Specializing Continuations

a Model for Dynamic Join Points

Christopher Dutchyn
University of Saskatchewan

FOAL 2007

actually: What is an Aspect?

Give examples
Distribution / tracing / instrumentation / ...

Give implementations
It's what AspectJ (and any number of others) do

... lead to poor insight regarding
what aspects are good for
how to best use them

The key Is Modularity

So the question is

What do aspects modularize?

The key Is Modularity

So the question is

What do aspects modularize?

In general: crosscutting concerns

Static aspects
Open classes

Composition filters
Object graph traversal (Demeter)
Dynamic join points, pointcuts, and advice

Space is too large for a coherent answer

Modeling Dynamic Aspects

Join points
“principled points in the execution”

Pointcuts
“a means of identifying join points”

Advice

“a means of affecting the semantics at those join
points”

Two Interacting Abstractions: Join point and Advice

I[P proc(X) (if (call = 0 x)
(raise zero)

D]

[2 advise (exeC p V)

N

Join

|
|
|
(begin (call 1) I (try (proceed Vv)
(calliézzﬁtzz\\ I (caﬁ%h zero ...))]
|
N |
POl I

Advice

Third Abstraction: Pointcut

I[P proc(X) (if (call = 0 x) Pointcut

(raise zero) 4
G 1~

I SN
§ [2 advise (exeC p V)

(begin (call @ 1) AT T (eoy (eroceea vy~ — =
(callié}?ﬁt::\\ :f (cat/th zero ...))]

I
Join |
poINt |
I

I

Interaction Between Pointcut and Advice

I[P proc(X) (if (call = 0 x) Pointcut

(raise zero) 4
1] I - o~

J o
§ | 2 advise (exeC p V)
(begin (call p 1) .f r ‘try (proceed V)

(call p Z2) (catth zero ...))]

Advice

ldea

A model of
dynamic join points,
pointcuts,
and advice,
based on a continuation-passing style interpreter,

provides a fundamental account of these AOP
mechanisms.

Without Continuations

do-istuff

(define (f x)
do-stuff
(g x)
do-more-stuff)

(define (g x)

..)

do-more-stuff

Continuations [Strachey’67, Landin’68,...]

(define (f x)
do-stuff
(g x)
do—stuff do-more-stuff)

(define (g x) ...)

do-morelstuff

Model Development

Begin with big-step semantics

definition of values, expressions
semantic definition of eval

introduces auxiliary
continuations

Apply CPS transformation

yields continuations (as lambdas)
generates definition of apply

yields frame structures

Defunctionalize
yields identifiable frames in continuation structure

Defunctionalization [reynolds '98, Ager+ *03]

Procedures have structure
identifiers (argument names)
environment
expression (machine code)

Continuations as escape procedures
have simple list/tree structure
fixed identifiers (next-continuation, argument)
predetermined environment
given semantics involving one operation

PROC Language

Functions
1st order, 2nd class

Globals

Standard syntax elements
If
Application
Primitives

Continuation Frames

Auxiliary Non-auxiliary
facilitate eval regime Carry essential
eager vs lazy semantics of language
testF —- If getF
randF -- args SetF
konsF -- args cal IF
rhskF -- set

execk

Insight ... Principle

Insight: frames align with dynamic join points

Principle:

A dynamic join point Is modeled as a state In
the interpreter where values are applied to
non-auxiliary continuation frames.

Pointcuts -- identify frames

callC

convert a procedure name to a procedure value

NB: accepts an internal value: an identifier
then continue to execF

execC
accept arguments and execute procedure

getC
accept global location and provide its value

setC
accept global location and update its value

Pointcuts - combinators

and
or
Nnot

Matching

Take a pointcut, value and frame

Capture
necessary context values

Yields function to replace frame and value

Bind in a user-parameterized reflective monad
Mendhekar and Friedman

(define (match-pc ¢ v f)
;- (pcut x val x frm) — match
(cond ;..other cases omitted
[(and (callC? c¢) (callfF? f)
(egq? (callC-pid c¢) (callF-id f)))
(make-match (callC-1ds c¢)
\Ys
(lambda (nv)
(values nv £)))]
[(and (execC? c) (execF? f)
(eq? (lookup-proc (execC-pid c)) Vv))
(make-match (execC-1ds c¢)
(execF-args f)
(lambda (nv)
(values v (make-execF nv)))))]

Wrinkle: cflowbelow pointcut

identifies join points based on control-flow
context

tail-call optimization discards context

recovering context
1) keep all of it
2) preserve needed structure [CC’03]
dynamically threaded stack data structure
or state effect

ctlowabove pointcut

Adds to ability to bound the context search
from above

within
Exclude subordinate procedure calls

enclosingexecution
Stop at the next higher calling scope

Not strictly necessary, but expressive

Weaving is dispatch

(define (((adv-step advs) f k) v)
;radvl] - (frm x cont) - !wval
(let loop ([advs advs])

(cond [(null? advs) ((base-step f k) v)]
[(match-pc (caar advs) v f) =>
(lambda (m)

(
(eval (cdar advs)
(extend-env ' (5proceed
sadvs
, (match-1ids m))
‘' (, (match-prcd m)
, (cdr advs)
, (match-vals m))
empty-env)

k))]

[else (loop (cdr advs))1)))

Model Accounts for Observation

Our account requires a new join point

We needed a new continuation frame
advF

Arises naturally in the model
Rather than adding (without explanation)
AspectJ
And others

Fundamental Construction

continuations arise naturally in big-step to small-
step translation

frames arise mechanically in defunctionalization
of continuations

no new language construct required

no continuation marks [Dutchyn, Tucker, Krishnamurthi]
no context labels [Dantas, Walker, Washburn, Weirich]
no rewrite points [Amann, Ludwig]

no awkward thunks [Wand, Kiczales, Dutchyn]

no predicate dispatch [Orleans]

Dynamic Semantic Model

Abstraction Model Element Interaction
join point frame activation dispatch
advice behaviour specification

: : — dispatch
pointcut frame identifier table

Distills other descriptions to essentials
continuation marks

context labels

thunks

Key insight: dynamic join points, pointcuts and advice
provide mechanism to modularize and specialize control structure

Elegant, Evocative Model

based on a fundamental language construct

pointcuts align well with existing AOP
languages
adds cflowabove for simpler coding
explains provinence of adviceexecution

clarifies relationship of DJP and reflection

framework for understanding that dynamic
aspects modularize control structure

Future Directions

Object - Aspect Duality
Dynamic aspects modularize control (and
associated operations)

Just as object modularize data (and associated
operations)

Frame Activation Pointcut Axpect]

I Sald . g n R o, I E TN o, S E
Reidlocntion 1) & | gedfieldfimme 0) getheld od getheld o4

o & {eetflelde e foldinaio, §) setfield o i setfield o
p= b [dizspafchaame o 1) dispatch o.if...] ecall 0if...)
[method s 1) ® (eT80ame O] exec 03], exes o.d...)
i e {allocade e) alloe if...] init i...]
lelass £) e Dinddame) init if...] preinitialize i)

Figure 51: Object-Oriented Dynamic Join Points

Category theory?

Future Directions

Reflective Monads
Within the continuation monad
identify and operate on the continuation and value
a la Mendhekar & Friedman and Filinski

Lost “chapter 3a” of my dissertation

Future Directions

Typing Aspects -- abstract control types
Value typing (mundane PE) isn’t enough
Must abstract the control restructuring too

Rinard et al., Katz et al., and others

Second half of my dissertation
But, more sophisticated
Take polarized logic from Shan
And effect typing from many others

Future Directions

Static Aspects
Introduce an account of phase separation

Elaboration vs. execution
Continuations In elaboration
= static join points?

Masuhara and Kiczales (ECOOP 2003)

Discussion

FOAL 2007

