On bytecode slicing and AspectJ interferences

Antonio Castaldo D’Ursi Luca Cavallaro Mattia Monga

March 13th 2007



Motivation

Outline

@ Motivations
e XCutter
e Interference analysis results

Q Conclusions and future developments



Motivations

Outline

@ Motivations



Motivations

Aspects and modularization

@ Aspects describe crosscutting computations, referring to
an abstract view of the system

@ Composition is performed by the weaving process

@ Code affected by an aspect is oblivious about that (it does
not contain any clue about if an aspect might be advised
on it)

@ As a result while aspect code units are physically
separated they might unwittingly be not logically distinct



Motivations

Aspect interference

@ We defined a notion of aspect interference

@ To quantify aspect interference we focused on the portion
of a program affected by an aspect

@ Our definition is based on the observation of the system
state

Definition

An aspect A does not interfere with a code unit C if and only if
every interesting predicate on the state manipulated by C is not
changed by the application of A.




Motivations

Interference for Aspectd programs

@ We derived an operative test for AspectJ programs

@ Our test is based on backward static slicing

@ Given a criterion the backward static slice is the set of
instructions in the source code that influence the criterion

Definition
@ A; and A, are two aspects

@ S; and S, the corresponding backward slices obtained by
using all the statements defined in Ay and A> as slicing
criteria

@ A; does not interfere with A, if A1 N S, = 0.




XCutter

Outline

e XCutter



XCutter

A bytecode level slicer featuring Aspectd constructs

@ To verify our operative condition we built XCutter

@ ltis a bytecode level slicer that can analyze both Java and
AspectJ programs

@ Based on Soot?

@ Uses an IR to do analysis

@ Features our space efficient slicing algorithm
@ More details in our master thesis ©

http://www.sable.mcgill.ca/soot/
bhttp://www.elet.polimi.it/upload/cavallaro/thesis/thesis.pdf




Interference analysis results

Outline

e Interference analysis results



Interference analysis results

What we expected vs what we found

Expected result
@ Given two pieces of advice A; and A
@ If Ay reads a variable x and A, writes the same x
@ A; does not interfere with A,

Obtained result
We have interference also in this case




Interference analysis results

The after finally advice

@ The tool detects spurious interferences in presence of
after finally pieces of advice

@ The translation introduces control dependencies between
aspect bytecode instructions

@ These dependencies may not be interesting for the
programmer



Interference analysis results

The after finally advice

. Control dependence
Write e Read

Advice Advice

catch Throwable t

[throw Throwable rl ] [thFOW Throwable r2 ] [throw Throwable r3] [throw Throwable r4




Conclusions and future developments

Outline

Q Conclusions and future developments



Conclusions and future developments

What we can do

@ Using annotations, the tool could ignore these
dependencies

@ Deciding if ignoring weaving introduced dependencies is
safe is not trivial

@ In our examples they were not significative

@ A formal analysis of the problem is needed



Conclusions and future developments

Future work

@ A deeper study on correctness of ignoring dependencies is
needed

@ The proposed system is easy to implement

@ |t can be unsafe

@ Even if unsafe this analysis could discover other useful
information



The End

Thanks for your attention



	Motivation
	Motivations
	XCutter
	Interference analysis results
	Conclusions and future developments

