection, Dynamically Scoped Functions,
Subject Oriented Programming, Coordination Languages?, Logic
and constraint programming?

Semantics: Denotational, Big-step operational, Small-step
operational, Haskell, Scheme, Common Lisp. Eg, [de Meuter],
[Andrews], [Douence Motelet Sudholt], [Lämmel], [Wand Kiczales
Dutchyn], [Masuhara Kiczales Dutchyn], [Walker Zdancewic Ligatti]

FOAL ’04 – p.23/68

< > - +

Understanding Pointcuts and Advice

Much work has been done.

Connections with other things: Predicate Dispatching,
Multimethods, MOPs, Reflection, Dynamically Scoped Functions,
Subject Oriented Programming, Coordination Languages?, Logic
and constraint programming?

Semantics: Denotational, Big-step operational, Small-step
operational, Haskell, Scheme, Common Lisp. Eg, [de Meuter],
[Andrews], [Douence Motelet Sudholt], [Lämmel], [Wand Kiczales
Dutchyn], [Masuhara Kiczales Dutchyn], [Walker Zdancewic Ligatti]

Emphasis on understanding context-dependent pointcuts (cflow).
Eg, [Wand Kiczales Dutchyn 2002].

FOAL ’04 – p.23/68

< > - +

Understanding Pointcuts and Advice

Much work has been done.

Connections with other things: Predicate Dispatching,
Multimethods, MOPs, Reflection, Dynamically Scoped Functions,
Subject Oriented Programming, Coordination Languages?, Logic
and constraint programming?

Semantics: Denotational, Big-step operational, Small-step
operational, Haskell, Scheme, Common Lisp. Eg, [de Meuter],
[Andrews], [Douence Motelet Sudholt], [Lämmel], [Wand Kiczales
Dutchyn], [Masuhara Kiczales Dutchyn], [Walker Zdancewic Ligatti]

Emphasis on understanding context-dependent pointcuts (cflow).
Eg, [Wand Kiczales Dutchyn 2002].

Our work: Emphasis on difference between pointcuts that fire
before and after a call. Closest related work is [Lämmel 2002].

FOAL ’04 – p.23/68

< > - +

A Calculus of AO Programs (ECOOP 2003)

Direct semantics of class-based and aspect-based languages.

Small core of orthogonal primitives in ABL.

Only around advice — encode before and after

No method bodies — only advice bodies

Only call/execution pointcuts — and boolean connectives

Concurrency and nested declarations are easy.

Punted advice ordering: assume a global order on names.

Specification of weaving and proof of correctness (in absence of
dynamically arriving advice).

FOAL ’04 – p.24/68

< > - +

Specification of Weaving

No reductions are lost:

complete

PABL ===
weave

⇒ PCBL

P′
ABL

` as

PABL ===
weave

⇒ PCBL

P′
ABL

`

===
weave

⇒ P′
CBL

?

No reductions are gained:

complete

PABL ===
weave

⇒ PCBL

P′
CBL

?
as

PABL ===
weave

⇒ PCBL

P′
ABL

`

===
weave

⇒ P′
CBL

?

(- is OO reduction; . is AO reduction)

FOAL ’04 – p.25/68

< > - +

Example: s delegates to t

class S {

void print() { out.print("I am a S"); }

void foo(T t) { t.bar(); }

}

class T {

void print() { out.print("I am a T"); }

void bar() { }

}

advice A at call(T.bar()) {

out.print("Aspect invoked");

proceed();

}

foo(t)
- s:S

bar()

intercept
- A

bar()

proceed
- t:T

A intercepts the message.

FOAL ’04 – p.26/68

< > - +

Call Advice

class S {

void print() { out.print("I am a S"); }

void foo(T t) { t.bar(); }

}

class T {

void print() { out.print("I am a T"); }

void bar() { }

}

protected S advice A at call(T.bar()) {

this.print();

target.print();

proceed();

}

s.foo(t) prints “I am S; I am T”.

Call advice executed in the controlling context of the caller

FOAL ’04 – p.27/68

< > - +

Exec Advice

class S {

void print() { out.print("I am a S"); }

void foo(T t) { t.bar(); }

}

class T {

void print() { out.print("I am a T"); }

void bar() { }

}

protected T advice A at exec(T.bar()) {

this.print();

target.print();

proceed();

}

s.foo(t) prints “I am T; I am T”.

Exec advice executed in the controlling context of the callee

FOAL ’04 – p.28/68

< > - +

The Class Calculus: Some Reductions

Field get

object o:c { ... f =v ...}

thread { let x=o.f;~C}
-

object o:c { ... f=v ...}

thread { let x=v;~C}

Field set

object o:c { ... f =u ...}

thread {seto.f =v;~C}
-

object o:c { ... f=v ...}

thread {~C}

New declarations

thread {new class c<:d { ...};

object o:c { ...};~C}
-

class c<:d { ...}

object o:c { ...}

thread {~C}

FOAL ’04 – p.29/68

< > - +

The Class Calculus: Method call

class d<:Object { ...m(x) {~B} ...}

class c<:d { ...}

object o:c { ...}

thread {o.m(v);~C}

-

class d<:Object { ...m(x) {~B} ...}

class c<:d { ...}

object o:c { ...}

thread {~B[o/this, v/x];~C}

FOAL ’04 – p.30/68

< > - +

The Aspect Calculus

A pointcut φ is an element of the boolean algebra with atoms:

call(c::m)

exec(c::m)

An advice declaration D binds message arguments~x as well as
this and target.

advice a(~x) at φ {~C}

A class declaration D list the methods of the class (no code)

class c<:d {m1,m2...}

New commands C are:

let x=o[ā; b̄](~v); process call advice ā and exec advice b̄.

let x=proceed(~v); proceed to next advice

FOAL ’04 – p.31/68

< > - +

Supporting Call advice

To implement call advice a lá AspectJ, record the static type of
object references on method calls:

let x=o:c.m(~v);

To bind this in call advice, record the controlling object of a thread:

thread p {S}

These changes are required to implement the dynamic semantics.

FOAL ’04 – p.32/68

< > - +

Aspect Reduction: Context

advice a0(x):call(c::m) {~C0 }

advice a3(x):call(d::m) {~C3 }

advice b1(x):exec(c::m) {~C1 }

advice b2(x):exec(d::m) {~C2 }

object o:d { ...}

class d<:c { ...}

thread p{ let x=o:c.m(v);}

Actual type of o is d.

Declared type of o in thread is c.

FOAL ’04 – p.33/68

< > - +

Aspect Reduction: Fetching Advice

advice a0(x):call(c::m) {~C0 }

advice a3(x):call(d::m) {~C3 }

advice b1(x):exec(c::m) {~C1 }

advice b2(x):exec(d::m) {~C2 }

object o:d { ...}

class d<:c { ...}

thread p{ let x=o:c.m(v);}

.

thread p{ let x=o.[a0;b1,b2](v);}

FOAL ’04 – p.34/68

< > - +

Aspect Reduction: Call Advice

advice a0(x):call(c::m) {~C0 }

advice a3(x):call(d::m) {~C3 }

advice b1(x):exec(c::m) {~C1 }

advice b2(x):exec(d::m) {~C2 }

object o:d { ...}

class d<:c { ...}

thread p{ let x=o.[a0;b1,b2](v);}

.

thread p{ let x=p{~C0[v/x,
p/this,o/target,o.[/0;b1,b2]/proceed]};}

Controlling context is p.

FOAL ’04 – p.35/68

< > - +

Aspect Reduction: Exec Advice

advice a0(x):call(c::m) {~C0 }

advice a3(x):call(d::m) {~C3 }

advice b1(x):exec(c::m) {~C1 }

advice b2(x):exec(d::m) {~C2 }

object o:d { ...}

class d<:c { ...}

thread p{ let x=o.[/0;b1,b2](v);}

.

thread p{ let x=o{~C1[v/x,o/this,o/target,o.[/0;b2]/proceed]};}

Controlling context is o.

FOAL ’04 – p.36/68

< > - +

Encoding the CBL into the ABL

Given a class:

class c<:Object { ...m(~x) {~C0} ...}

class d<:c { ...m(~x) {~C1} ...}

Create exec advice for each body:

advice cbl_c_m(~x):exec(d::m) {~C0[
proceed/super.m]}

advice cbl_d_m(~x):exec(d::m) {~C1[
proceed/super.m]}

Ensure that cbl_d_m has higher priority than cbl_c_m.

More robust encoding of super uses static dispatch directly.

FOAL ’04 – p.37/68

< > - +

Weaving

Programs that dynamically load advice affecting existing classes
cannot be woven statically.

For static advice, weaving is something like macro expansion:

class c<:d {m[/0;b1,b2]}

advice b1(~x):exec(d::m) {~C1}

advice b2(~x):exec(d::m) {~C2}

is woven recursively as

class c<: ... {m(~x) {~C1[this/target, this.[/0;b2]/proceed]}}

advice b2(~x):exec(d::m) {~C2}

The terminating version of this idea is now standard.

FOAL ’04 – p.38/68

< > - +

Weaving: Subtleties

Extra parameter on call advice (for target object)

Knowledge of controlling object required for call advice

Must annotate advised method calls with method name (required
for switch from call to exec advice)

Introduce skip step to match advice lookups (required so that
reductions match one-to-one)

Theorem works modulo an equivalence on names (weaving must
use actual method name, but aspect code uses name based on
advice list)

complete

PABL ===
weave

⇒ PCBL

P′
ABL

` as

PABL ======
weave

⇒ PCBL

P′
ABL

`

===
weave

⇒ ' P′
CBL

?

FOAL ’04 – p.39/68

< > - +

The Full Untyped AOL

a, ..,z Name

P,Q ::= (D̄ ` H̄) Program

D,E ::= Declaration

class c<:d {M̄} Class

advice a(~x):φ {~C} Advice

M ::= m[ā ; b̄] Method

H,G ::= Heap Element

object o:c{ F̄} Object

thread o{S} Thread

F ::= f =v Field

S,T ::= Call Stack
~C Current Frame

let x=o{S};~C Pushed Frame

C,B ::= Command

new D̄ H̄; New Declaration

return v; Return

let x=v; Value

let x=o.f; Get Field

seto.f =v; Set Field

let x=o.c::m(~v); Static Message

let x=o:c.m(~v); Dynamic Message

let x=o.m[ā ; b̄](~v); Advised Message

let x=proceed(~v); Proceed

φ,ψ ::= Pointcut

false False

¬φ Negation

φ∨ψ Disjunction

call(c::m) Call

exec(c::m) Execution

FOAL ’04 – p.40/68

< > - +

Types (Unpublished)

FOAL ’04 – p.41/68

< > - +

Typing is Problematic

A symptom: the following code compiles in AspectJ1.1.

class D {

public String m() { return "D"; }

}

aspect A {

Object around(): call(* D.m()) {

return new Integer(1);

}

}

This looks like a bug.

Real issues: modular typechecking, variance, genericity.

We address only the first issue.

if ` P and ` Q then ` P | Q

FOAL ’04 – p.42/68

< > - +

A Difference with AspectJ

The set of call advice does not depend upon the type of the caller.

To avoid locking entire heap on every method call, the declaration
set is closed to precompute advice lists:

class c<: ... {m[ā; b̄], ...}

To allow modular typechecking and the use of this in call advice,
must constrain the type of the caller.

Method declarations have the form:

class c<: ... {protected smethod m(~t):r [ā; b̄]...}

protected is “protected c”; public is “protected Object′′.

FOAL ’04 – p.43/68

< > - +

Another Difference

In AspectJ, each advice list terminates in a call to a plain class,
which cannot proceed.

To capture this, we must distinguish two types of advice:

ρ ::= Placement

around Around

replace Replace

D,E ::= ... Declaration

ρ advice a(~x:~t):r at φ {~C} Advice

FOAL ’04 – p.44/68

< > - +

Results for the Typed Calculus

The development is fairly standard

Weaving still correct

Weaving preserves types

Reduction preserves types

around advice no longer enough (before and after not
encodable)

Lays the groundwork for

Covariant return / Contravariant arguments

Genericity

Row polymorphism

FOAL ’04 – p.45/68

< > - +

The Full Typed AOL

a, ..,z Name (& Type)

X,Y,Z ::= n:t Typed Name

P,Q ::= (D̄ ` H̄) Program

ρ ::= Placement

around Around

replace Replace

D,E ::= Declaration

class c<:d{ F̄ M̄} Class

ρ advice a(~X):r at φ {~C} Advice

M ::= protected smethod m(~t):r [ā; b̄] Method

F ::= protected sfield f:t; Field Type

V ::= f =v; Field Value

H,G ::= Heap Element

object o:c{ V̄} Object

thread o{S} Thread

S,T ::= Call Stack
~C Current Frame

let X=o{S};~C Pushed Frame

C,B ::= Command

new D̄ H̄; New

return v; Return

let X=v; Value

let X=o.f; Get Field

seto.f =v; Set Field

let X=o.c::m(~v); Static Message

let X=o:c.m(~v); Dynamic Msg

let X=o:c.m[ā; b̄](~v); Advised Msg

let X=proceed(~v); Proceed

φ,ψ ::= Pointcut

call(c::m) Call

exec(c::m) Execution

¬call(c::m) Not Call

¬exec(c::m) Not Execution

true True

false False

φ∧ψ Conjunction

φ∨ψ Disjunction

FOAL ’04 – p.46/68

< > - +

µABC

P,Q,R ::= Program

letx=p�q:~m;P Message

returnv Return

rolep<q;P New Role

advice a[φ]=σx . τy .πb.Q;P New Advice

FOAL ’04 – p.47/68

< > - +

A Minimal Aspect-Based Calculus

FOAL ’04 – p.48/68

< > - +

Design Choices

Goals

Really really small.

Straightforward compositional translation of class-based language.

FOAL ’04 – p.49/68

< > - +

Design Choices

Goals

Really really small.

Straightforward compositional translation of class-based language.

Decisions

Start with Abadi and Cardelli’s object calculus (σ).

FOAL ’04 – p.49/68

< > - +

Design Choices

Goals

Really really small.

Straightforward compositional translation of class-based language.

Decisions

Start with Abadi and Cardelli’s object calculus (σ).

Add object hierarchy (each object beneath its creator).

FOAL ’04 – p.49/68

< > - +

Design Choices

Goals

Really really small.

Straightforward compositional translation of class-based language.

Decisions

Start with Abadi and Cardelli’s object calculus (σ).

Add object hierarchy (each object beneath its creator).

Remove everything else. Call objects roles.

FOAL ’04 – p.49/68

< > - +

Design Choices

Goals

Really really small.

Straightforward compositional translation of class-based language.

Decisions

Start with Abadi and Cardelli’s object calculus (σ).

Add object hierarchy (each object beneath its creator).

Remove everything else. Call objects roles.

Remove asymmetry of OO. Message send has the form:

p�q:~m

send messages ~m from p to q

FOAL ’04 – p.49/68

< > - +

Refactored Syntax

f , . . . , `,p, . . . ,z Label or Role

a, . . . ,e Advice name

m,n ::= ` a Message

P,Q ::=~B; returnv Program

B,C ::= letx=p�q:~m D Command

D,E ::= Declaration

rolep<q Role

advice a[φ]=σx. τy.πb.Q Advice

Advice names are not first class.

FOAL ’04 – p.50/68

< > - +

Pointcuts

Syntax

φ,ψ ::= Pointcut

p�q: ` Call

¬p�q: ` Not Call

φ∧ψ true Conjunction

φ∨ψ false Disjunction

∀x≤ p.φ Universal

∃x≤ p.φ Existential

Semantics
~D ` p≤ q

~D ` p�q: ` sat φ

FOAL ’04 – p.51/68

< > - +

Dynamic Semantics

~D; letz=p�q:~m, `;P _ ~D; letz=p�q:~m,~a;P

where 〈~a〉 = 〈a|~D 3 advicea[φ] · · · and ~D ` p�q: ` sat φ〉

~D; letz=p�q:~m,a;P _ ~D;~B[p/x,q/y,~m/b];P[v/z]

where ~D 3 advice a[· · ·]=σx. τy.πb.~B; returnv

Pick the rightmost message (for consistency with declaration order).

Renaming required in second rule — dom(~B) and fn(P) disjoint.

FOAL ’04 – p.52/68

< > - +

Dynamic Semantics

~D; letz=p�q:~m, `;P _ ~D; letz=p�q:~m,~a;P

where 〈~a〉 = 〈a|~D 3 advicea[φ] · · · and ~D ` p�q: ` sat φ〉

~D; letz=p�q:~m,a;P _ ~D;~B[p/x,q/y,~m/b];P[v/z]

where ~D 3 advice a[· · ·]=σx. τy.πb.~B; returnv

Pick the rightmost message (for consistency with declaration order).

Renaming required in second rule — dom(~B) and fn(P) disjoint.

Garbage collection P
gc
_ P′ removes unused roles, advice, messages.

FOAL ’04 – p.52/68

< > - +

Sugar

Sugar on programs:

x , returnx

p�q:~m , letx=p�q:~m; returnx

rolep , rolep< top

Sugar on pointcuts:

p. ` , ∃x≤ top .∃y≤ p.x�y: `

“p. `” fires when p or one of its subroles receives message `.

FOAL ’04 – p.53/68

< > - +

Call-by-value Lambda Calculus

~D = role f ;

advice a[f . call]=τy. letx=y�y:arg;P;

roleg< f ;

advice b[g.arg]=Q;

(λx.P)Q _ ~D;g�g: call

_ ~D;g�g: a

_ ~D; letx=g�g:arg;P

_ ~D; letx=g�g: b;P

_ ~D; letx=Q;P
gc
_ letx=Q;P

Cf. [Milner Functions as Processes]

FOAL ’04 – p.54/68

< > - +

Conditional

if p≤ q then R1 else R2 , role r;

advice [∃x≤ top .x� r : if]=R2;

advice [∃x≤ q.x� r : if]=R1;

p� r : if

R1 does not use its proceed variable. If R1 fires, R2 cannot fire.

~D; if p≤ q then R1 else R2 _∗ gc
_







R1 if ~D ` p≤ q

R2 otherwise

FOAL ’04 – p.55/68

< > - +

Lambda Calculus with Advice

We encode primitives from core MinAML [Walker Zdancewic Ligatti
2003]. See also [Tucker Krishnamurthi 2003].

new p;P creates a new name p which acts as a hook.

{p.z�Q}>>P attaches after advice λz.Q to hook p.

{p.z�Q}<<P attaches before advice λz.Q to hook p.

p〈P〉 evaluates P then runs advice hooked on p.

Not a full-blown translation. Eg, advice is first class in MinAML.

FOAL ’04 – p.56/68

< > - +

Core MinAML Reduction

P , new p;{p.x1 �x1+1}<<{p.x2 �x2∗2}>>p〈3〉

~D , rolep;

advice a[p.hook]=λx0 .x0;

advice b[p.hook]=τz.πd .λx1 . lety1=x1+1;(z�z: d)(y1);

advice c[p.hook]=τz.πd .λy2 . letx2= (z�z: d)(y2);x2∗2;

P = ~D;(p�p:hook)3

_ ~D;(p�p: a,b,c)3

_
∗ gc
_ ~D; letx2= (p�p: a,b)(3);x2∗2

_
∗ gc
_

~D; letx2= (lety1=3+1;(p�p: a)(y1));x2∗2

_
∗ gc
_

~D; letx2= (p�p: a)(4);x2∗2

_
∗ gc
_ ~D; letx2=4;x2∗2

_
∗ gc
_ 8

FOAL ’04 – p.57/68

< > - +

Translating the CBL

Jadvice a[φ](~x){Q}K = advice a[JφK]=σthis . τtarget .πproceed .λ~x. thisJQK

Jclass t<:u{~M}K = role t<u; tJ~MK

tJmethod`(~x){Q}K = advice [t . `]=τthis .πsuper .λ~x. thisJQK

Jobjectp : t{~F}K = rolep< t; pJ~FK

pJfield f =vK = advice a[false]= returnv;

advice [p. f]=σx. τy.πb.x�y: a,b

pJletx=q.`(~v);PK = letx= (p�q: `)~v;pJPK

Advice on fields; No call/exec distinction; No global advice order.

One step in CBL = Several steps in µABC (including garbage collection).

FOAL ’04 – p.58/68

< > - +

Insight from µABC

Advice + Names + Name Substitution = Enough!

Not much more complicated than λ, π or σ.

Paper includes spaghetti CPS translation of µABC into π.

Essence of class-based AOP: role hierarchy + advice binding
source, target, and proceed.

Are pure aspects efficiently implementable?

FOAL ’04 – p.59/68

< > - +

Closing Waffle

FOAL ’04 – p.60/68

< > - +

Motivating Example: Resource Access Control

Access Matrix Model [Lampson 1974].

Policy : Subject×Object 7→ 2Rights

Stack Inspection [Wallach et al 1997].

Stack :
−−−−−→
Subject

Policy : Stack×Object 7→ 2Rights

History-Based Access Control [Abadi Fournet 2003].

Event : Subject×Object×Value×{call, return}

History :
−−−→
Event

Policy : History×Object 7→ 2Rights

FOAL ’04 – p.61/68

< > - +

Abadi/Fournet Example: Bad Plugin

// Trusted : static permissions contain all permissions.

public class NaiveProgram {

public static void main() {

String s = BadPlugIn.tempFile();

new File(s).delete();

}

}

// Mostly untrusted : static permissions don’t

// contain any FilePermission.

class BadPlugin {

public static String tempFile() {

return "..\\password";

}

}

FOAL ’04 – p.62/68

< > - +

Aspects for Resource Access Control

Access Matrix Model: call

Stack Inspection: call + cflow

History-Based: ?

FOAL ’04 – p.63/68

< > - +

A More General Notion of Past

Connection between cflow and past-time eventuality operator -�
has been noted by many.

cflow’s limitations are accepted on grounds of implementability.

How can we implement a more general notion of past?

FOAL ’04 – p.64/68

< > - +

A More General Notion of Past

Connection between cflow and past-time eventuality operator -�
has been noted by many.

cflow’s limitations are accepted on grounds of implementability.

How can we implement a more general notion of past?

Required in Firewalls and Intrusion Detection Systems.

An elegant solution: Security Automata [Schneider 2000].

Idea: automaton maintains an abstraction of the history.

FOAL ’04 – p.64/68

< > - +

Sketching a Logic of Temporal Pointcuts

A logic based on regular expressions and process algebraic operators:

ε empty.

φ;ψ sequential composition of two traces.

φ∗ closure of sequential composition — ε∨ (φ;φ∗).

φ‖ψ parallel composition of two traces.

φ! closure of parallel composition — ε∨ (φ‖φ!).

Some encodings:

balanced = (call; return)!

semi·balanced = (balanced;call∗)∗

cflow〈φ〉 = (φ∧ call∗)‖balanced

FOAL ’04 – p.65/68

< > - +

Challenges for Temporal Pointcuts

Whose past? thread? caller object? callee object? stack?

How does one handle partially completed methods and advice?
At what point, exactly, does a call begin or end?

What logics are implementable?

Compile-time weaving no longer an option.

Dynamically loaded aspects attractive – requires rebuilding the
automaton (a new kind of weaving).

What if new aspects require information that has not been saved?

FOAL ’04 – p.66/68

< > - +

Putting the Waffles Together

Logics should be powerful enough to capture join points that are
not recorded in the stack.

Join points are themselves resources, whose access must be
managed.

Interference between aspect policies an important issue.

Work on Feature Interaction is relevant.

FOAL ’04 – p.67/68

< > - +

Thank You!

FOAL ’04 – p.68/68

	Thanks for Inviting Me
	Opening Waffle
	The ``Right'' Abstractions
	Concerns
	{}OOP/FP Solutions
	Why Aren't We All Programming in Prolog?
	AOP: The Declarative Imperative
	Aspects Break Equational Reasoning: I
	Aspects Break Equational Reasoning: II
	Aspects Interfere with Each Other
	{}WWDD?
	A Continuum of Approaches
	AOP in the Wild Wild West
	Some Examples (Quickly)
	Lopes Example: Bounded Buffer
	Lopes Example: Distributed Book Locator
	Walker Example: Composable Security
	Aldrich Example: Dynamic Programming
	Clifton/Leavens Example: Visitors are Painful
	Flatt/Krishnamurthi/Felleisen Example: Mixins as Wrappers
	Semantics
	Understanding Pointcuts and Advice
	A Calculus of AO Programs {(ECOOP 2003)}
	Specification of Weaving
	Example: 	exttt {s} delegates to 	exttt {t}
	Call Advice
	Exec Advice
	The Class Calculus: Some Reductions
	The Class Calculus: Method call
	The Aspect Calculus
	Supporting Call advice
	Aspect Reduction: Context
	Aspect Reduction: Fetching Advice
	Aspect Reduction: Call Advice
	Aspect Reduction: Exec Advice
	Encoding the CBL into the ABL
	Weaving
	Weaving: Subtleties
	The Full Untyped AOL
	Types (Unpublished)
	Typing is Problematic
	A Difference with AspectJ
	Another Difference
	Results for the Typed Calculus
	The Full Typed AOL
	$mu $ABC
	A Minimal Aspect-Based Calculus
	Design Choices
	Refactored Syntax
	Pointcuts
	Dynamic Semantics
	Sugar
	Call-by-value Lambda Calculus
	Conditional
	Lambda Calculus with Advice
	Core MinAML Reduction
	Translating the CBL
	Insight from $mu $ABC
	Closing Waffle
	Motivating Example: Resource Access Control
	Abadi/Fournet Example: Bad Plugin
	Aspects for Resource Access Control
	A More General Notion of Past
	Sketching a Logic of Temporal Pointcuts
	Challenges for Temporal Pointcuts
	Putting the Waffles Together
	Thank You!

