
B
ru

n
o
 H

ar
b
u
lo

t
–
 F

O
A
L

2
0
0
5
 –

 C
h
ic

ag
o
,

U
S
A

1/20

A join point for loops
in AspectJ

Bruno Harbulot and John Gurd

The University of Manchester

FOAL 2005 – Chicago, March 2005

B
ru

n
o
 H

ar
b
u
lo

t
–
 F

O
A
L

2
0
0
5
 –

 C
h
ic

ag
o
,

U
S
A

2/20

What we would like to do

● Writing aspects that represent the concern:
– “parallelise all the loops iterating from 0 to the

length of an array of int using MPI”,

– or “parallelise all the loops iterating over a
Collection using Java Threads”.

● Write (aspect) code that does not invade
the readability of the numerical code.

B
ru

n
o
 H

ar
b
u
lo

t
–
 F

O
A
L

2
0
0
5
 –

 C
h
ic

ag
o
,

U
S
A

3/20

Previously, on loops and AspectJ...

● “Using AspectJ to Separate Concerns In
Parallel Scientific Java Code” (AOSD 2004)

● Parallelisation of loops using aspects:
– by making the iteration space visible as

parameters to the methods

– by turning loops into self-contained objects
(loop body and boundaries)

● Both require refactoring the base code

B
ru

n
o
 H

ar
b
u
lo

t
–
 F

O
A
L

2
0
0
5
 –

 C
h
ic

ag
o
,

U
S
A

4/20

Presentation Outline

● Join point model:
– Part 1: Shadows (static part),

– Part 2: Context exposure (dynamic part),
● Loop selection,
● Implementation using abc,
● Dealing with exceptions,
● Related topics.

B
ru

n
o
 H

ar
b
u
lo

t
–
 F

O
A
L

2
0
0
5
 –

 C
h
ic

ag
o
,

U
S
A

5/20

Join Points

● A join point is “a point in the dynamic call
graph of a running program”.

● A join point shadow is its location in the
text of the program.

● Ability to weave code before, after and/or
around.

● Ability to access execution context.

B
ru

n
o
 H

ar
b
u
lo

t
–
 F

O
A
L

2
0
0
5
 –

 C
h
ic

ag
o
,

U
S
A

6/20

JP Part 1: Shadows (static)

● Analysis of the control flow graph
● Finding natural and combined loops
● Classification of loops according to their

weaving and analysis capabilities:
– General loops

– Loops with unique successor

– Loops with unique exit node

B
ru

n
o
 H

ar
b
u
lo

t
–
 F

O
A
L

2
0
0
5
 –

 C
h
ic

ag
o
,

U
S
A

7/20

Control-flow graph, dominators
and natural loops (I)

● A node is a basic block (only entry via its
head and only exit via its tail).

● Node d dominates node n if every path from
the beginning to n goes through d.

● A back edge (a -> b) is an edge whose head
(b) dominates its tail (a).

● Given a back edge n -> d, the natural loop is
d plus the set of nodes that can reach n
without going through d.

B
ru

n
o
 H

ar
b
u
lo

t
–
 F

O
A
L

2
0
0
5
 –

 C
h
ic

ag
o
,

U
S
A

8/20

Control-flow graph, dominators
and natural loops (II)

for (int i = 0 ; i<MAX ; i ++) {

 /* A */

}

int j = 0 ;

int STRIDE = 1 ;

for (; j < MAX ; j+=STRIDE) {

 /* A */

}

int k = 0 ;

while (k < MAX) {

 /* A */

 k ++ ;

}

1

2

3 4

i=0;

if (i<MAX)

/* A */
i++; return;

1

2

3 4

Control-flow graph

Dominator tree

B
a
ck

 e
d
g
e

Natural Loop

Header

B
ru

n
o
 H

ar
b
u
lo

t
–
 F

O
A
L

2
0
0
5
 –

 C
h
ic

ag
o
,

U
S
A

9/20

Combined loops

int i = 0 ;
while (i< MAX) {
 if (cond(i++)) {
 /* A */
 } else {
 /* B */
 }
}

return;

i=0;1

if (i<MAX)
2

if(cond(i++))3 6

/* B */5/* A */4
1 combined loop
with 2 back edges

B
ru

n
o
 H

ar
b
u
lo

t
–
 F

O
A
L

2
0
0
5
 –

 C
h
ic

ag
o
,

U
S
A

10/20

“Before” the loop

● Always possible
● Inserting a pre-header

header pre-header

header

B
ru

n
o
 H

ar
b
u
lo

t
–
 F

O
A
L

2
0
0
5
 –

 C
h
ic

ag
o
,

U
S
A

11/20

“After” and “around” the loop

● Unique successor:
unique point after
(around possible).

● Multiple successors:
multiple points after
(around impossible).

● Loops with unique exit
node allow further
behaviour prediction.

i=0;
1

if(i<MAXI)
2

j=0;
3

if(j<MAXJ) if(c(i,j))

j++;

i++

/* A */

4

6

5

7

8

B
ru

n
o
 H

ar
b
u
lo

t
–
 F

O
A
L

2
0
0
5
 –

 C
h
ic

ag
o
,

U
S
A

12/20

JP Part 2: Context Exposure
(dynamic)

● Exposing data processed and guiding the
execution,

● “Arguments” to the loop,
● Integer range and Iterators,
● Arrays and Collections.
● (Only loop with unique exit nodes to avoid

“break” statements and irregular iterations)

B
ru

n
o
 H

ar
b
u
lo

t
–
 F

O
A
L

2
0
0
5
 –

 C
h
ic

ag
o
,

U
S
A

13/20

Context Exposure

● For method calls (for example), the context
exposed comprises the target, the caller
object and the arguments,

● Need similar data for loops to exploit the
loop join point potential,

● Otherwise, only able to recognise that there
is a loop, but no extra information on what
it does.

B
ru

n
o
 H

ar
b
u
lo

t
–
 F

O
A
L

2
0
0
5
 –

 C
h
ic

ag
o
,

U
S
A

14/20

Integer range and Iterators

● for (int i = min ; i < max ; i+=1)
● Need to get min, max and stride for

parallelisation.
● while (iter.hasNext()){ ... iter.next() ... }
● Need to get Iterator iter.
● Passed as “args(min, max, stride)” or

“args(iter)”.

B
ru

n
o
 H

ar
b
u
lo

t
–
 F

O
A
L

2
0
0
5
 –

 C
h
ic

ag
o
,

U
S
A

15/20

Arrays and Collection

● Analogy with Java 5 (Tiger) constructs.
● for (Object item: collec) { ... }
● Iterator iter = collec.iterator();
while (iter.hasNext()) {
 Object item = iter.next() ;
 ...
}

● Provides extra information about the data
processed by the loop.

B
ru

n
o
 H

ar
b
u
lo

t
–
 F

O
A
L

2
0
0
5
 –

 C
h
ic

ag
o
,

U
S
A

16/20

Loop selection

● In AspectJ, the selection is (ultimately) based on a
name pattern, for example on the method name or
an argument type,

● Loops haven't got names,

● Selection to be made on argument types and on
data processed: integer range and Iterators; and
especially arrays and Collections. (+cflow,
within and withincode)

● pointcut bytearrayloop(int min,int max,int
s,byte[] a): loop() && args(min,max,s,a);

B
ru

n
o
 H

ar
b
u
lo

t
–
 F

O
A
L

2
0
0
5
 –

 C
h
ic

ag
o
,

U
S
A

17/20

Implementation using abc
● abc: AspectBench Compiler (full AspectJ

compiler),
● LoopsAJ: our extension for abc that

implements a loop pointcut,
● Analysis capabilities of Soot,
● Need to update the graph when weaving,
● Only one “after” point possible,

B
ru

n
o
 H

ar
b
u
lo

t
–
 F

O
A
L

2
0
0
5
 –

 C
h
ic

ag
o
,

U
S
A

18/20

Dealing with exceptions

● The graph is not necessarily “reducible”
(loops may have several entry points),

● The traps for the exceptions do not
necessarily match anything in the source
code.

B
ru

n
o
 H

ar
b
u
lo

t
–
 F

O
A
L

2
0
0
5
 –

 C
h
ic

ag
o
,

U
S
A

19/20

Related topics:
loop-body join point

● It would be possible to insert a node similar
to the “pre-header”, but for edges from the
loop.

● This would comprise the evaluation of the
condition within the definition of the “loop-
body”.

● What would context could be exposed?

B
ru

n
o
 H

ar
b
u
lo

t
–
 F

O
A
L

2
0
0
5
 –

 C
h
ic

ag
o
,

U
S
A

20/20

Summary

● Loop join point possible,
● Meaningful thanks to context exposure,
● Problem of loop selection would probably

benefit from pcflow, dflow and even a
possible pdflow.

