
Requirement Enforcement
by

Transformation Automata

Principal Scientist
Kestrel Institute

Palo Alto, California

Douglas R. Smith

Exec. V.P. and CTO
Kestrel Technology LLC

Los Altos, California

Software Development by Refinement

Spec0

refinement
in SPEC

CATsemantics: SPECop

Spec1 models for Spec1

Spec2 models for Spec2

category of
models for Spec0denotes

…
Specn

…

models for Specn

Code •

•

code
generation

a model for Specn

Requirement Specifications to Code

Spec5Spec2 Spec3Spec1 Spec4

Initial Design

Refined Design

Design with
Spec4 Enforced

⊕

…

Enforcing a Policy

designi

Static Analysis
+ Transformation

designi+1

Logical
Policy/Requirement

Generator

Transformation Automaton

Enforce a Security Policy
Policy: No send actions allowed after file f is read

read(f)
One Two

send(..) → abort
Transformation

Automaton:

send(m) action
is replaced

by abort action

Build simulation map,
then generate new code for corresponding actions

simulates

a
A B C D E F

read(f) send(m)c d

Transformation Automata

Policy
State 1

Policy
State 2

guard & Φ(α) ⊦ `α´ → [pre]{pattern}[post]

code transformation
with guards on state and code bindings

if α matches the current action
and guard holds
and Φ(α) holds

then replace α by an instance of pattern
that satisfies the given precondition and postcondition

Simple Information Flow Policy
Policy: No send actions allowed after file f is read

read(f) →
send(..) → abortpolicy automaton:

policy MumAfterRead {
boolean rf
init → rf := false
read(f) → read(f) || rf := true
send(..) → abort if rf

}

¬rf rf

Transformation Automaton

Policy
State 1

Policy
State 2

cg ⊦ `α´ → achieve R

Abbreviation: let

Policy
State 1

Policy
State 2

cg ⊦ `α´ → [preα]{}[postα ∧ R]

denote

Simple Information Flow Policy
Policy: No send actions allowed after file f is read

read(f) →
send(..) → abortpolicy automaton:

policy MumAfterRead {
boolean rf

init → achieve rf´ = false

read(f) → achieve rf´ = true
send(..) → abort if rf

}

¬rf rf

Example

{ …
if (p) { x := read(f) }
send(..);
…

}

Design fragment

p
false

x := read(f)

true

send(..);

Control-Flow Graph with
results of static analysis

{¬rf }

{rf }
{¬rf , rf}

{ rf := false; …
if (p) { x := read(f); rf := true; }
if (rf) {abort}
else {send(..); …}
…

}

Transformed Design fragment

Enforcing a Policy

designi

Static Analysis
+ Transformation

designi+1

Logical
Policy/Requirement

Generator

Transformation Automaton

Expressing System Constraints

Many systems constraints refer to
• history (events, actions, state,…)
• dynamic context (e.g. the call-stack, heap)
• environment behavior
• substrate properties (e.g. instruction timing, latence, …)
• heap
• agency

Reified Variables

s0
act0

s1
act1 s3 •••s2

act2
hist := 〈s0, act0 , s1〉 hist := hist ::〈s1, act1, s2 〉 hist := hist ::〈s2, act2 ,s3 〉

key idea: extend state with a virtual history variable

Reified variables
• exist for purposes of specification
• sliced away prior to code generation

let actions⋆hist denote the sequence of actions in hist

Policy: Save data after every 5 changes

Invariants: ⎕ cnt = (length⋅ dataOp ⊳ actions ⋆ hist) mod 5
⎕ cnt = 0 ⇒ data = file

where dataOp(act) iff act changes the data set of interest.

Disruptive Actions: derivable as a necessary condition
on disruption of the invariant: I(x) ≠ I(x′)

Calculating a Pointcut Specification

Disruptive Actions: necessary condition on I(x) ≠ I(x′)

Assume: cnt = (length⋅ dataOp ⊳ actions ⋆ hist) mod 5
∧ hist´ = hist :: 〈s, act, s´〉
∧ cnt = cnt´

Simplify: (cnt = (length⋅ dataOp ⊳ actions ⋆ hist) mod 5)
≠ (cnt´ = (length⋅ dataOp ⊳ actions ⋆ hist´) mod 5)

≡ (length⋅ dataOp ⊳ actions ⋆ hist) mod 5 ≠ (length⋅ dataOp ⊳ actions ⋆ hist´) mod 5

≡ … ≠ (length⋅ dataOp ⊳ actions ⋆ hist :: 〈s, act, s´〉) mod 5
≡ … ≠ (length⋅ dataOp ⊳ actions(hist) :: act) mod 5
≡ … ≠ if ¬dataOp(act)

then (length⋅ dataOp ⊳ actions ⋆ hist)) mod 5
else (length⋅ dataOp ⊳ actions ⋆ hist) :: act) mod 5

≡ if ¬dataOp(act) then false else true
≡ dataOp(act)

Calculating Maintenance Code

Assume: cnt = (length⋅ dataOp ⊳ actions ⋆ hist) mod 5
∧ hist´ = hist :: 〈s, act, s´〉
∧ dataOp(act)

Achieve: cnt´ = (length⋅ dataOp ⊳ actions ⋆ hist´) mod 5

Spec for Maintenance Code: for each data-changing action act,

= (length⋅ dataOp ⊳ actions⋆(hist :: 〈s, act, s´〉)) mod 5
= (length⋅ dataOp ⊳ (actions⋆hist) :: act) mod 5
= (length⋅ (dataOp ⊳ (actions⋆hist)) :: act) mod 5
= length⋅ (dataOp ⊳ (actions⋆hist)) + 1 mod 5
= cnt + 1 mod 5

General Case
Invariant: I(x)

Disruptive Actions: necessary condition on I(x) ≠ I(x′)

Spec for Maintenance Code :
for each such action act with specification

Assume: P(x)
Achieve: Q(x, x´)

generate and satisfy new specification
Assume: P(x) ∧ I(x)
Achieve: Q(x, x´) ∧ I(x´)

spec typically satisfied by code of the form: act || update

Optimized Transformation Automaton

init → achieve cnt' = 0

dataOp(act) → achieve cnt' = cnt + 1 mod 5

to establish: cnt = (length⋅ dataOp ⊳ actions ⋆ hist) mod 5

init → (init || cnt := 0)

dataOp(act) → (act || cnt := cnt + 1 mod 5)

After carrying out the syntheses:

Policy: Save data after every 5 changes

Invariant: cnt = 0 ⇒ data = file

Disruptive Actions: derivable as a necessary condition
on disruption of the invariant: I(x) ≠ I(x′)

Calculating a Pointcut Specification

Disruptive Actions: necessary condition on I(x) ≠ I(x′)

Assume: cnt = 0 ⇒ data = file
∧ dataOp(act)
∧ hist´ = hist :: 〈S, act〉
∧ cnt = (length⋅ dataOp ⊳ actions ⋆ hist) mod 5
∧ cnt ´ = cnt +1 mod 5

Simplify: ¬ (cnt´ = 0 ⇒ data´ = file´)

≡ cnt´ = 0 ∧ data´ ≠ file´
≡ cnt +1 mod 5 = 0
≡ cnt = 4

Calculating Maintenance Code

Assume: cnt = 0 ⇒ data = file
∧ dataOp(act)
∧ hist´ = hist :: 〈S, act〉
∧ cnt = 4
∧ cnt ´ = cnt +1 mod 5

Achieve: cnt´= 0 ⇒ data´ = file´

Spec for Maintenance Code: for each data-changing action act,

≡ data´ = file´

This postcondition can be achieved by a save() operation

Derived Transformation Automaton

init → achieve cnt' =0

dataOp() → achieve cnt' =cnt+1 if cnt<4

dataOp() → achieve file' =data' ∧ cnt' =0 if cnt =4

cnt = (length⋅ dataOp ⊳ actions ⋆ hist) mod 5
cnt = 0 ⇒ data = file

init → (init || cnt := 0)

dataOp() → (act || cnt := cnt + 1 mod 5) if cnt<4

dataOp() → (act ; cnt := 0 || save()) if cnt =4

After synthesis:

Refinement

establish invariant reqt R

Design0 ⊦ R

Design1 ⊦ R ∧ S

establish S

SD

Design2 ⊦ R ∧ S ∧ SD

⊕

policy
enforcement

SaveData

Simple Information Flow Policy

Policy: No send actions allowed after file f is read

Invariants: ⎕ rf ⇔ read(f) ∈ actions⋆hist
⎕ Send(act) ⇒ ¬rf

where Send(act) iff act is a transmission event

In the following we will skip the derivation of how
to maintain

⎕ rf ⇔ read(f) ∈ actions⋆hist

Calculating a Pointcut Specification

Assume: hist´ = hist :: 〈s, act, s´〉
∧ rf ⇔ read(f) ∈ actions⋆hist

Simplify: ¬ (Send(act) ⇒¬rf)
≡ Send(act) ∧ rf
⇒ Send(act)

Calculating Maintenance Code

Assume: preact ∧ hist´ = hist :: 〈s, act, s´〉
∧ rf ⇔ read(f) ∈ actions⋆hist
∧ Send?(act)

Achieve: postact ∧ (Send(act) ⇒¬rf)

Spec for Maintenance Code: for each data-changing action act,

= postact ∧ ¬rf
= if rf then postact ∧ ¬rf

else postact ∧ ¬rf
= if rf then false

else postact

Generalized Refinement
establish invariant reqt R

Design0 ⊦ R

Design1 ⊦ R ∧ S

establish S

SD

Design2 ⊦ R ∧ S ∧ SD

⊕

policy
enforcement

SaveData
IF

Design3 ⊦ (R ∧ S ∧ SD ∧ IF) Unless false

⊕

policy
enforcement

Info Flow

Enforcing a Policy

designi

Static Analysis
+ Transformation

designi+1

Logical
Policy/Requirement

Generator

Transformation Automaton

Extras

Verification versus Refinement

Given Design0 and temporal formula Ψ

1. Static Verification: show Design0 ⊦ Ψ

2. Runtime Verification: for input e, show Design0||e ⊨ Ψ

3. Synthesis/Refinement: Design0 ⊦ Φ

Design1 ⊦ Φ ∧Ψ

transform

