
Fundamentals of Concern
Manipulation

Harold Ossher
IBM T. J. Watson Research Center

The CME Team
(IBM Hursley Park and IBM Watson)

William Chung, Andrew Clement, Matthew Chapman,
William Harrison, Helen Hawkins, Sian January, Vincent

Kruskal, Harold Ossher, Stanley Sutton, Peri Tarr, Frank Tip

This research was supported in part by the Defense Advanced Research Projects Agency under grant NBCHC020056
Copyright © IBM Corporation, 2002, 2007

Contents

• Concerns
• Concern Manipulation
• Core concepts

– Artifact representation
– Concerns
– Query
– Composition

• Conclusion

Copyright © IBM Corporation, 2002, 2007

Concern

• Area of interest in a body of software
• (intension, extension) pair

– intension specifies meaning
• query, predicate

– extension lists applicable software elements
– extension = intension(body of software)

• Diverse

Copyright © IBM Corporation, 2002, 2007

Requirements Elements

Requirements have widespread and diffuse representation in implementation

Multiple, Related Artifacts

Design Elements
(Components,
Strategies, Patterns)

Implementation
Elements
(Objects, Methods)

Copyright © IBM Corporation, 2002, 2007

Requirements Elements

A Requirement is a Concern

Design Elements
(Components,
Strategies, Patterns)

Implementation
Elements
(Objects, Methods)

Copyright © IBM Corporation, 2002, 2007

Requirements Elements

An Object (Data) Implementation
Concern

Design Elements
(Components,
Strategies, Patterns)

Implementation
Elements
(Objects, Methods)

Copyright © IBM Corporation, 2002, 2007

Requirements Elements

A Component Design Concern

Design Elements
(Components,
Strategies, Patterns)

Implementation
Elements
(Objects, Methods)

Copyright © IBM Corporation, 2002, 2007

Requirements Elements

All Design Artifacts

Design Elements
(Components,
Strategies, Patterns)

Implementation
Elements
(Objects, Methods)

Copyright © IBM Corporation, 2002, 2007

Requirements Elements

Implementation
Elements
(Objects, Methods)

A Design Aspect

Design Elements
(Components,
Strategies, Patterns)

Copyright © IBM Corporation, 2002, 2007

Requirements Elements

A Requirement Concern

Design Elements
(Components,
Strategies, Patterns)

Implementation
Elements
(Objects, Methods)

Copyright © IBM Corporation, 2002, 2007

Concern Manipulation

Create

or

Identify Encapsulate ComposeExtract

Using concerns in any and all ways
that are useful during development

Copyright © IBM Corporation, 2002, 2007

Components

Implications

Using concerns in any and all ways
that are useful during development

Tools
•Diverse, but uniform experience
•Specific artifacts (perhaps)
•Specific paradigms, symmetric or asymmetric

Core Concepts
•Uniform, shared
•Artifact type neutral
•Paradigm neutral, symmetric

Copyright © IBM Corporation, 2002, 2007

Uniform User Experience

• Uniform user experience across tools, e.g.,
– First-class, ubiquitous concerns
– Central concern model
– Same queries for exploring, mining, defining

concerns, pointcuts, composition, …
Uniform set of core concepts
– Supported by shared underlying components

Copyright © IBM Corporation, 2002, 2007

Artifact Type Neutrality

• In realistic systems, concerns include
elements from artifacts of different kinds:
– Requirements
– Design
– Code
– Documentation, Help files
– Data files (XML, properties, icons, …)
– Deployment artifacts (JAR, WAR, ZIP, …)
– …

• Large, open set
Core concepts should be artifact type neutral

Copyright © IBM Corporation, 2002, 2007

Paradigm Neutrality

• Many AOSD paradigms
– Symmetric and asymmetric
– Static and dynamic join points
– Member level and code level join points
– Various query paradigms (e.g., patterns, logic, …)

– …

Core concepts should be paradigm-neutral
– General enough to support multiple paradigms
– Some may be for the tool implementer, rather than user

• Paradigm-specific concepts are surfaced to the user by tools

Copyright © IBM Corporation, 2002, 2007

Symmetry

• Is there a distinguished base?
– E.g., aspect applied to base,

or peer concerns being composed
– Are elements being composed of same kind?
– Paradigms differ in their choice
– Important scenarios for both

• Impact of scenario-model mismatch is significant

One model that can handle both:
– Symmetric underlying model
– Asymmetric façade

Base Aspect

C1 C2+

Copyright © IBM Corporation, 2002, 2007

Symmetric Model, Asymmetric
Facade

• Symmetric model supports general
concerns concern composition
– Works for concerns that are peers or in base-

aspect (or base-extension) relationship
– Paradigm-neutral

• Asymmetric Façade critical for
convenience:
– Paradigm-specific, supported by tools
– Translate to symmetric model

Copyright © IBM Corporation, 2002, 2007

Artifact Model

• Type spaces
– Types

• Fields
• Methods

• Container spaces
– Containers

• Elements

Spaces are declaratively complete (contain definitions of names used)
E.g., Java classpath, collection of UML model files

Core concepts for representing different kinds of artifacts

• Entities
– Modifiers, Classifiers
– Attributes

• Relationships

Copyright © IBM Corporation, 2002, 2007

Space Example

• Base defines the representation of employees
• Report implements a reporting feature

class Emp {

int id() { … }

String name() { … }

…

}

class Emp {

void print(OStream o) {

o.println(id() + “: ” + name();}

}

Base Report

Copyright © IBM Corporation, 2002, 2007

Intertype Declaration

class Emp {

int id() { … }

String name() { … }

…

}

aspect Report {

void Emp.print(OStream o) {

o.println(id() + “: ” + name();}

}

Asymmetric

Copyright © IBM Corporation, 2002, 2007

Declarative Completeness: Abstract

class Emp {

int id() { … }

String name() { … }

…

}

space Base

class String { … }

…

library space

abstract class Emp {

void print(OStream o) {

o.println(id() + “: ” + name();}

abstract int id();

abstract String name();

}

space Report

Symmetric

Copyright © IBM Corporation, 2002, 2007

Declarative Completeness: Requires

class Emp {

int id() { … }

String name() { … }

…

}

space Base

class String { … }

…

library space

requires int Emp.id();
String Emp.name();

class Emp {

void print(OStream o) {

o.println(id() + “: ” + name();}

}

space Report

Symmetric

Copyright © IBM Corporation, 2002, 2007

Included Spaces?

class Emp {

int id() { … }

String name() { … }

…

}

space Base

class String { … }

…

library space

class Emp {

void print(OStream o) {

o.println(id() + “: ” + name();}

}

space Report

Symmetric/
Asymmetric
Synthesis

Copyright © IBM Corporation, 2002, 2007

Language Binding

• To be applied, these concepts must be
bound to actual artifact types:
– E.g., file system:

• Container space Root Directory
• Container Directory
• Element File

– E.g., Java
• Type space Class path
• Type Class, Interface, …

• In practice: artifact-type-specific plug-ins

Copyright © IBM Corporation, 2002, 2007

Methoids

• Use patterns to define material inside element bodies,
treating the matching material as extractable elements

class C {
int x;
void foo() {

…
x = 3;
…
x = y+7;

}
}

class C {
int x;
void foo() {

…
setX(3);
…
setX(y+7);

}
void setX(int x) {

this.x = x;
}

}

methoid setX:
kind = “set”
field = “x”

Copyright © IBM Corporation, 2002, 2007

Methoids

• Allow uniform handling of code-level join points
– Methoid occurrences are elements for searching, composition, …

• Open-ended characterizations (mapping-specific)
– E.g., useful language constructs:

• get/set of specific instance variables
• method calls, entries and exits
• synchronization block entries and exits
• throws and catches of specific exception types
• downcasting and instanceof

– Can specify arguments, set to local state
• Perhaps specially-constructed (e.g., thisJoinPoint)

• Various inlining options and, perhaps, restrictions
(mapping-specific)

Copyright © IBM Corporation, 2002, 2007

Correspondence
• Elements to be composed together

class Emp {

int id() { … }

String name() { … }

…

}

Base
aspect Log {

pointcut ops():
execution (* Emp.*(..)):

before (): ops() { logEntry(); }
void logEntry() { … }

}

Log

{ (Emp.id, Log.logEntry), (Emp.name, Log.logEntry) }

Copyright © IBM Corporation, 2002, 2007

Correspondence
• Elements to be composed together

class Emp {

int id() { … }

String name() { … }

…

}

space Base
class Log {

void logEntry() { … }
}

space Log

merge (Emp.*, Log.logEntry)

{ (Emp.id, Log.logEntry), (Emp.name, Log.logEntry) }

Correspondence Query

Copyright © IBM Corporation, 2002, 2007

Concerns

• Intension (query) and extension (set of elements)
• First-class

– Explicitly modeled, used for exploration, composition, …
– Relationships among concerns
– Composition relationships

• Heterogeneous
• Written explicitly as modules, or mined

Copyright © IBM Corporation, 2002, 2007

Concern versus Space

Containers/TypesAny elements

Declaratively completeNo name usage restrictions

SpaceConcern

Extraction

Copyright © IBM Corporation, 2002, 2007

Query

• Diverse query languages
– Each usable wherever desired

• Core concepts
– Selection of:

• Elements, based on names, modifiers, classifiers, attributes, containment
• Methoids, based on their patterns
• Relationships, based on their names and characteristics of their end points
• Correspondences

– Navigation via relationships
• Including transitive closure

– Predicates and set operations
– Variables and unification

• E.g., (class p1.<C>, class p2.<C>)

Copyright © IBM Corporation, 2002, 2007

aspect Alarm
after execution(

* *.update(int)): { … });
after execution(

* *.update(float)): { … });

Simple Composition Example 1
basic
class Sys

int interval;
void init() {…};

class RoomSensor
void report() {…};
void update(int) {…};

class AtticSensor
void report() {…};
void update(float) {…};

… more sensors …

alarm

composed result 1

class RoomSensor
Alarm a = …;
void u_b(int) { /* basic*/}
void update(int i) {

u_b(i); a.update(i); }
… }

Copyright © IBM Corporation, 2002, 2007

basic
class Sys

int interval;
void init() {…};

class RoomSensor
void report() {…};
void update(int) {…};

class AtticSensor
void report() {…};
void update(float) {…};

… more sensors …

Simple Composition Example 2
alarm

class Alarm
void update(int);
void update(float);

composed result 2

class RoomSensor
void u_b(int) { /* basic*/}
void u_a(int) { /* alarm*/}
void update(int i) {

u_b(i); u_a(i); }
… }

merge …

Copyright © IBM Corporation, 2002, 2007

basic
class Sys

int interval;
void init() {…};

class RoomSensor
void report() {…};
void update(int) {…};

class AtticSensor
void report() {…};
void update(float) {…};

… more sensors …

Simple Composition Example 3
alarm

class Alarm
void update(int);
void update(float);

composed result 3

class RoomSensor
Alarm a = …;
void u_b(int) { /* basic*/}
void update(int i) {

u_b(i); a.update(i); }
… }

merge …

Copyright © IBM Corporation, 2002, 2007

Dynamic Join Points

• Dynamic join points are typically handled by:
– Generation of dynamic residues
– Static composition (at join point shadows)

Copyright © IBM Corporation, 2002, 2007

Levels of Composition Specification

Tool Level

Component
Level

Assembly
Level

merge basic, alarm as C

merge order(1, 2) facet:
space basic, alarm as C
encapsulating(member)
exposed
exclusively precedence(1)

<type name=“Sys” attributes=“public”/>
<method within=“C:Sys” name=“init” types=“()”>

<from within=“basic:Sys” name=“init” types=“()”/>
<field within=“C:Sys” name=“interval” type=“int”>

<from within=“basic:Sys” name=“interval”
type=“int”/>

…

Paradigm-
specific

Paradigm-
neutral

Copyright © IBM Corporation, 2002, 2007

merge order(1, 2) facet:
space basic, alarm as C
encapsulating(member)
exposed
exclusively precedence(1)

Weaving Directives

• What elements are to be joined?
– Correspondence

• How are they to be joined
– Selection
– Ordering
– Structure

• Making assumptions explicit
– Encapsulation, Opacity

• Resolving multiple weaving directives
– Exclusivity, Precedence

Copyright © IBM Corporation, 2002, 2007

Identifying Correspondences

• Explicit: queries
– (class basic:*Sensor, alarm:Alarm)

– (method basic:*Sensor.update(<type>),
alarm:Alarm.update(<type>))

• Implicit (depending on encapsulation)
– Like-named types within corresponding spaces
– Like-named members within corresponding types

{ (RoomSensor, Alarm), (AtticSensor, Alarm) }

{ (RoomSensor.update(int), Alarm.update(int)),
(AtticSensor.update(float), Alarm.update(float)) }

Copyright © IBM Corporation, 2002, 2007

Selection

• Which inputs in the correspondence should
participate in the result:
– merge
– override
– overridemember
– aroundmethod
– any
– unique
– … (this is an open-ended list)

Copyright © IBM Corporation, 2002, 2007

Ordering
• For override/around: which input dominates
• For merge of methods: order of execution

– Generalized as method combination graphs

before: after: exit v* ret v *

threw e

recordFail() failure:
*

exit e
*

after:before: * *

(method basic:*Sensor.update(<type>),
after:: alarm:Alarm.update(<type>))

Copyright © IBM Corporation, 2002, 2007

Method Combination Graphs
• Nodes call methods or exit
• Various choices for arguments

– Incoming arguments, return values
– Target and its instance variables (e.g., aspect or role table)
– Static variables, special "meta" variables

• Various conditions on edges
– Normal return versus exception
– Some value checks on variable values (allows multiple dispatch)

• Call auxiliary methods for complex processing
• Non-determinism, supporting composability

before: after: exit v* ret v *

threw e

recordFail() failure:
*

exit e
*

Copyright © IBM Corporation, 2002, 2007

Structure

• How inputs participate in the result
– How do the lifetimes and identities of the participants

relate? E.g.:
• Single result type or collaborating group (e.g., object & aspect)?
• Do references to the input map to the output or not?

– How is this treated? To what does it refer?
– What happens to static?
– What are the linkage conventions?

• facet, copy, aspect, … (another open point)
• FOAL ‘02 paper on “member-group relationships”

Copyright © IBM Corporation, 2002, 2007

Opacity

• Is the type hierarchy structure assumed to
be known and taken into account?

a b ab+

b the space is exposed

ab the space is opaque

ba ?+

a

b

Copyright © IBM Corporation, 2002, 2007

Levels of Composition Specification

Tool Level

Component
Level

Assembly
Level

merge basic, alarm as C

merge order(1, 2) facet:
space basic, alarm as C
encapsulating(member)
exposed
exclusively precedence(1)

<type name=“Sys” attributes=“public”/>
<method within=“C:Sys” name=“init” types=“()”>

<from within=“basic:Sys” name=“init” types=“()”/>
<field within=“C:Sys” name=“interval” type=“int”>

<from within=“basic:Sys” name=“interval”
type=“int”/>

…

Paradigm-
specific

Paradigm-
neutral

Copyright © IBM Corporation, 2002, 2007

Assembly Directives by Example
public class Driver {

public void f(String arg) {
System.out.println("body of f()");

}

public void g(String arg) {
System.out.println("body of g()");

}
}

public class Trace {

public void before(Object arg,
String mName) {

System.out.pl(">>> before " ...);
}

public void after(Object arg,
String mName) {

System.out.pl(">>> after " ...);
}

}

public class Driver {

public void original_f(String arg) {
System.out.println("body of f()");

}
public void g_original_g(String arg)
{...}

public void trace_before(Object arg,
String mName) {

System.out.pl(">>> before " ...);
}
public void trace_after(...) { ... }

public void f(String arg) {
trace_before(arg, "Driver.f");
original_f(arg);
trace_after(arg, "Driver.f");

}
public void g(String arg) { ... }

}

CreateCreate

CopyCopy

Create using method Create using method
combination graphscombination graphs

Copyright © IBM Corporation, 2002, 2007

Conclusion

• Core concepts for concern manipulation
– Artifacts, concerns, queries and composition
– Artifact-type neutral
– Paradigm neutral

• Wide open research area
– Validation and improvement

• Mapping (and implementing) different paradigms
• Mapping (and implementing) more artifact types

– Asymmetry, included spaces, concern/space relationship
– Extraction
– New issues, e.g., versioned artifacts, dynamic AOSD
– …

Copyright © IBM Corporation, 2002, 2007

Thank you!

Copyright © IBM Corporation, 2002, 2007

