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Famous Antinomies - 1

Theorem One
"Theorem Two" is true

Theorem Two
"Theorem One” is false

Interpretation
O false(”" Theorem Two" is true) = " Theorem Two" is false
O false(”" Theorem One” is false) = " Theorem One” is true
© true(”" Theorem Two" is true) = " Theorem Two" is true

© true(" Theorem One” is false) = "Theorem One" is false
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Famous Antinomies - 1

Theorem One
"Theorem Two" is true

Theorem Two

"Theorem One” is false

Interpretation
O false(”" Theorem Two" is true) = " Theorem Two" is false
O false(”" Theorem One” is false) = " Theorem One” is true
© true(”" Theorem Two" is true) = " Theorem Two" is true
© true(" Theorem One” is false) = "Theorem One" is false
© false(” Theorem Two" is true) = " Theorem Two" is false

© repeat indefinitetly.
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Aspect One
public aspect S1 {
void around(): adviceexecution() && within(S2) {
proceed();
}
}

public aspect S2 {

void around(): adviceexecution() && within(S1) {
}
}
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The Class of all those classes which are not members of themselves.

M = {X|X ¢ X}

M € M contradicts the characteristic function of M = M ¢ M '
M ¢ M fullfils the characteristic function of M = M € M '
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Whatever involves all of a collection must not be one of the collection. '

Whatever contains a variable must not be a possible value of that variable. '

someadvicey ({jp1, jp2, - . .}) = joinpoints in someadvice; ¢ {jp1,jp2, ...}
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Trace all Methodexecution and Adviceexecution.
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Trace all Methodexecution and Adviceexecution. l

public aspect Tracing {

void around(): adviceexecution() | |execution (* *(..)){

System.out.println("Entering:" + thisJoinPoint);
proceed();

System.out.println("Leaving: " + thisJoinPoint);
}
+

«O0>» «Fr» «E» <« > ae




Tracing - 1

Task

Trace all Methodexecution and Adviceexecution.

First Go

public aspect Tracing {
void around(): adviceexecution()||execution (* *(..)){
System.out.println("Entering:" + thisJoinPoint);
proceed() ;
System.out.println("Leaving: " + thisJoinPoint);

+
+

Problem

around advice is an adviceexecution() joinpoint!
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Trace all Methodexecution and Adviceexecution.

First Go

public aspect Tracing {
void around(): adviceexecution()||execution (* *(..)){
System.out.println("Entering:" + thisJoinPoint);
proceed() ;
System.out.println("Leaving: " + thisJoinPoint);

+
+

Problem

around advice is an adviceexecution() joinpoint! 4Theory of Types
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Tracing - 2

Workaround

public aspect Tracing {
pointcut guard(): (adviceexecution()
| lexecution (* *(..))) && within(Tracing) ;
void around(): (adviceexecution()
| lexecution (¢ *(..))) && !cflow(guard()) {
System.out.println("Entering:" + thisJoinPoint);
proceed() ;

System.out.println("Leaving: " + thisJoinPoint);

}
+
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Tracing - 2

Workaround
public aspect Tracing {
pointcut guard(): (adviceexecution()

| lexecution (* *(..))) && within(Tracing) ;
void around(): (adviceexecution()
| lexecution (¢ *(..))) && !cflow(guard()) {

System.out.println("Entering:" + thisJoinPoint);
proceed() ;

System.out.println("Leaving: " + thisJoinPoint);

}

Problem

Very verbose, error-prone, redundancy, runtime check.
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@ An aspect is of higher type level than base code.
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@ An aspect is of higher type level than base code.
@ An aspect advising another aspect

is of higher level than the advised aspect.
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Tracing - 3

Using Russell's Theory of Types for AOP means:
@ An aspect is of higher type level than base code.

@ An aspect advising another aspect
is of higher level than the advised aspect.

@ Pointcuts in an aspect only select joinpoints
in the scope of aspects/classes of lower level.
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Tracing - 3

Using Russell's Theory of Types for AOP means:
@ An aspect is of higher type level than base code.
@ An aspect advising another aspect

is of higher level than the advised aspect.

@ Pointcuts in an aspect only select joinpoints
in the scope of aspects/classes of lower level.

@ Syntactical constructs to distinguish levels.

Solution Preview

public meta aspect Tracing {
void around(): adviceexecution() ||execution (* *(..)) {
System.out.println("Entering:" + thisJoinPoint);
proceed() ;
System.out.println("Leaving: " + thisJoinPoint);

}
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New Syntax and Semantics

The keyword meta

Type Level | Type Definition | Allowed Pointcuts
Level 3

Level 2

Level 1

Level 0 class...
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New Syntax and Semantics

The keyword meta

Type Level | Type Definition | Allowed Pointcuts

Level 3

Level 2

Level 1 aspect... < pc > except adviceexecution()
Level 0 class... no pointcuts
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Requirement: Checking the LoD checker
Solution:

meta aspect LoD

advises aspect LoD

Requirement:

"We need join points for advices to
instrument aspects as well”
Solution:

«O» «Fr» «Er» « > ae




Related Work - 1

Law of Demeter for Aspects [Liebherr, Lorenz, Wu, 2004]

Requirement: Checking the LoD checker
Solution: meta aspect LoD
advises aspect LoD

Testing Aspects [Sokenou, Hermann, 2005]

Requirement: "We need join points for advices to
instrument aspects as well”

Solution: meta aspect AspectTester
instruments aspect ObjectAdvisor
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@ Restoration of intuitive semantics (no more paradoxes!)
@ Clear seperation of aspects.

@ Type system prevents programming errors.

@ (Slightly) more expressive pointcut language.
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Conclusion and Outlook

Results
@ Restoration of intuitive semantics (no more paradoxes!)
o Clear seperation of aspects.
@ Type system prevents programming errors.

@ (Slightly) more expressive pointcut language.

Further Work

@ Implementation of the type system (with abc group).
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Conclusion and Outlook

Results
@ Restoration of intuitive semantics (no more paradoxes!)

o Clear seperation of aspects.
@ Type system prevents programming errors.

@ (Slightly) more expressive pointcut language.

Further Work
@ Implementation of the type system (with abc group).
@ Systematic migration of current AOP applications.

@ Collect empirical data on how many levels and/or
whether intermediate levels are needed.
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Conclusion and Outlook

Results
@ Restoration of intuitive semantics (no more paradoxes!)
o Clear seperation of aspects.
@ Type system prevents programming errors.

@ (Slightly) more expressive pointcut language.

Further Work
@ Implementation of the type system (with abc group).
@ Systematic migration of current AOP applications.

@ Collect empirical data on how many levels and/or
whether intermediate levels are needed.

@ Generalization of the type system.
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