F. Forster

F. Steimann
Programming Systems
Department of Computer Science

University of Hagen

FOAL 2006

a

«O)>r «F»r < A

@© Famous Antinomies

© Great Escapes

© A Standard AOP Application

@ Tracing Problem
@ Workaround
@ Solution

@ Conclusion and Outlook

«0)>» «Fr «=Z»r « > o>

"Theorem Two" is true

«O»r «F» B

a

"Theorem Two" is true

"Theorem One” is false

«O>» «F>» DAy

a

"Theorem Two" is true '

"Theorem One” is false

O false(" Theorem Two" is true)
«0)>» «Fr «=Z»r « > o>
© Forster, Steimann (University of Hagen) ~ AOP and the Antinomy of the Liar FOAL2006 3 /12

"Theorem Two" is true '

"Theorem One” is false

O false(”" Theorem Two" is true) = " Theorem Two" is false
«0)>» «Fr «=Z»r « > o>
© Forster, Steimann (University of Hagen) ~ AOP and the Antinomy of the Liar FOAL2006 3 /12

"Theorem Two" is true '

"Theorem One” is false

O false(”" Theorem Two" is true) = " Theorem Two" is false
© false(”" Theorem One” is false)

O» «5»

DA

a
a
!
v
a
it
v
!

"Theorem Two" is true '

"Theorem One” is false

O false(”" Theorem Two" is true) = " Theorem Two" is false

O false(”" Theorem One” is false) = " Theorem One” is true

«O0>» «Fr» «E» <« > ae

"Theorem Two" is true '

"Theorem One” is false

O false(”" Theorem Two" is true) = " Theorem Two" is false

O false(”" Theorem One” is false) = " Theorem One” is true
© true(”" Theorem Two" is true)

«O0>» «Fr» «E» <« > ae

"Theorem Two" is true '

"Theorem One” is false

O false(”" Theorem Two" is true) = " Theorem Two" is false

O false(”" Theorem One” is false) = " Theorem One” is true

© true(”" Theorem Two" is true) = " Theorem Two" is true

«O0>» «Fr» «E» <« > ae

"Theorem Two" is true I

"Theorem One” is false

O false(”" Theorem Two" is true) = " Theorem Two" is false
O false(”" Theorem One” is false) = " Theorem One” is true
© true(”" Theorem Two" is true) = " Theorem Two" is true
Q true(”" Theorem One” is false)

o =) = = E 9DaAe

TSRSl AOP and the Antinomy of the Liar o S

Famous Antinomies - 1

Theorem One
"Theorem Two" is true

Theorem Two
"Theorem One” is false

Interpretation
O false(”" Theorem Two" is true) = " Theorem Two" is false
O false(”" Theorem One” is false) = " Theorem One” is true
© true(”" Theorem Two" is true) = " Theorem Two" is true

© true(" Theorem One” is false) = "Theorem One" is false

Forster, Steimann (University of Hagen) AOP and the Antinomy of the Liar FOAL 2006 3/12

Famous Antinomies - 1

Theorem One
"Theorem Two" is true

Theorem Two
"Theorem One” is false

Interpretation
O false(”" Theorem Two" is true) = " Theorem Two" is false
O false(”" Theorem One” is false) = " Theorem One” is true
© true(”" Theorem Two" is true) = " Theorem Two" is true
© true(" Theorem One” is false) = "Theorem One" is false
© false(” Theorem Two" is true)

Forster, Steimann (University of Hagen) AOP and the Antinomy of the Liar FOAL 2006 3/12

Famous Antinomies - 1

Theorem One
"Theorem Two" is true

Theorem Two

"Theorem One” is false

Interpretation
O false(”" Theorem Two" is true) = " Theorem Two" is false
O false(”" Theorem One” is false) = " Theorem One” is true
© true(”" Theorem Two" is true) = " Theorem Two" is true
© true(" Theorem One” is false) = "Theorem One" is false
© false(” Theorem Two" is true) = " Theorem Two" is false

Forster, Steimann (University of Hagen) AOP and the Antinomy of the Liar FOAL 2006 3/12

Famous Antinomies - 1

Theorem One
"Theorem Two" is true

Theorem Two

"Theorem One” is false

Interpretation
O false(”" Theorem Two" is true) = " Theorem Two" is false
O false(”" Theorem One” is false) = " Theorem One” is true
© true(”" Theorem Two" is true) = " Theorem Two" is true
© true(" Theorem One” is false) = "Theorem One" is false
© false(” Theorem Two" is true) = " Theorem Two" is false

© repeat indefinitetly.

Forster, Steimann (University of Hagen) AOP and the Antinomy of the Liar FOAL 2006 3/12

Aspect One
public aspect S1 {
void around(): adviceexecution() && within(S2) {
proceed();
}
}

public aspect S2 {

void around(): adviceexecution() && within(S1) {
}
}

«0)>» «Fr «=Z»r « > o>

The Class of all those classes which are not members of themselves.

!
a

«Or «F»r « > > o>

The Class of all those classes which are not members of themselves.

M = {X|X ¢ X}

it
v

«0)>» «Fr «=Z»r « ae

The Class of all those classes which are not members of themselves.

M = {X|X ¢ X}

M € M contradicts the characteristic function of M '

«0)>» «Fr «=Z»r « > o>

The Class of all those classes which are not members of themselves.

M = {X|X ¢ X}

M € M contradicts the characteristic function of M = M ¢ M '

DA

a
u]
v
a
v
a
!
v
a
it
v
!

The Class of all those classes which are not members of themselves.

M = {X|X ¢ X}

M € M contradicts the characteristic function of M = M ¢ M '
M ¢ M fullfils the characteristic function of M '

«0O)>» «F»r « > o>

!
v
a

The Class of all those classes which are not members of themselves.

M = {X|X ¢ X}

M € M contradicts the characteristic function of M = M ¢ M '
M ¢ M fullfils the characteristic function of M = M € M '

«0O)>» «F»r « > o>

!
v
a

Whatever involves all of a collection must not be one of the collection.

!
a

«O)>r «F»r < > > A

Whatever involves all of a collection must not be one of the collection.

Whatever contains a variable must not be a possible value of that variable.

!
a

«O)>r «F»r < > > A

Whatever involves all of a collection must not be one of the collection. '

Whatever contains a variable must not be a possible value of that variable. '

someadvicey ({jp1, jp2, - . .}) = joinpoints in someadvice; ¢ {jp1,jp2, ...}

«0)>» «Fr «=Z»r « > o>

Trace all Methodexecution and Adviceexecution.

«O)>r «F»r < A

a

Trace all Methodexecution and Adviceexecution. l

public aspect Tracing {

void around(): adviceexecution() | |execution (* *(..)){

System.out.println("Entering:" + thisJoinPoint);
proceed();

System.out.println("Leaving: " + thisJoinPoint);
}
+

«O0>» «Fr» «E» <« > ae

Tracing - 1

Task

Trace all Methodexecution and Adviceexecution.

First Go

public aspect Tracing {
void around(): adviceexecution()||execution (* *(..)){
System.out.println("Entering:" + thisJoinPoint);
proceed() ;
System.out.println("Leaving: " + thisJoinPoint);

+
+

Problem

around advice is an adviceexecution() joinpoint!

Forster, Steimann (University of Hagen) AOP and the Antinomy of the Liar FOAL 2006 7/12

Tracing - 1

Task

Trace all Methodexecution and Adviceexecution.

First Go

public aspect Tracing {
void around(): adviceexecution()||execution (* *(..)){
System.out.println("Entering:" + thisJoinPoint);
proceed() ;
System.out.println("Leaving: " + thisJoinPoint);

+
+

Problem

around advice is an adviceexecution() joinpoint! 4Theory of Types

Forster, Steimann (University of Hagen) AOP and the Antinomy of the Liar FOAL 2006 7/12

Tracing - 2

Workaround

public aspect Tracing {
pointcut guard(): (adviceexecution()
| lexecution (* *(..))) && within(Tracing) ;
void around(): (adviceexecution()
| lexecution (¢ *(..))) && !cflow(guard()) {
System.out.println("Entering:" + thisJoinPoint);
proceed() ;

System.out.println("Leaving: " + thisJoinPoint);

}
+

Forster, Steimann (University of Hagen) AOP and the Antinomy of the Liar FOAL 2006

8 /12

Tracing - 2

Workaround
public aspect Tracing {
pointcut guard(): (adviceexecution()

| lexecution (* *(..))) && within(Tracing) ;
void around(): (adviceexecution()
| lexecution (¢ *(..))) && !cflow(guard()) {

System.out.println("Entering:" + thisJoinPoint);
proceed() ;

System.out.println("Leaving: " + thisJoinPoint);

}

Problem
Very verbose,

Forster, Steimann (University of Hagen) AOP and the Antinomy of the Liar FOAL 2006 8 /12

Tracing - 2

Workaround
public aspect Tracing {
pointcut guard(): (adviceexecution()

| lexecution (* *(..))) && within(Tracing) ;
void around(): (adviceexecution()
| lexecution (¢ *(..))) && !cflow(guard()) {

System.out.println("Entering:" + thisJoinPoint);
proceed() ;

System.out.println("Leaving: " + thisJoinPoint);

}

Problem

Very verbose, error-prone,

Forster, Steimann (University of Hagen) AOP and the Antinomy of the Liar FOAL 2006 8 /12

Tracing - 2

Workaround
public aspect Tracing {
pointcut guard(): (adviceexecution()

| lexecution (* *(..))) && within(Tracing) ;
void around(): (adviceexecution()
| lexecution (¢ *(..))) && !cflow(guard()) {

System.out.println("Entering:" + thisJoinPoint);
proceed() ;

System.out.println("Leaving: " + thisJoinPoint);

}

Problem

Very verbose, error-prone, redundancy,

Forster, Steimann (University of Hagen) AOP and the Antinomy of the Liar FOAL 2006 8 /12

Tracing - 2

Workaround
public aspect Tracing {
pointcut guard(): (adviceexecution()

| lexecution (* *(..))) && within(Tracing) ;
void around(): (adviceexecution()
| lexecution (¢ *(..))) && !cflow(guard()) {

System.out.println("Entering:" + thisJoinPoint);
proceed() ;

System.out.println("Leaving: " + thisJoinPoint);

}

Problem

Very verbose, error-prone, redundancy, runtime check.

Forster, Steimann (University of Hagen) AOP and the Antinomy of the Liar FOAL 2006 8 /12

Do

8]
!
!

@ An aspect is of higher type level than base code.

«0)>» «Fr «=Z»r « > o>

@ An aspect is of higher type level than base code.
@ An aspect advising another aspect

is of higher level than the advised aspect.

«0)>» «Fr «=Z»r « > o>

Tracing - 3

Using Russell's Theory of Types for AOP means:
@ An aspect is of higher type level than base code.

@ An aspect advising another aspect
is of higher level than the advised aspect.

@ Pointcuts in an aspect only select joinpoints
in the scope of aspects/classes of lower level.

Forster, Steimann (University of Hagen) AOP and the Antinomy of the Liar FOAL 2006 9 /12

Tracing - 3

Using Russell's Theory of Types for AOP means:
@ An aspect is of higher type level than base code.

@ An aspect advising another aspect
is of higher level than the advised aspect.

@ Pointcuts in an aspect only select joinpoints
in the scope of aspects/classes of lower level.

@ Syntactical constructs to distinguish levels.

Forster, Steimann (University of Hagen) AOP and the Antinomy of the Liar FOAL 2006 9 /12

Tracing - 3

Using Russell's Theory of Types for AOP means:
@ An aspect is of higher type level than base code.
@ An aspect advising another aspect

is of higher level than the advised aspect.

@ Pointcuts in an aspect only select joinpoints
in the scope of aspects/classes of lower level.

@ Syntactical constructs to distinguish levels.

Solution Preview

public meta aspect Tracing {
void around(): adviceexecution() ||execution (* *(..)) {
System.out.println("Entering:" + thisJoinPoint);
proceed() ;
System.out.println("Leaving: " + thisJoinPoint);

}

Forster, Steimann (University of Hagen) AOP and the Antinomy of the Liar FOAL 2006 9 /12

New Syntax and Semantics

The keyword meta

Type Level | Type Definition | Allowed Pointcuts
Level 3

Level 2

Level 1

Level 0 class...

Forster, Steimann (University of Hagen) AOP and the Antinomy of the Liar FOAL 2006 10 / 12

New Syntax and Semantics

The keyword meta

Type Level | Type Definition | Allowed Pointcuts
Level 3

Level 2

Level 1

Level 0 class... no pointcuts

Forster, Steimann (University of Hagen)

AOP and the Antinomy of the Liar

FOAL 2006

10 / 12

New Syntax and Semantics

The keyword

meta

Type Level | Type Definition | Allowed Pointcuts
Level 3

Level 2

Level 1 aspect...

Level 0 class... no pointcuts

Forster, Steimann (University of Hagen)

AOP and the Antinomy of the Liar

FOAL 2006

10 / 12

New Syntax and Semantics

The keyword meta

Type Level | Type Definition | Allowed Pointcuts

Level 3

Level 2

Level 1 aspect... < pc > except adviceexecution()
Level 0 class... no pointcuts

Forster, Steimann (University of Hagen) AOP and the Antinomy of the Liar FOAL 2006 10 / 12

New Syntax and Semantics

The keyword meta

Type Level | Type Definition | Allowed Pointcuts

Level 3

Level 2 meta aspect...

Level 1 aspect... < pc > except adviceexecution()
Level 0 class... no pointcuts

Forster, Steimann (University of Hagen) AOP and the Antinomy of the Liar FOAL 2006 10 / 12

New Syntax and Semantics

The keyword meta
Type Level | Type Definition | Allowed Pointcuts
Level 3
Level 2 meta aspect... | adviceexecution(),
Level 1 aspect... < pc > except adviceexecution()
Level 0 class... no pointcuts

Forster, Steimann (University of Hagen)

AOP and the Antinomy of the Liar FOAL 2006 10 / 12

New Syntax and Semantics

The keyword meta
Type Level | Type Definition | Allowed Pointcuts
Level 3
Level 2 meta aspect... | adviceexecution(),
meta < pc >
Level 1 aspect... < pc > except adviceexecution()
Level 0 class... no pointcuts

Forster, Steimann (University of Hagen)

AOP and the Antinomy of the Liar FOAL 2006

10 / 12

New Syntax and Semantics

The keyword meta
Type Level | Type Definition | Allowed Pointcuts
Level 3
Level 2 meta aspect... | adviceexecution(),
meta < pc > and < pc >
Level 1 aspect... < pc > except adviceexecution()
Level 0 class... no pointcuts

Forster, Steimann (University of Hagen)

AOP and the Antinomy of the Liar FOAL 2006

10 / 12

New Syntax and Semantics

The keyword meta
Type Level | Type Definition | Allowed Pointcuts
Level 3 meta? aspect...
Level 2 meta aspect... | adviceexecution(),
meta < pc > and < pc >
Level 1 aspect... < pc > except adviceexecution()
Level 0 class... no pointcuts

Forster, Steimann (University of Hagen)

AOP and the Antinomy of the Liar FOAL 2006

10 / 12

New Syntax and Semantics

The keyword

meta

Type Level | Type Definition | Allowed Pointcuts
Level 3 meta’ aspect... | meta adviceexecution(),
Level 2 meta aspect... | adviceexecution(),
meta < pc > and < pc >
Level 1 aspect... < pc > except adviceexecution()
Level 0 class... no pointcuts

Forster, Steimann (University of Hagen)

AOP and the Antinomy of the Liar FOAL 2006

10 / 12

New Syntax and Semantics

The keyword

meta

Type Level | Type Definition | Allowed Pointcuts
Level 3 meta’ aspect... | meta adviceexecution(),
adviceexecution(),
Level 2 meta aspect... | adviceexecution(),
meta < pc > and < pc >
Level 1 aspect... < pc > except adviceexecution()
Level 0 class... no pointcuts

Forster, Steimann (University of Hagen)

AOP and the Antinomy of the Liar FOAL 2006

10 / 12

New Syntax and Semantics

The keyword meta
Type Level | Type Definition | Allowed Pointcuts

Level 3 meta’ aspect... | meta adviceexecution(),
adviceexecution(), meta? < pc >,

Level 2 meta aspect... | adviceexecution(),

meta < pc > and < pc >
Level 1 aspect... < pc > except adviceexecution()
Level 0 class... no pointcuts

Forster, Steimann (University of Hagen) AOP and the Antinomy of the Liar FOAL 2006 10 / 12

New Syntax and Semantics

The keyword meta
Type Level | Type Definition | Allowed Pointcuts

Level 3 meta’ aspect... | meta adviceexecution(),
adviceexecution(), meta? < pc >,
meta < pc >

Level 2 meta aspect... | adviceexecution(),

meta < pc > and < pc >
Level 1 aspect... < pc > except adviceexecution()
Level 0 class... no pointcuts

Forster, Steimann (University of Hagen) AOP and the Antinomy of the Liar FOAL 2006 10 / 12

New Syntax and Semantics

The keyword meta
Type Level | Type Definition | Allowed Pointcuts

Level 3 meta’ aspect... | meta adviceexecution(),
adviceexecution(), meta? < pc >,
meta < pc > and < pc >

Level 2 meta aspect... | adviceexecution(),

meta < pc > and < pc >
Level 1 aspect... < pc > except adviceexecution()
Level 0 class... no pointcuts

Forster, Steimann (University of Hagen) AOP and the Antinomy of the Liar FOAL 2006 10 / 12

New Syntax and Semantics

The keyword meta
Type Level | Type Definition | Allowed Pointcuts

Level 3 meta’ aspect... | meta adviceexecution(),
adviceexecution(), meta? < pc >,
meta < pc > and < pc >

Level 2 meta aspect... | adviceexecution(),

meta < pc > and < pc >
Level 1 aspect... < pc > except adviceexecution()
Level 0 class... no pointcuts

Forster, Steimann (University of Hagen) AOP and the Antinomy of the Liar FOAL 2006 10 / 12

Requirement:
Solution:

«O»r «F» B

a

Requirement:
Solution:

Checking the LoD checker

«O>» «Fr « > A

Requirement:
Solution:

Checking the LoD checker
meta aspect LoD

advises aspect LoD

«O>» «Fr « > A

Requirement: Checking the LoD checker
Solution:

meta aspect LoD

advises aspect LoD

Requirement:

Solution:

«O0>» «Fr» «E» <« > ae

Requirement: Checking the LoD checker
Solution:

meta aspect LoD

advises aspect LoD

Requirement:

"We need join points for advices to
instrument aspects as well”
Solution:

«O» «Fr» «Er» « > ae

Related Work - 1

Law of Demeter for Aspects [Liebherr, Lorenz, Wu, 2004]

Requirement: Checking the LoD checker
Solution: meta aspect LoD
advises aspect LoD

Testing Aspects [Sokenou, Hermann, 2005]

Requirement: "We need join points for advices to
instrument aspects as well”

Solution: meta aspect AspectTester
instruments aspect ObjectAdvisor

Forster, Steimann (University of Hagen) AOP and the Antinomy of the Liar FOAL 2006

11/ 12

@ Restoration of intuitive semantics (no more paradoxes!)

!
a

«O)>r «F»r < > > A

@ Restoration of intuitive semantics (no more paradoxes!)
@ Clear seperation of aspects.

!
a

«O)>r «F»r < > > A

@ Restoration of intuitive semantics (no more paradoxes!)
@ Clear seperation of aspects.

@ Type system prevents programming errors.

!
a

«O>» «Fr « > > ae

@ Restoration of intuitive semantics (no more paradoxes!)
@ Clear seperation of aspects.

@ Type system prevents programming errors.

@ (Slightly) more expressive pointcut language.

<O <Fr «E» «E T Dace

Conclusion and Outlook

Results
@ Restoration of intuitive semantics (no more paradoxes!)
o Clear seperation of aspects.
@ Type system prevents programming errors.

@ (Slightly) more expressive pointcut language.

Further Work

@ Implementation of the type system (with abc group).

Forster, Steimann (University of Hagen) AOP and the Antinomy of the Liar FOAL 2006 12 /12

Conclusion and Outlook

Results
@ Restoration of intuitive semantics (no more paradoxes!)
o Clear seperation of aspects.
@ Type system prevents programming errors.

@ (Slightly) more expressive pointcut language.

Further Work
@ Implementation of the type system (with abc group).

@ Systematic migration of current AOP applications.

Forster, Steimann (University of Hagen) AOP and the Antinomy of the Liar FOAL 2006 12 /12

Conclusion and Outlook

Results
@ Restoration of intuitive semantics (no more paradoxes!)

o Clear seperation of aspects.
@ Type system prevents programming errors.

@ (Slightly) more expressive pointcut language.

Further Work
@ Implementation of the type system (with abc group).
@ Systematic migration of current AOP applications.

@ Collect empirical data on how many levels and/or
whether intermediate levels are needed.

Forster, Steimann (University of Hagen) AOP and the Antinomy of the Liar FOAL 2006 12 /12

Conclusion and Outlook

Results
@ Restoration of intuitive semantics (no more paradoxes!)
o Clear seperation of aspects.
@ Type system prevents programming errors.

@ (Slightly) more expressive pointcut language.

Further Work
@ Implementation of the type system (with abc group).
@ Systematic migration of current AOP applications.

@ Collect empirical data on how many levels and/or
whether intermediate levels are needed.

@ Generalization of the type system.

Forster, Steimann (University of Hagen) AOP and the Antinomy of the Liar FOAL 2006 12 /12

	Outline
	Famous Antinomies
	Great Escapes
	A Standard AOP Application
	Tracing Problem
	Workaround
	Solution

	Conclusion and Outlook

