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Software Development by Refinement
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Requirement Specifications to Code
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Enforce a Security Policy
Policy:  No send actions allowed after file f is read

read(f )
One Two

send(..) → abort
Transformation 

Automaton:

send(m) action 
is replaced

by abort action

Build simulation map, 
then generate new code for corresponding actions

simulates

a
A B C D E F

read(f ) send(m)c d



Transformation Automata

Policy
State 1

Policy
State 2

guard  & Φ(α) ⊦ `α´ → [pre]{pattern}[post]

code transformation
with guards on state and code bindings

if α matches the current action
and guard holds
and Φ(α) holds

then replace α by an instance of pattern
that satisfies the given precondition and postcondition 



Simple Information Flow Policy
Policy:  No send actions allowed after file f is read

read( f ) →
send(..) → abortpolicy automaton:

policy MumAfterRead {
boolean rf
init       → rf := false
read( f ) → read( f ) || rf := true
send(..)  → abort     if  rf

}

¬rf rf



Transformation Automaton

Policy
State 1

Policy
State 2

cg ⊦ `α´ → achieve R

Abbreviation:  let 

Policy
State 1

Policy
State 2

cg ⊦ `α´ → [preα]{}[postα ∧ R ]

denote 



Simple Information Flow Policy
Policy:  No send actions allowed after file f is read

read( f ) →
send(..) → abortpolicy automaton:

policy MumAfterRead {
boolean rf

init       → achieve rf´ = false

read( f ) → achieve rf´ = true
send(..)  → abort                             if  rf

}

¬rf rf



Example

{ …
if  (p) { x := read(f ) }
send(..);
…

}

Design fragment

p
false

x := read(f )

true

send(..);

Control-Flow Graph with
results of static analysis

{¬rf }

{rf }
{¬rf , rf}

{ rf := false; …
if  (p) { x := read(f ); rf := true; }
if (rf ) {abort}
else {send(..); …}
…

}

Transformed Design fragment
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Expressing System Constraints         

Many systems constraints refer to 
• history  (events, actions, state,…)
• dynamic context (e.g. the call-stack, heap)
• environment behavior
• substrate properties (e.g. instruction timing, latence, …)
• heap
• agency



Reified Variables

s0
act0

s1
act1 s3   •••s2

act2
hist := 〈s0, act0 , s1〉 hist := hist ::〈s1, act1, s2 〉 hist := hist ::〈s2, act2 ,s3 〉

key idea:  extend state with a virtual history variable

Reified variables 
• exist for purposes of specification
• sliced away prior to code generation    

let  actions⋆hist  denote the sequence of actions in hist



Policy: Save data after every 5 changes

Invariants:  ⎕ cnt = (length⋅ dataOp ⊳ actions ⋆ hist) mod 5
⎕ cnt = 0  ⇒ data = file

where dataOp(act) iff act changes the data set of interest.

Disruptive Actions:  derivable as a necessary condition 
on disruption of the invariant: I(x) ≠ I(x′)



Calculating a Pointcut Specification

Disruptive Actions: necessary condition on  I(x) ≠ I(x′)

Assume: cnt = (length⋅ dataOp ⊳ actions ⋆ hist) mod 5
∧ hist´ = hist :: 〈s, act, s´〉
∧ cnt = cnt´

Simplify: (cnt = (length⋅ dataOp ⊳ actions ⋆ hist ) mod 5 )
≠ (cnt´ = (length⋅ dataOp ⊳ actions ⋆ hist´) mod 5 )

≡ (length⋅ dataOp ⊳ actions ⋆ hist ) mod 5 ≠ (length⋅ dataOp ⊳ actions ⋆ hist´) mod 5

≡ … ≠ (length⋅ dataOp ⊳ actions ⋆ hist :: 〈s, act, s´〉) mod 5
≡ … ≠ (length⋅ dataOp ⊳ actions(hist) :: act) mod 5
≡ … ≠ if  ¬dataOp(act) 

then (length⋅ dataOp ⊳ actions ⋆ hist)) mod 5
else (length⋅ dataOp ⊳ actions ⋆ hist) :: act) mod 5

≡ if  ¬dataOp(act)  then false  else true
≡ dataOp(act)



Calculating Maintenance Code

Assume:   cnt = (length⋅ dataOp ⊳ actions ⋆ hist) mod 5
∧ hist´ = hist :: 〈s, act, s´〉
∧ dataOp(act)

Achieve: cnt´ = (length⋅ dataOp ⊳ actions ⋆ hist´) mod 5

Spec for Maintenance Code:  for each data-changing action act,

= (length⋅ dataOp ⊳ actions⋆(hist :: 〈s, act, s´〉)) mod 5
= (length⋅ dataOp ⊳ (actions⋆hist) :: act) mod 5
= (length⋅ (dataOp ⊳ (actions⋆hist)) :: act) mod 5
= length⋅ (dataOp ⊳ (actions⋆hist)) + 1 mod 5
= cnt + 1 mod 5



General Case
Invariant:  I(x)

Disruptive Actions:  necessary condition on  I(x) ≠ I(x′)

Spec for Maintenance Code :  
for each such action act with specification

Assume:   P(x)
Achieve:  Q(x, x´)

generate and satisfy new specification
Assume:   P(x) ∧ I(x) 
Achieve:  Q(x, x´) ∧ I(x´)

spec typically satisfied by code of the form:    act || update



Optimized Transformation Automaton

init → achieve cnt' = 0

dataOp(act) → achieve cnt' = cnt + 1 mod 5

to establish: cnt = (length⋅ dataOp ⊳ actions ⋆ hist) mod 5

init → (init || cnt := 0)

dataOp(act) → (act || cnt := cnt + 1 mod 5)

After carrying out the syntheses:



Policy: Save data after every 5 changes

Invariant:  cnt = 0  ⇒ data = file

Disruptive Actions:  derivable as a necessary condition 
on disruption of the invariant: I(x) ≠ I(x′)



Calculating a Pointcut Specification

Disruptive Actions: necessary condition on  I(x) ≠ I(x′)

Assume: cnt = 0  ⇒ data = file
∧ dataOp(act)
∧ hist´ = hist :: 〈S, act〉
∧ cnt = (length⋅ dataOp ⊳ actions ⋆ hist ) mod 5
∧ cnt ´ = cnt +1 mod 5

Simplify: ¬ (cnt´ = 0  ⇒ data´ = file´)

≡ cnt´ = 0  ∧ data´ ≠ file´
≡ cnt +1 mod 5 = 0
≡ cnt = 4



Calculating Maintenance Code

Assume:   cnt = 0  ⇒ data = file
∧ dataOp(act)
∧ hist´ = hist :: 〈S, act〉
∧ cnt = 4 
∧ cnt ´ = cnt +1 mod 5

Achieve: cnt´= 0  ⇒ data´ = file´

Spec for Maintenance Code:  for each data-changing action act,

≡ data´ = file´

This postcondition can be achieved by a  save()  operation



Derived Transformation Automaton

init → achieve cnt' =0

dataOp() → achieve cnt' =cnt+1   if cnt<4

dataOp() → achieve  file' =data' ∧ cnt' =0    if cnt =4 

cnt = (length⋅ dataOp ⊳ actions ⋆ hist) mod 5
cnt = 0  ⇒ data = file

init → (init || cnt := 0)

dataOp() → (act || cnt := cnt + 1 mod 5)      if cnt<4

dataOp() → (act ; cnt := 0 ||  save() ) if cnt =4 

After synthesis:



Refinement

establish invariant reqt R

Design0 ⊦ R

Design1 ⊦ R ∧ S

establish S

SD 

Design2 ⊦ R ∧ S ∧ SD

⊕

policy
enforcement

SaveData



Simple Information Flow Policy

Policy: No send actions allowed after file f is read

Invariants:   ⎕ rf  ⇔ read( f ) ∈ actions⋆hist
⎕ Send(act) ⇒ ¬rf

where Send(act) iff  act is a transmission event

In the following we will skip the derivation of how 
to maintain 

⎕ rf  ⇔ read( f ) ∈ actions⋆hist



Calculating a Pointcut Specification

Assume: hist´ = hist :: 〈s, act, s´〉
∧ rf  ⇔ read( f ) ∈ actions⋆hist

Simplify: ¬ (Send(act) ⇒¬rf )
≡ Send(act) ∧ rf 
⇒ Send(act) 



Calculating Maintenance Code

Assume: preact ∧ hist´ = hist :: 〈s, act, s´〉
∧ rf  ⇔ read( f ) ∈ actions⋆hist
∧ Send?(act)

Achieve: postact ∧ (Send(act) ⇒¬rf ) 

Spec for Maintenance Code:  for each data-changing action act,

= postact ∧ ¬rf
= if rf then postact ∧ ¬rf

else postact ∧ ¬rf
= if rf then false

else postact



Generalized Refinement
establish invariant reqt R

Design0 ⊦ R

Design1 ⊦ R ∧ S

establish S

SD 

Design2 ⊦ R ∧ S ∧ SD

⊕

policy
enforcement

SaveData
IF

Design3 ⊦ (R ∧ S ∧ SD ∧ IF) Unless false

⊕

policy
enforcement

Info Flow
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Extras



Verification versus Refinement

Given Design0 and temporal formula Ψ

1. Static Verification:   show                                  Design0 ⊦ Ψ

2. Runtime Verification:  for input e, show          Design0||e ⊨ Ψ

3. Synthesis/Refinement:  Design0 ⊦ Φ

Design1 ⊦ Φ ∧Ψ

transform


