Aspects and Modular Reasoning

in Nonmonotonic Logic

Klaus Ostermann

Darmstadt University of Technology

FOAL'07 “« 4> » «[] 00X

Background

» Many people have noted that programs should “look like” our thought process
about the problem.

® direct mapping principle (Meyer)

® |ow representational gap (Larman)

® logical vs. physical hierarchies (Wegner)
o ..

» However, research from the Al community on how humans think has so far
had little impact on PL research

FOAL'07 1 “« 4> » «[] 00X

Overview

» Fundamental insight in Al research: Humans reason in a non-monotonic way.
Humans reason frequently with incomplete or changing information.

® New knowledge may invalidate previous conclusions
» Example: Birds usually fly and Tweety is a bird = Tweety flies.
» Later we learn that Tweety is a penguin...

» In classical logic, if ' X and I' C I, then IV - X.

® Not possible to express “rules of thumb” or defaults as above in classical
logic.

» Nonmonotonic logic has been developed to deal with nonmonotonicity in a
rigorous and controlled way.

FOAL'07 2 “« 4> » «[] 00X

Hypothesis of this work

» Aspects can be interpreted as a form of nonmonotonicity

® We can give a “default meaning” to a computational entity

® | ater (when we learn about a different concern) we can refine the meaning
of this entity.

» To validate the hypothesis we perform three experiments:

® Modeling the semantics of an AO language using nonmonotonic logic.
® Modeling advice precedence rules with prioritized default logic.

® Revisit the question of modular reasoning and modular verification on the
basis of a semantics in default logic.

FOAL'07 3 o« <> » «[]0 X

Default Logic

» Default logic is the best-known variant of nonmonotonic logics.

» Our rule about birds can be expressed as follows:

bird(X) : flies(X)
flies(X)
» A default W is applicable to a deductively closed set of formulae E, if
g€ Fand), ¢ E,....,—, & F.

» Set of conclusions from a knowledge base is in general not unique.

» Possible consistent world views from a knowledge base 7' = (W, D) are called
extensions.

» Normal defaults...

FOAL'07 4 “« 4> » «[] 00X

Algorithm to compute extensions

E = Th(W): A = 0

while there is a default 6 ¢ A that is applicable to E {
E :=Th(E U {consequent(d)}); A := AU {d};

}

if VO € A.E is consistent with all justifications of o
then return E else failure

FOAL'07 5 o« <> » «[]0 X

AQO semantics in the style of Jagadeesan et al

a = ApplicableAdvice(o, m)

_ (WEAVE)
...0.m(V) — ...0o.m/|d](7)
AdviceLookup(a) = (Z, e) (ADVEXEC)
...o.mla, @l(v) — [[this:’ /7.""% /proceed}
MethodLook
ethoaloo UP(O m) (37 6) (METHEXEC)

om[@](ﬁ) — ...€ [/this? /37]

FOAL'07 6 o« <> » «[]0 X

AQO semantics in the style of Jagadeesan et al

» Semantics requires global operation that requires knowledge of the full
program to compute the list of all advice that applies: Applicable Advice

» There is no direct specification of the semantics of an aspect, but just a
specification of what its effect on the program is.

» Hence, the set of rule instances does not grow monotonically with the
program.

» Next up: AO semantics using defaults

» To get rid of the global advice list, we re-interpret the advice list in a method
call to mean the set of already executed advice.

FOAL'07 7 o« <> » «[]0 X

AQO semantics using defaults

MethodLookup(o, m) = (T, €)
unadvised(o,m, @)

— - . (METH)
0m|a@)(?) = ..e [*/this’ /4]
NextAdvice(o,m,d) = a
AdviceLookup(ci) = (7, fi)q (ADV)
..om|al(v) — ...e [O/thisav /:E’ao'm[a’a](v) /proceed]
true : unadvised(o,m,q)
(UNADV)

unadvised(o, m, @)

a € ApplicableAdvice(o,m) Na ¢ @ : NextAdvice(o,m,d) = a

NextAdvice(o,m,d) = a

(NEXTADV)

—

a € ApplicableAdvice(o,m) N a ¢ d

—unadvised(o, m, @)

(SOMEADV)

FOAL'07 8 o« <> » «[]0 X

AQO semantics using defaults

» A global list of all advice that apply at some point is never required.
» Rule instances are preserved by program expansion.

» An aspect is given a (logical) meaning independent of the program to which it
applies.

» If at most one pointcut applies at any joinpoint, the two semantics agree
because:

® There is only one unique extension in the default theory, which is the same
theory that is generated by the conventional operational semantics

» The semantics differ in how they treat shared joinpoints.

® Order returned by ApplicableAdvice vs. one extension for every possible
execution order

» Next up: prioritized default logic to model AspectJ-like global orders and
ordering hints (such as declare precedence in AspectJ) on advice.

FOAL'07 9 o« <> » «[]0 X

Prioritized Default Logic (PRDL)

» In PRDL, every default ¢, has a name d;.
» ... and has a special symbol < operating on default names.
» d; < d; means d; has priority over d,.

» Formulae containing < can be used both in the background theory and in
default rules.

FOAL'07 10 o« <> » «[]0 X

Algorithm to compute priority extensions

E :=Th(W); A:=0; Prio =1
while there is a default § ¢ A that is applicable to E {
C = {nameof (§') | &' € D,d" # 4,9 is applicable to E'}
Prio := Prio U {nameof (§) < d | d € C}
E = Th(E U{consequent(d)}); A .= AU {d};
}
if I/ is consistent with Prio
then return E else failure

FOAL'07 11 “« 4> » «[] 00X

Modeling AspectJ-like priorities in PRDL

true : defaultOrder({ai, as})

defaultOrder({ay, as}) (DEFAULT)

defaultOrder({a, as}) A (a1 <gefaur @2)
NEXTADV,.md4, < NEXTADV, 7.0,

(DECLDEFLT)

FOAL'07 12 “« 4> » «[] 00X

Modeling AspectJ-like priorities in PRDL

true : defaultOrder({ai, as})

defaultOrder({ay, as}) (DEFAULT)

defaultOrder({a, as}) A (a1 <gefaur @2)
NEXTADV,.md4, < NEXTADV, 7.0,

(DECLDEFLT)

declare precedence a;,a; € P

—defaultOrder({ay, as})

(DECLPREC1)

declare precedence aj,a; € P : (NEXTADV, 74, < NEXTADV,,,54,)

NEXTADVO,m,Ei,al < NEXTADVO,mﬁ,GQ
(DECLPREC2)

FOAL'07 13 o« <> » «[]0 X

Modeling AspectJ-like priorities in PRDL

» Again, the precedence declarations are given a compositional semantics,
independent of the rest of the program.

» Semantics agrees with “classical’ semantics in that there is only one unique
extension that is equal to the theory of theclassical semantics.

» ...except if there are contradicting precedence declarations
® Purpose of the justification in (DECLPREC2)...

» Higher-order (and dynamic) priority declarations can easily be modelled in

PRDL.

FOAL'07 14 “« 4> » «[] 00X

Modular Reasoning and Verification

» We believe that the absense of any global operations in the formal semantics
can make a difference w.r.t. modular reasoning.

» But... what exactly is modular reasoning?

» From the perspective of logic, reasoning means the application of a proof
calculus of a logic on a knowledge base.

» To reason about a program, we hence need a way to generate a knowledge
base from a program and a proof calculus.

FOAL'07 15 o« <> » «[]0 X

Modular Reasoning and Verification

» Program P’ is an expansion of P if P is a part of P'.

» Definition: A language admits modular reasoning with respect to a prog2kb
function, if, for all programs P and P’ such that P’ is an expansion of P, we
have prog2kb(P) C prog2kb(P').

» The set of rule instances of an operational semantics for some program is such
a knowledge base.

» Observation: The default logic version of the semantics admits modular
reasoning, the conventional semantics does not.

FOAL'07 16 o« <> » «[]0 X

Modular Reasoning and Verification

» One may argue that modular reasoning is not worth much in a nonmonotonic
logic.

® Rather than preservation of the knowledge base one would rather have
preservation of the set of conclusions.

» We believe there is still value in our approach because we can now deal with
the nonmonotonicity in a reasoning framework that has been specifically
developed for this purpose.

» To illustrate this claim we discuss how properties of a program can be verified
in a modular way.

FOAL'07 17 o« <> » «[]0 X

Example

]
bool f(int n) {

if n<=0 then return g(n)
else return isPrime(n);

}

bool g(int n) { return isPrime(-n); }

bool isPrime(int n) {
1f n<=1 then return false;
for (int i=2; i<n; i++) {
if n modulo i = 0 then return false;

+

return true;

FOAL'07 18 o« <> » «[]0 X

Proof of a property in default logic

VN body; cprime — tHUE = prime(n)
rFs
: Assumption: unadvised{isPrime(n))
1

vn. isPrime (n) —* true < prime(n)

vn. g(n) —* true = prime(-n)
- <

-
-
—

1—
A
, .y
P 1
7 1
’ 1 'OU
V1. isPrime (-n) —* true < prime(-n) l‘ 2
. ‘ &
1 @
Assumplion: unadvised(g(n)) l' 1 Q
I | 2y
1
\
\
1

-~
““

vn. bodyy —* true < (n>0and prime(n)) or +—
(n =0 and prime(-n))
1
Assumption: unadvised(fin)) "

vn £(n) —>* true = (n>0 and prime(n)) or «——
(n =0 and prime(-n))

FUAL Ur 1Y « <> » «[]0 X

Proof of a property in default logic

e —
» Now consider an expansion of the program with additional advice. Is the proof
s (and hence property) still valid?

» Quick check: Compare whether the justification set J(s) is consistent with our
expansion.

» If an assumptions in J(s) has been violated by the extension, however, the
property may no longer hold.

» We can still try to “repair” the proof without revisiting the program.

» Example: Expansion with the following advice:

advice(int n) returns bool:
around call(isPrime(n)) {
if n % 2 = 0 then return false;
return proceed;

+

FOAL'07 20 o« <> » «[]0 X

Repairing the proof

V. body; cprime — tHUE = prime(n)

A~
Assumption: unadvised(isPrimefprimopti{n)h
|

¥n.n mod 2 = 0 = not prime(n) vn. isPrime[prji.'mopt] (n) —* true < prime(n)
- -

- -
- -
= . -

-~ -

V. body,_4yice — true = prime(n)
T Assumption: NextAdvice(isPrime(n)) = primopt
¥h. isPrime (n) —* true < prime(n)

al ~
y \
4 \

\
Vn. isPrime (-n) —* true = prime(-n)\
\

4

\
\
vn. gn) —* true < prime(-n) “

"""-h__ \
-

Assumption: unadvisedig(n))
I

- - .-|
vn. body;—* true < (n>0 and prime(n)) or
A (n =0 and prime(-n))

Assumption: unadvised(f{n))\
1

vn. £(n) —»* true <= (n=0and prime(n)) or
(n =0 and prime(-n))

FOAL'07 21 “« 4> » «[] 00X

Conclusions

» Nonmonotonic logic is a good (mental and formal) model to explain AOP.

» | hope that many results from nonmonotonic logic can be used to improve

AOP
® Semantics for AO languages

® Advanced priority mechanisms
® Proof theory / modular verification

» Future Work: More direct incorporation of defaults into AO languages

FOAL'07 22 “« 4> » «[] 00X

