
Christopher Dutchyn
University of Saskatchewan

FOAL 2007

Specializing Continuations

a Model for Dynamic Join Points

FOAL 2007

actually: What is an Aspect?
• Give examples

• Distribution / tracing / instrumentation / …

• Give implementations
• It’s what AspectJ (and any number of others) do

• … lead to poor insight regarding
– what aspects are good for
– how to best use them

FOAL 2007

The key is Modularity
• So the question is

What do aspects modularize?

FOAL 2007

The key is Modularity
• So the question is

What do aspects modularize?

FOAL 2007

In general: crosscutting concerns
• Static aspects

– Open classes

• Composition filters
• Object graph traversal (Demeter)
• Dynamic join points, pointcuts, and advice

• Space is too large for a coherent answer

FOAL 2007

Modeling Dynamic Aspects
• Join points

– “principled points in the execution”

• Pointcuts
– “a means of identifying join points”

• Advice
– “a means of affecting the semantics at those join

points”

FOAL 2007

Two Interacting Abstractions: Join point and Advice

[p proc(x) (if (call = 0 x)
(raise zero)
1)]

(begin (call p 1)
(call p 2))

[a advise (exec p v)
(try (proceed v)

(catch zero ...))]

Advice

Join
point

FOAL 2007

Third Abstraction: Pointcut
[p proc(x) (if (call = 0 x)

(raise zero)
1)]

(begin (call p 1)
(call p 2))

[a advise (exec p v)
(try (proceed v)

(catch zero ...))]

Join
point

Advice

Pointcut

FOAL 2007

Interaction Between Pointcut and Advice

[p proc(x) (if (call = 0 x)
(raise zero)
1)]

(begin (call p 1)
(call p 2))

[a advise (exec p v)
(try (proceed v)

(catch zero ...))]

Join
point

Advice

Pointcut

FOAL 2007

Idea
• A model of

• dynamic join points,
• pointcuts,
• and advice,

based on a continuation-passing style interpreter,

• provides a fundamental account of these AOP
mechanisms.

FOAL 2007

Without Continuations
(define (f x)

do-stuff
(g x)
do-more-stuff)

(define (g x) ...)

do-stuff

call g

do-more-stuff

...

do-stuff

call g

do-more-stuff

...

FOAL 2007

Continuations [Strachey’67, Landin’68,…]

(define (f x)
do-stuff
(g x)
do-more-stuff)

(define (g x) ...)

do-stuff

call g

...

do-stuff

call g

do-more-stuff

...

FOAL 2007

Model Development
• Begin with big-step semantics

– definition of values, expressions
– semantic definition of eval

• Apply CPS transformation
– yields continuations (as lambdas)
– generates definition of apply

• Defunctionalize
– yields identifiable frames in continuation structure

introduces auxiliary
continuations

yields frame structures

FOAL 2007

Defunctionalization [Reynolds ’98, Ager+ ’03]

• Procedures have structure
– identifiers (argument names)
– environment
– expression (machine code)

• Continuations as escape procedures
– have simple list/tree structure

• fixed identifiers (next-continuation, argument)
• predetermined environment
• given semantics involving one operation

FOAL 2007

PROC Language
• Functions

– 1st order, 2nd class

• Globals

• Standard syntax elements
– If
– Application
– Primitives

FOAL 2007

Continuation Frames
Auxiliary

• facilitate eval regime
– eager vs lazy

• testF -- if

• randF -- args

• konsF -- args

• rhsF -- set

Non-auxiliary
• Carry essential

semantics of language

• getF

• setF

• callF

• execF

FOAL 2007

Insight … Principle
Insight: frames align with dynamic join points

Principle:
A dynamic join point is modeled as a state in
the interpreter where values are applied to
non-auxiliary continuation frames.

FOAL 2007

Pointcuts -- identify frames
• callC

– convert a procedure name to a procedure value
• NB: accepts an internal value: an identifier

– then continue to execF

• execC
– accept arguments and execute procedure

• getC
– accept global location and provide its value

• setC
– accept global location and update its value

FOAL 2007

Pointcuts - combinators
• and

• or

• not

FOAL 2007

Matching
• Take a pointcut, value and frame
• Capture

– necessary context values

• Yields function to replace frame and value

– Bind in a user-parameterized reflective monad
• Mendhekar and Friedman

FOAL 2007

(define (match-pc c v f)
;:(pcut × val × frm) → match
(cond ;…other cases omitted

[(and (callC? c) (callF? f)
(eq? (callC-pid c) (callF-id f)))

(make-match (callC-ids c)
v
(lambda (nv)

(values nv f)))]
[(and (execC? c) (execF? f)

(eq? (lookup-proc (execC-pid c)) v))
(make-match (execC-ids c)

(execF-args f)
(lambda (nv)

(values v (make-execF nv)))))]

FOAL 2007

Wrinkle: cflowbelow pointcut
• identifies join points based on control-flow

context

• tail-call optimization discards context

• recovering context
1) keep all of it
2) preserve needed structure [CC’03]

• dynamically threaded stack data structure
• or state effect

FOAL 2007

cflowabove pointcut
• Adds to ability to bound the context search

from above

• within
– Exclude subordinate procedure calls

• enclosingexecution
– Stop at the next higher calling scope

• Not strictly necessary, but expressive

FOAL 2007

Weaving is dispatch
(define (((adv-step advs) f k) v)
;:adv → (frm × cont) → !val

(let loop ([advs advs])
(cond [(null? advs) ((base-step f k) v)]

[(match-pc (caar advs) v f) =>
(lambda (m)

(eval (cdar advs)
(extend-env ‘(%proceed

%advs .
,(match-ids m))

‘(,(match-prcd m)
,(cdr advs) .
,(match-vals m))

empty-env)
k))]

[else (loop (cdr advs))])))

FOAL 2007

Model Accounts for Observation
• Our account requires a new join point

– We needed a new continuation frame
• advF

• Arises naturally in the model
– Rather than adding (without explanation)

• AspectJ
• And others

FOAL 2007

Fundamental Construction
– continuations arise naturally in big-step to small-

step translation
– frames arise mechanically in defunctionalization

of continuations

• no new language construct required
• no continuation marks [Dutchyn, Tucker, Krishnamurthi]
• no context labels [Dantas, Walker, Washburn, Weirich]
• no rewrite points [Aßmann, Ludwig]
• no awkward thunks [Wand, Kiczales, Dutchyn]
• no predicate dispatch [Orleans]

FOAL 2007

Dynamic Semantic Model

• Distills other descriptions to essentials
– continuation marks
– context labels
– thunks

• Key insight: dynamic join points, pointcuts and advice
– provide mechanism to modularize and specialize control structure

frame identifierpointcut
dispatch
table

behaviour specificationadvice
dispatchframe activationjoin point

InteractionModel ElementAbstraction

FOAL 2007

Elegant, Evocative Model
• based on a fundamental language construct

• pointcuts align well with existing AOP
languages
– adds cflowabove for simpler coding
– explains provinence of adviceexecution

• clarifies relationship of DJP and reflection

• framework for understanding that dynamic
aspects modularize control structure

FOAL 2007

Future Directions
• Object - Aspect Duality

– Dynamic aspects modularize control (and
associated operations)

• Just as object modularize data (and associated
operations)

• Category theory?

FOAL 2007

Future Directions
• Reflective Monads

– Within the continuation monad
• identify and operate on the continuation and value

– á la Mendhekar & Friedman and Filinski

– Lost “chapter 3a” of my dissertation

FOAL 2007

Future Directions
• Typing Aspects -- abstract control types

– Value typing (mundane PE) isn’t enough
• Must abstract the control restructuring too

– Rinard et al., Katz et al., and others

• Second half of my dissertation
– But, more sophisticated

• Take polarized logic from Shan
• And effect typing from many others

FOAL 2007

Future Directions
• Static Aspects

– Introduce an account of phase separation
• Elaboration vs. execution

– Continuations in elaboration
= static join points?

– Masuhara and Kiczales (ECOOP 2003)

FOAL 2007

Discussion

