
FOAL’07 JJ J I II J • ×

Aspects and Modular Reasoning

in Nonmonotonic Logic

Klaus Ostermann

Darmstadt University of Technology



FOAL’07 1 JJ J I II J • ×

Background

I Many people have noted that programs should “look like” our thought process
about the problem.

• direct mapping principle (Meyer)

• low representational gap (Larman)

• logical vs. physical hierarchies (Wegner)

• ...

I However, research from the AI community on how humans think has so far
had little impact on PL research



FOAL’07 2 JJ J I II J • ×

Overview

I Fundamental insight in AI research: Humans reason in a non-monotonic way.
Humans reason frequently with incomplete or changing information.

• New knowledge may invalidate previous conclusions

I Example: Birds usually fly and Tweety is a bird ⇒ Tweety flies.

I Later we learn that Tweety is a penguin...

I In classical logic, if Γ ` X and Γ ⊆ Γ′, then Γ′ ` X.

• Not possible to express “rules of thumb” or defaults as above in classical
logic.

I Nonmonotonic logic has been developed to deal with nonmonotonicity in a
rigorous and controlled way.



FOAL’07 3 JJ J I II J • ×

Hypothesis of this work

I Aspects can be interpreted as a form of nonmonotonicity

• We can give a “default meaning” to a computational entity

• Later (when we learn about a different concern) we can refine the meaning
of this entity.

I To validate the hypothesis we perform three experiments:

• Modeling the semantics of an AO language using nonmonotonic logic.

• Modeling advice precedence rules with prioritized default logic.

• Revisit the question of modular reasoning and modular verification on the
basis of a semantics in default logic.



FOAL’07 4 JJ J I II J • ×

Default Logic

I Default logic is the best-known variant of nonmonotonic logics.

I Our rule about birds can be expressed as follows:

bird(X) : flies(X)

flies(X)

I A default ϕ:ψ1,...,ψn

χ
is applicable to a deductively closed set of formulae E, if

ϕ ∈ E and ¬ψ1 /∈ E, ...,¬ψn /∈ E.

I Set of conclusions from a knowledge base is in general not unique.

I Possible consistent world views from a knowledge base T = (W,D) are called
extensions.

I Normal defaults...



FOAL’07 5 JJ J I II J • ×

Algorithm to compute extensions

E := Th(W );A := ∅;
while there is a default δ /∈ A that is applicable to E {
E := Th(E ∪ {consequent(δ)});A := A ∪ {δ};

}
if ∀δ ∈ A.E is consistent with all justifications of δ

then return E else failure



FOAL’07 6 JJ J I II J • ×

AO semantics in the style of Jagadeesan et al

~a = ApplicableAdvice(o,m)

...o.m(~v) ↪→ ...o.m[~a](~v)
(Weave)

AdviceLookup(a) = (~x, e)

...o.m[a,~a](~v) ↪→ ...e
[
o/this,

~v /~x,
o.m[~a](~v) /proceed

] (AdvExec)

MethodLookup(o,m) = (~x, e)

...o.m[∅](~v) ↪→ ...e
[
o/this,

~v /~x
] (MethExec)



FOAL’07 7 JJ J I II J • ×

AO semantics in the style of Jagadeesan et al

I Semantics requires global operation that requires knowledge of the full
program to compute the list of all advice that applies: ApplicableAdvice

I There is no direct specification of the semantics of an aspect, but just a
specification of what its effect on the program is.

I Hence, the set of rule instances does not grow monotonically with the
program.

I Next up: AO semantics using defaults

I To get rid of the global advice list, we re-interpret the advice list in a method
call to mean the set of already executed advice.



FOAL’07 8 JJ J I II J • ×

AO semantics using defaults

MethodLookup(o,m) = (~x, e)
unadvised(o,m,~a)

...o.m[~a](~v) ↪→ ...e
[
o/this,

~v /~x
] (Meth)

NextAdvice(o,m,~a) = a
AdviceLookup(a) = (~x, e)

...o.m[~a](~v) ↪→ ...e
[
o/this,

~v /~x,
o.m[a,~a](~v) /proceed

] (Adv)

true : unadvised(o,m,~a)

unadvised(o,m,~a)
(Unadv)

a ∈ ApplicableAdvice(o,m) ∧ a /∈ ~a : NextAdvice(o,m,~a) = a

NextAdvice(o,m,~a) = a
(NextAdv)

a ∈ ApplicableAdvice(o,m) ∧ a /∈ ~a
¬unadvised(o,m,~a)

(SomeAdv)



FOAL’07 9 JJ J I II J • ×

AO semantics using defaults

I A global list of all advice that apply at some point is never required.

I Rule instances are preserved by program expansion.

I An aspect is given a (logical) meaning independent of the program to which it
applies.

I If at most one pointcut applies at any joinpoint, the two semantics agree
because:

• There is only one unique extension in the default theory, which is the same
theory that is generated by the conventional operational semantics

I The semantics differ in how they treat shared joinpoints.

• Order returned by ApplicableAdvice vs. one extension for every possible
execution order

I Next up: prioritized default logic to model AspectJ-like global orders and
ordering hints (such as declare precedence in AspectJ) on advice.



FOAL’07 10 JJ J I II J • ×

Prioritized Default Logic (PRDL)

I In PRDL, every default δi has a name di.

I ... and has a special symbol ≺ operating on default names.

I di ≺ dj means di has priority over dj.

I Formulae containing ≺ can be used both in the background theory and in
default rules.



FOAL’07 11 JJ J I II J • ×

Algorithm to compute priority extensions

E := Th(W );A := ∅; Prio := ∅
while there is a default δ /∈ A that is applicable to E {
C := {nameof (δ′) | δ′ ∈ D, δ′ 6= δ, δ′ is applicable to E}
Prio := Prio ∪ {nameof (δ) ≺ d | d ∈ C}
E := Th(E ∪ {consequent(δ)});A := A ∪ {δ};

}
if E is consistent with Prio

then return E else failure



FOAL’07 12 JJ J I II J • ×

Modeling AspectJ-like priorities in PRDL

true : defaultOrder ({a1, a2})
defaultOrder ({a1, a2})

(Default)

defaultOrder ({a1, a2}) ∧ (a1 <default a2)

NextAdvo,m,~a,a1
≺ NextAdvo,m,~a,a2

(DeclDeflt)



FOAL’07 13 JJ J I II J • ×

Modeling AspectJ-like priorities in PRDL

true : defaultOrder ({a1, a2})
defaultOrder ({a1, a2})

(Default)

defaultOrder ({a1, a2}) ∧ (a1 <default a2)

NextAdvo,m,~a,a1
≺ NextAdvo,m,~a,a2

(DeclDeflt)

declare precedence a1,a2 ∈ P
¬defaultOrder ({a1, a2})

(DeclPrec1)

declare precedence a1,a2 ∈ P : (NextAdvo,m,~a,a1
≺ NextAdvo,m,~a,a2

)

NextAdvo,m,~a,a1
≺ NextAdvo,m,~a,a2

(DeclPrec2)



FOAL’07 14 JJ J I II J • ×

Modeling AspectJ-like priorities in PRDL

I Again, the precedence declarations are given a compositional semantics,
independent of the rest of the program.

I Semantics agrees with “classical” semantics in that there is only one unique
extension that is equal to the theory of theclassical semantics.

I ...except if there are contradicting precedence declarations

• Purpose of the justification in (DeclPrec2)...

I Higher-order (and dynamic) priority declarations can easily be modelled in
PRDL.



FOAL’07 15 JJ J I II J • ×

Modular Reasoning and Verification

I We believe that the absense of any global operations in the formal semantics
can make a difference w.r.t. modular reasoning.

I But... what exactly is modular reasoning?

I From the perspective of logic, reasoning means the application of a proof
calculus of a logic on a knowledge base.

I To reason about a program, we hence need a way to generate a knowledge
base from a program and a proof calculus.



FOAL’07 16 JJ J I II J • ×

Modular Reasoning and Verification

I Program P ′ is an expansion of P if P is a part of P ′.

I Definition: A language admits modular reasoning with respect to a prog2kb
function, if, for all programs P and P ′ such that P ′ is an expansion of P , we
have prog2kb(P ) ⊆ prog2kb(P ′).

I The set of rule instances of an operational semantics for some program is such
a knowledge base.

I Observation: The default logic version of the semantics admits modular
reasoning, the conventional semantics does not.



FOAL’07 17 JJ J I II J • ×

Modular Reasoning and Verification

I One may argue that modular reasoning is not worth much in a nonmonotonic
logic.

• Rather than preservation of the knowledge base one would rather have
preservation of the set of conclusions.

I We believe there is still value in our approach because we can now deal with
the nonmonotonicity in a reasoning framework that has been specifically
developed for this purpose.

I To illustrate this claim we discuss how properties of a program can be verified
in a modular way.



FOAL’07 18 JJ J I II J • ×

Example

bool f(int n) {
if n<=0 then return g(n)

else return isPrime(n);
}
bool g(int n) { return isPrime(-n); }

bool isPrime(int n) {
if n<=1 then return false;
for (int i=2; i<n; i++) {

if n modulo i = 0 then return false;
}
return true;

}



FOAL’07 19 JJ J I II J • ×

Proof of a property in default logic



FOAL’07 20 JJ J I II J • ×

Proof of a property in default logic

I Now consider an expansion of the program with additional advice. Is the proof
s (and hence property) still valid?

I Quick check: Compare whether the justification set J(s) is consistent with our
expansion.

I If an assumptions in J(s) has been violated by the extension, however, the
property may no longer hold.

I We can still try to “repair” the proof without revisiting the program.

I Example: Expansion with the following advice:

advice(int n) returns bool:
around call(isPrime(n)) {

if n % 2 = 0 then return false;
return proceed;

}



FOAL’07 21 JJ J I II J • ×

Repairing the proof



FOAL’07 22 JJ J I II J • ×

Conclusions

I Nonmonotonic logic is a good (mental and formal) model to explain AOP.

I I hope that many results from nonmonotonic logic can be used to improve
AOP

• Semantics for AO languages

• Advanced priority mechanisms

• Proof theory / modular verification

I Future Work: More direct incorporation of defaults into AO languages


