Interference of Larissa Aspects

David Stauch, Karine Altisen, Florence Maraninchi Verimag, Grenoble, France

Interference of Larissa Aspects David Stauch $\overset{\cdot}{2}$

Outline

 Reactive systems are systems which are in constant interaction with their environment

- Cross-cutting concerns exist in reactive systems, but existing aspect languages cannot be used
- Larissa is an aspect language for the synchronous programming language Argos
- This talk:
 - Sequential weaving in Larissa causes aspect interference problems
 - Joint weaving resolves these problems
 - We can define sufficient conditions to prove noninterference of aspects

Argos

- Synchronous automata language
- Basic element : complete and deterministic Mealy automata
- Interface : set of inputs and set of outputs

Argos

- Synchronous automata language
- Basic element : complete and deterministic Mealy automata
- Interface : set of inputs and set of outputs
- Operators : parallel product, encapsulation

Argos

- Synchronous automata language
- Basic element : complete and deterministic Mealy automata
- Interface : set of inputs and set of outputs
- Operators : parallel product, encapsulation
- Operators are transformations into flat automata

Larissa

- Aspect language for Argos
- Modularizes recurrent cross-cutting concerns in Argos
- Consists of pointcuts and advice :
 - pointcuts select transitions in automata
 - advice replaces these transitions
- This cannot be done with the existing operators
- We want to preserve semantic properties, e.g. preservation of trace equivalence

Pointcuts

- Observer automata which take as inputs the inputs and outputs of the program
- Output JP is emitted when the program is in a join point, i.e. it takes a join point transition
- Independent of the implementation of the program

Pointcuts

- Observer automata which take as inputs the inputs and outputs of the program
- Output JP is emitted when the program is in a join point, i.e. it takes a join point transition
- Independent of the implementation of the program

Advice

- When a join point is passed, program execution is changed :
 - emit outputs 0
 - go to some target state
 - target state defined by a finite input trace, executed from the initial state
- Example advice : trace b.c, advice output d

Advice

- When a join point is passed, program execution is changed :
 - emit outputs 0
 - go to some target state
 - target state defined by a finite input trace, executed from the initial state
- Example advice : trace b.c, advice output d

Example: Suunto Wristwatch

- Model the interface of a complex wristwatch
- Functionalities : watch, altimeter, barometer
- Each functionality has a main mode and some submodes
- Four buttons : mode, select,
 minus, plus

Model in Argos: watch

Two Shortcut Aspects

- minus and plus buttons are used as shortcuts in the main modes
- Pressing minus goes to the Logbook mode
- aspect LB with trace
 mode.select.mode.mode
- output Logbook

Two Shortcut Aspects

- minus and plus buttons are used as shortcuts in the main modes
- Pressing minus goes to the Logbook mode
- aspect LB with trace
 mode.select.mode.mode
- output Logbook

- Pressing plus goes to the Memory mode
- aspect M with trace
 mode.mode.select.mode
- output Memory

Weaving the First Aspect : watch⊲LB

Weaving the First Aspect : watch⊲LB

Weaving the First Aspect : watch⊲LB

- Pointcut doesn't capture join points correctly
- When minus is pressed in a main mode, program goes to a submode but the pointcut stays in main mode
- Advice transitions are added to the Logbook mode

- Pointcut doesn't capture join points correctly
- When minus is pressed in a main mode, program goes to a submode but the pointcut stays in main mode
- Advice transitions are added to the Logbook mode

- Pointcut doesn't capture join points correctly
- When minus is pressed in a main mode, program goes to a submode but the pointcut stays in main mode
- Advice transitions are added to the Logbook mode

- Pointcut doesn't capture join points correctly
- When minus is pressed in a main mode, program goes to a submode but the pointcut stays in main mode
- Advice transitions are added to the Logbook mode

Weaving the Second Aspect : watch⊲LB⊲M

- Pointcut doesn't capture join points correctly
- When minus is pressed in a main mode, program goes to a submode but the pointcut stays in main mode
- Advice transitions are added to the Logbook mode

 Problem: pointcut was written for the base program, not for the woven program watch⊲LB

Weaving the Second Aspect : watch⊲LB⊲M

- Pointcut doesn't capture join points correctly
- When minus is pressed in a main mode, program goes to a submode but the pointcut stays in main mode
- Advice transitions are added to the Logbook mode

- Problem: pointcut was written for the base program, not for the woven program watch⊲LB
- watch⊲LB⊲M is not equivalent to watch⊲M⊲LB

Joint Weaving

- Idea: weave aspects jointly into the program
- select join points for all aspects first, then apply advice
- let P be a program and A_1, \ldots, A_n aspects with pointcuts $\mathsf{PC}_1 \ldots \mathsf{PC}_n$
- calculate $P \triangleleft (A_1, \ldots, A_n)$
 - compute parallel product of $PC_1 \dots PC_n$
 - apply product to program and determine join point transition
 - sequentially apply advice in reverse order

Interference

- watch⊲(LB,M) is equivalent to watch⊲(M,LB)
- We say that two aspects A_i and A_{i+1} interfere iff $P \triangleleft (A_1 \ldots A_i, A_{i+1} \ldots A_n)$ is not trace equivalent to $P \triangleleft (A_1 \ldots A_{i+1}, A_i \ldots A_n)$
- Jointly woven Larissa aspects still interfere, if they have the same join points.

Interfering aspects

 If we modify the pointcuts slightly, the shortcut aspects interfere

Interfering aspects

 If we modify the pointcuts slightly, the shortcut aspects interfere

Interfering aspects

- If we modify the pointcuts slightly, the shortcut aspects interfere
- Both pointcuts select the transitions with minus∧plus as join points, but only one advice can execute
- Thus, the aspects interfere

Strong Non-Interference

- Let A_1 and A_2 be two aspects with pointcuts PC_1 and PC_2 with join point signals JP_1 and JP_2
- Strong non-interference : A_1 and A_2 never interfere, regardless of the program they are applied to.
- Theorem 1: If the product of PC_1 and PC_2 contains no transition that emits JP_1 and JP_2 , then the two aspects are strongly non-interferent.
- Theorem 1 describes a sufficient, but not a necessary condition

Shortcut aspects

- Calculate the product of the pointcuts of the shortcut aspects
- For the original aspects,
 no transition emits both
 JP₁ and JP_m
- the aspects are strongly non-interferent

Shortcut aspects

- Calculate the product of the pointcuts of the shortcut aspects
- For the original aspects,
 For the modified no transition emits both JP_l and JP_m
- the aspects are strongly non-interferent

- shortcut aspects, there is such a transition
- Tells us where the aspects interfere

Weak Non-Interference

- Let A_1 and A_2 be two aspects with pointcuts PC_1 and PC_2 with join point signals JP_1 and JP_2
- Weak non-interference : \mathcal{A}_1 and \mathcal{A}_2 do not interfere when they are applied to a program P
- Theorem 2: If after the application of the product of PC_1 and PC_2 to P, no transition emits JP_1 and JP_2 , then the two aspects are weakly non-interferent for P
- Theorem 2 describes a sufficient, but not a necessary condition

Conclusion

- Extended Larissa with joint weaving mechanism
- Joint weaving was easy to add, because join point selection and advice weaving were already separated
- Sufficient condition for non-interference
- Conditions are cheap to calculate, included in weaving
- Precise way to calculate non-interference : prove semantic equivalence
 - very expensive for larger automata
 - only possible for Boolean signals
- Perspective : extend Larissa to valued signals