On the Pursuit of Static and
Coherent Weaving

WANG Meng (speaker), National University of Singapore
CHEN Kung, National Chengchi University, Taiwan
KHOO Siau-Cheng, National University of Singapore

AOP Languages

AOP based on Object Oriented languages
o Java (Aspectd,Jboss,Aspectwerkz,etc)

o C++ (AspectC++)

AOP based on Functional languages

o OCaml (Aspectual Caml)
0 SML (AspectML)

Our LLanguage

Functional
Language

trongly

polymorp typed

Higher-order

Main Mechanisms ot Aspects

Introduction (injecting new members into
existing classes)

Advising (transforming computations by
Intercepting events).

Today’s Topic

Advising (transforming computations by
Intercepting events).

= Execution pointcuts
= Around advices

Weaving

Translating into a “less-aspect-oriented”
iIntermediate language

o Static — making as many weaving decisions at
compilation time as possible

o Coherent — giving the same set of advices to
different invocations of a function with inputs of
the same type

Weaving -- Challenges

nl@advice around {h} (arg::Int)

= proceed (arg+l) in Int — Int
n2@advice around {h} (arg) = arg in Va.a — a
let h x = x in Va.a — a
let £ x = h x in Va.a — a
€ 4\ /1 DY
\1 1)7T\Il 4£)

‘ Weaving -- Challenges

nil@advice around {h} (arg::Int)

= proceed (arg+l) in

n2@advice around {h} (arg) = arg in
let h x = x in

let £ x = h x in

(€ 14\YL /1 9

\1 1)7\ll 4)

nl and n2

Int — Int

Ya.a — a
Ya.a — a
Ya.a — a

‘ Weaving -- Challenges

nil@advice around {h} (arg::Int)

= proceed (arg+l) in

n2@advice around {h} (arg) = arg in
let h x = x in

let £ x = h x in

(e 4V1(h n\\

\1 1)7\ll 4)

nl and n2

Int — Int

Ya.a — a
Ya.a — a
Ya.a — a

Weaving — Advised Types

Advised type f:Va.(h:t1).tp

The execution of any application of £ may
require advices of h applied with type which
should be no more general than Va.t1.

Weaving — Advised Types

Advised type f:Va.(h:t1).tp

The execution of any application of £ may
require advices of h applied with type which
should be no more general than Va.t1.

ni@advice around {h} (arg::Int)

= proceed (arg+l) in Int — Int
n20@advice around {h} (arg) = arg in VYq.a — a
let h x = x in Va.a — a
let £ x = h x in Va.(h:a — a).a — a
£ 4\ 7 0N
\1 1)7T\Ill Z£)

‘ Weaving — Advised Types

= Type Directed Translation

[Fw e:0~ €

Weaving — Translation

nl@advice around {h} (arg::Int)

= proceed (arg+l) in Int — Int
n2@advice around {h} (arg) = arg in Ya.a — a
let h x = x in Va.a — a
let £ x = h x in Va.(h:a — a).a — a
€ 4\ /1 DY
\1 1)7\1 4£)
—

let nl = \arg -> proceed (arg+l) in
let n2 = \arg -> proceed arg in

let h x = x in

let f dh x = dh x in

(f <h,{n1,n2}> 1) + (<h,{n1,n2}> 2)

Intermediate LLanguage

Expressions and values are extended

o | (v, {0 })
.. | (e, {€})

The reduction rules

(Az.e v) —g (elv/z])

(let z =wvine) g (e[v/x])

({v, {}) V') —g (v V')

(<’U, {vlv ?_j}> U/) —3 (U1[<U7 {Q_J}>/p7“oceed] U/)

v ..
&

Contributions

Static and Coherent weaving of
o recursive function definitions
o advising other advices’ bodies
o higher-order advices

Recursive Functions -- Challenges

-

r-
<~
+

[
[4

A
[4

oT0

42
)]
—

o |

™
QY

 I—

G

<
i

la] — la]).la] — [a]

f:Va.(f :

Recursive Functions -- Challenges

let g x =x + 1 in
n@advice around {f} (arg:[Int])
= Cons (g (head arg)) (proceed arg) in

let £ df x = if (length x) > O then df (tail x) else x
in £ 7 [1,2,3]

fiva.(f:la] — la]).la] — [a]

Recursive Functions -- Translation

- -

let g x =x + 1 in
let n = \arg.(Cons (g (head arg)) (proceed arg)) in
let £ df x = if (length x) > O
then df (tail x) else x in
(let F = \y.<f y,{n}> F in F) [1,2,3]

Advising Advice Bodies -- Motivation

Aspects are not limited to observing base
programs. Inside the bodies of advice
definitions, there may be calls to other

functions that are advised. We call these
nested advices.

Nested Advices -- Example

let discount item = (getRate item) * (getPrice item) in
let calcPrice cart = sum (map discount cart) in
calcPrice [1,2,3]

Nested Advices -- Example

nil@advice around {getRate} (arg) =
(getHolidayRate arg) * (proceed arg)
n2@advice around {getRate} (arg) =

(getAnniversaryRate arg) * (proceed arg)

Nested Advices — Example

n3Qadvice around {get$Rate} (arg:Int) =
if (arg > 0) then ﬁ?bqss? arg else proceed O

Wild card

Nested Advices — Example

\ n3, nl, -

T e
n3Qadvice around {get$Rate} (arg:Int) =
if (arg > 0) then proceed arg else proceed O

Nested Advices — Challenges

Advice chainings only appear in the woven

program which is not a subject for further
weaving.

The typing context where an advice n is
chained may not be sufficiently specific for
another advice to be chained to calls inside
n’'s body.

‘ Higher-Order Advices -- Example

nl,n2} (arg) =
let finalRate = p
in if (finalRate < 0.5) then 0.5

else finalRate

roceed arg

Nested Advices -- Translation

let discount item = (getRate item) * (getPrice item) in
let calcPrice cart = sum (map discount cart) in
calcPrice [1,2,3]

nl@advice around {getRate} (arg) =
(getHolidayRate arg) * (proceed arg)

e~ AR A A7 ~,rA AavrAiirnAd S aant-dD ~ e e —
1o8aldvlicCcc aloulld gcloly cJ ar 8. -
if (arg > 0) then proceed arg else proceed O

nl : Va.(getHolidayRate : a — Real).a — Real
discount : Va.(get Rate : a — Real).a — Real

Nested Advices -- Translation

let discount item = (getRate item) * (getPrice item) in
let calcPrice cart = sum (map discount cart) in
calcPrice [1,2,3]

nl@advice around {getRate} (arg) =
(getHolidayRate arg) * (proceed arg)

g:Int) =
g

 else proceed O

Nested Advices -- Translation

let n3 arg = if (arg > 0)
then proceed arg else proceed O
let nl dh arg = (dh arg) * (proceed arg) in

let calcPrice dc cart = sum (map dc cart) in

let discount dr item (dr item) * (getPrice item) in

(0)
t
o
o))
t
(0]
3
w
o]
SN
AN ¢

‘ Higher-Order Advices -- Translation

ra11mnd {n1 n29OV (arao) =
L U Lild giid \al g/
let finalRate = proceed arg
in if (finalRate < 0.5) then 0.5

else finalRate

Higher-Order Advices -- Translation

rioz €0 ofor [b nilloz] ~ e

(Var-A) n.oxxel

let

let
let
let
let

M x o~ (x,{e})

n4d arg = let finalRate = proceed arg
in if (finalRate < 0.5) then 0.5
else finalRate
nl arg = (getHolidayRate arg) * (proceed arg) in
n2 arg = (getAnniversaryRate arg) * (proceed arg) in
calcPrice cart = sum (map discount cart) in
discount item = (<getRate,{<n1,{n4}>,<n2,{n4}>}> item)

* (getPrice item) in

calcPrice [1,2,3]

Correctness of translation

Theorem 1 (Conservative Extension) Given

a program P consisting of a set of advices and
a closed base program e. If

-P:o~ P,

~+

Ry

MD
S

Correctness of translation

Theorem 2 (Type Preservation) Given a pro-
gram P consisting of a set of advices and a
closed base program. If

P o~ P
then
|—7; P’:n(a).

Va.n(p)

t —n(p)
t

n(va.p)
n((z :t).p)
n(t)

Related Works

PolyAML(ICFP 05) by Dantas, Walker, Washburn and Weirich

o Polymorphic higher-order language

o First-class pointcuts

o Dynamic type checking and label matching

o Only before and after advices (extension for around on progress)
Aspectual Caml (ICFP 05) by Masuhara, Tatsuzawa and Yonezawa.
o Higher-order and currying

o Static introduction

o Weaver traverses type annotated expressions to insert advice calls.
(syntactical)

Type-directed weaving (PEPM 06) by Wang, Chen and Khoo

o Polymorphic higher-order language with type scoped around advices
o Static and coherent weaving

o No recursive functions, nested advices and higher-order advices

Conclusion

Static and coherent weaving of aspect-
oriented functional programs with recursive
functions, nested advices and higher-order
advices

Future work:
o Control-related Cflow pointcuts
0 Separate compilation

	On the Pursuit of Static and Coherent Weaving
	AOP Languages
	Our Language
	Main Mechanisms of Aspects
	Today’s Topic
	Weaving
	Weaving -- Challenges
	Weaving -- Challenges
	Weaving -- Challenges
	Weaving – Advised Types
	Weaving – Advised Types
	Weaving – Advised Types
	Weaving – Translation
	Intermediate Language
	Contributions
	Recursive Functions -- Challenges
	Recursive Functions -- Challenges
	Recursive Functions -- Translation
	Advising Advice Bodies -- Motivation
	Nested Advices -- Example
	Nested Advices -- Example
	Nested Advices -- Example
	Nested Advices -- Example
	Nested Advices – Challenges
	Higher-Order Advices -- Example
	Nested Advices -- Translation
	Nested Advices -- Translation
	Nested Advices -- Translation
	Higher-Order Advices -- Translation
	Higher-Order Advices -- Translation
	Correctness of translation
	Correctness of translation
	Related Works
	Conclusion

