
Modular Generic
Verification of LTL

Properties for Aspects
Shmuel Katz

Max Goldman

{katz, mgoldman}@cs.technion.ac.il

FOAL ’06

Aspects
Base + Aspect = Augmented

State Machines
Model Checking

Aspect Verification
Aspects have a specification

Requirements about base system
Results to hold in augmented system

Prove once-and-for-all that an aspect
satisfies its specification

Aspect Verification
Aspect red requires blue

and guarantees orange

Modular
Consider the aspect independently from
the base machine

Prove red guarantees orange

Prove base is blue

Generic
Consider the aspect independently from
any base machine

Prove red guarantees orange

Prove base or base or base is blue

Idea

Aspect
Advice: state machine A
Pointcut: descriptor ρ
Specification:

Base machine requirement ψ
Woven machine result φ

Aspect
Advice: state machine A
Pointcut: descriptor ρ
Specification:

Base machine requirement ψ
Woven machine result φ

Aspect
Advice: state machine A
Pointcut: descriptor ρ
Specification:

Base machine requirement ψ
Woven machine result φ

Aspect
Advice: state machine A
Pointcut: descriptor ρ
Specification:

Base machine requirement ψ
Woven machine result φ

Aspect
Advice: state machine A
Pointcut: descriptor ρ
Specification:

Base machine requirement ψ
Woven machine result φ

Aspect
Advice: state machine A
Pointcut: descriptor ρ
Specification:

Base machine requirement ψ
Woven machine result φ

Aspect
Advice: state machine A
Pointcut: descriptor ρ
Specification:

Base machine requirement ψ
Woven machine result φ

Goal
Prove

For all base machines B
If “B satisfies ψ”
Then “B woven with A according to ρ
satisfies φ”

Problem
What if the aspect puts the base program
into a state it could never reach on its
own?
The behavior of the base program is
unknown

Weakly Invasive
Aspect returns to the base program only
in states reachable by that base program
on its own

Spectative
Regulative
Invasive within original domain

Result
Prove

For all base machines B
If “B satisfies ψ”
And “A with ρ is weakly invasive for B”
Then “B woven with A according to ρ
satisfies φ”

Strategy
Build a “generic” state machine version of
assumption ψ
Weave the aspect into this model
Prove that this augmented generic model
satisfies the desired result

Strategy
Build a “generic” state machine version of
assumption ψ
Weave the aspect into this model
Prove that this augmented generic model
satisfies the desired result

Tψ

Strategy
Build a “generic” state machine version of
assumption ψ
Weave the aspect into this model
Prove that this augmented generic model
satisfies the desired result

TψTψ

Strategy
Build a “generic” state machine version of
assumption ψ
Weave the aspect into this model
Prove that this augmented generic model
satisfies the desired result

TψTψ Tψ

Components

State Machines
Finite set of states
Set of atomic propositions
Labels
Nondeterminism

State Machines
Finite set of states S
Set of atomic propositions AP
Labeling function L : S → 2AP

Path relation R containing pairs (s,t) when
there is a transition from s to t

State Machine
b

a b c

a c

c

b

State Machine
b

a b c

a c

c

b

b

a b c

State Machine
b

a b c

a c

c

b

b

a b c

State Machine
b

a b c

a c

c

b

b

a b c

a b c

Fairness
Problem with nondeterminism: often
allows the system to “do nothing” forever
Impose a fairness constraint, and only
look at fair paths
Fairness set F: set of subsets of S

A path is fair iff it visits every set in F
infinitely often

Fairness
b

a b c

a c

c

b

Fairness b

a b c

b

a b c

a c

c

b

Fairness b

a b cXb

a b c

a c

c

b

Fairness b

a b c

b

a b c

a c

c

b

Fairness b

a b c

a b c

b

a b c

a c

c

b

LTL
Linear Temporal Logic

Logic of infinite paths of computation
Path formulas

G p
p → F (q U r)
p → X q

p p p pp p
q q rp

q p qp

LTL Formulas
A F c
A F G ¬b
A G ((¬a ∧ b) → F a)

b

a b c

a c

c

b

Base Machine
State machine B

Computation starts from one of the
initial states S0 ⊆ S

Base Machine
S0b

a b c

a c

c

b

Advice
State machine A

Initial states S0

Return states Sret

Advice

a b b

S0 Sret

Pointcuts
Pointcut descriptor ρ

Matches the end of a path
Past LTL, regular expressions, ...

Pointcut
ρ = a ∧ Y b ∧ Y Y b

b b a? ? ?

Components
State machines
Fairness
LTL
Base machines
Aspect advice machines
Aspect pointcuts

Weaving
Inputs:

Base machine B
Aspect machine A
Pointcut ρ

Output:

Woven machine B ̃

Weaving A with B
Step 1: Make B pointcut-ready for ρ

Result: Machine Bρ

Step 2: Augment Bρ with A

Result: Augmented machine B ̃

1. Pointcut-Ready
Advantage: simplicity
Disadvantage: static, not dynamic

No problems for many aspects
State pointcut
Method call pointcut

1. Pointcut-Ready
Unwinding of paths such that each state
either definitely does or definitely does
not match the pointcut
Matching states are labeled ‘pointcut’

1. Pointcut-Ready

ρ = a ∧ Y b ∧ Y Y b

a b

1. Pointcut-Ready

ρ = a ∧ Y b ∧ Y Y b

a b

b
a

 pointcut

1. Pointcut-Ready

ρ = a ∧ Y b ∧ Y Y b

a b

b
a

 pointcut

2. Augmented
Transitions from base machine ‘pointcut’
states to aspect initial states
Transitions from aspect return states to
base machine states
According to state labels

2. Augmented
Rule: add all edges

‘pointcut’ → aspect initial
aspect return → base

Where the labels match

Weakly Invasive
All edges from aspect return states go to
reachable states in the base machine

Tableaux

Recall
A “generic” model built from the
assumption formula ψ

 TψTψ

Tableaux
Exactly all the paths which satisfy a given
LTL path formula

Tableau
G a

a

Tableau
F b

b

b

Tableaux
For a given LTL formula ψ

If a path supports the formula, it must
be in the tableau

For any machine satisfying ψ
All its paths must be in the tableau

Algorithm

Recall
Advice: state machine A
Pointcut: descriptor ρ
Specification:

Base machine requirement ψ
Woven machine result φ

A, ρ, ψ, and φ over AP

Step 0
Throw all the atomic propositions in AP
into ψ, in clauses of the form
… ∧ (a ∨ ¬a)

Step 1
Construct Tψ, the tableau for ψ

 TψTψ

Step 2
Restrict Tψ to its reachable component

Step 3
Weave A into Tψ according to ρ

Result: T ͠ψ

 T ͠ψTψ

Step 4
Determine if T ͠ψ |= φ

 orangeTψ

Claim
If T ͠ψ |= φ
Then for any M

If M |= ψ
And A and ρ are weakly invasive for M

Then M̃ |= φ

Proof

Outline
Tψ has every possible path

So T ͠ψ has every possible augmented path

If T ͠ψ |= φ
Then every possible augmented path
supports φ

Example

Aspect
ψ = A G ((¬a ∧ b) → F a)

φ = A G ((a ∧ b) → X F a)

ρ = a ∧ b

A = a b b

Tψ

a a b

a Xg
a b

Xg

b XgXg

T ͠ψ

a a b

a Xg
a b

Xg

b XgXg

a b

b

T ͠ψ |= φ

a a b

a Xg
a b

Xg

b XgXg

a b

b

Result
The aspect satisfies its specification

Really?
b

a b c

a c

c

b

Really.

a b b

b

a b c

a c

c

b

Aspect Verification
Prove once-and-for-all that an aspect
satisfies its specification
Modular
Generic
Uses an LTL tableau as a “generic” model
More on the way

Modular Generic
Verification of LTL

Properties for Aspects
Shmuel Katz

Max Goldman

{katz, mgoldman}@cs.technion.ac.il

FOAL ’06

