
Motivation Motivations XCutter Interference analysis results Conclusions and future developments

On bytecode slicing and AspectJ interferences

Antonio Castaldo D’Ursi Luca Cavallaro Mattia Monga

March 13th 2007



Motivation Motivations XCutter Interference analysis results Conclusions and future developments

Outline

1 Motivations

2 XCutter

3 Interference analysis results

4 Conclusions and future developments



Motivation Motivations XCutter Interference analysis results Conclusions and future developments

Outline

1 Motivations

2 XCutter

3 Interference analysis results

4 Conclusions and future developments



Motivation Motivations XCutter Interference analysis results Conclusions and future developments

Aspects and modularization

Aspects describe crosscutting computations, referring to
an abstract view of the system

Composition is performed by the weaving process

Code affected by an aspect is oblivious about that (it does
not contain any clue about if an aspect might be advised
on it)

As a result while aspect code units are physically
separated they might unwittingly be not logically distinct



Motivation Motivations XCutter Interference analysis results Conclusions and future developments

Aspect interference

We defined a notion of aspect interference

To quantify aspect interference we focused on the portion
of a program affected by an aspect

Our definition is based on the observation of the system
state

Definition
An aspect A does not interfere with a code unit C if and only if
every interesting predicate on the state manipulated by C is not
changed by the application of A.



Motivation Motivations XCutter Interference analysis results Conclusions and future developments

Interference for AspectJ programs

We derived an operative test for AspectJ programs

Our test is based on backward static slicing

Given a criterion the backward static slice is the set of
instructions in the source code that influence the criterion

Definition
A1 and A2 are two aspects
S1 and S2 the corresponding backward slices obtained by
using all the statements defined in A1 and A2 as slicing
criteria
A1 does not interfere with A2 if A1 ∩ S2 = ∅.



Motivation Motivations XCutter Interference analysis results Conclusions and future developments

Outline

1 Motivations

2 XCutter

3 Interference analysis results

4 Conclusions and future developments



Motivation Motivations XCutter Interference analysis results Conclusions and future developments

A bytecode level slicer featuring AspectJ constructs

To verify our operative condition we built XCutter

It is a bytecode level slicer that can analyze both Java and
AspectJ programs

Main features
Based on Soota

Uses an IR to do analysis
Features our space efficient slicing algorithm
More details in our master thesis b

ahttp://www.sable.mcgill.ca/soot/
bhttp://www.elet.polimi.it/upload/cavallaro/thesis/thesis.pdf



Motivation Motivations XCutter Interference analysis results Conclusions and future developments

Outline

1 Motivations

2 XCutter

3 Interference analysis results

4 Conclusions and future developments



Motivation Motivations XCutter Interference analysis results Conclusions and future developments

What we expected vs what we found

Expected result
Given two pieces of advice A1 and A2

If A1 reads a variable x and A2 writes the same x
A1 does not interfere with A2

Obtained result
We have interference also in this case



Motivation Motivations XCutter Interference analysis results Conclusions and future developments

The after finally advice

The tool detects spurious interferences in presence of
after finally pieces of advice

The translation introduces control dependencies between
aspect bytecode instructions

These dependencies may not be interesting for the
programmer



Motivation Motivations XCutter Interference analysis results Conclusions and future developments

The after finally advice



Motivation Motivations XCutter Interference analysis results Conclusions and future developments

Outline

1 Motivations

2 XCutter

3 Interference analysis results

4 Conclusions and future developments



Motivation Motivations XCutter Interference analysis results Conclusions and future developments

What we can do

Using annotations, the tool could ignore these
dependencies

Deciding if ignoring weaving introduced dependencies is
safe is not trivial

In our examples they were not significative

A formal analysis of the problem is needed



Motivation Motivations XCutter Interference analysis results Conclusions and future developments

Future work

A deeper study on correctness of ignoring dependencies is
needed

The proposed system is easy to implement

It can be unsafe

Even if unsafe this analysis could discover other useful
information



Motivation Motivations XCutter Interference analysis results Conclusions and future developments

The End

Thanks for your attention


	Motivation
	Motivations
	XCutter
	Interference analysis results
	Conclusions and future developments

