Requirement Enforcement
by

Transformation Automata

Douglas R. Smith

Principal Scientist Exec. V.P. and CTO
Kestrel Institute Kestrel Technology LLC
Palo Alto, California Los Altos, California

Software Development by Refinement

semantics: SPECor CAT
category of

; Spec, denotes — models for Spec,

Spec, models for Spec,
refinement '
in SPEC
Spec, models for Spec,
> SP. é(':n Eﬂ models for Spec,
code l |
generation
=~ Code . a model for Spec,

Requirement Specifications to Code

Specl Spec?2 Spec3 Spec4 Spec5

NS

Initial Design

l

Refined Design
l
P <
l

Design with
Spec4 Enforced

l

Enforcing a Policy

Logical
Policy/Requirement

l

Generator

l

Transformation Automaton —»

design,

|

Static Analysis
+ Transformation

l

design.,

Enforce a Security Policy

Policy: No send actions allowed after file f is read

read(f) send(..) — abort
Transformation
Automaton:
simulates
B

read(f) @4@‘\0 send(m) Q_)

Build simulation map, send(m) action
then generate new code for corresponding actions is replaced

by abort action

Transformation Automata

code transformation
with guards on state and code bindings

Y

Policy guard & O(a) F o — [pre]{pattern}[post] _ Policy

State 1 "~ State 2

if o matches the current action
and guard holds
and @(a) holds
then replace o by an instance of pattern
that satisfies the given precondition and postcondition

Simple Information Flow Policy

Policy: No send actions allowed after file f is read

_ read(f) —»
policy automaton: @ @Q send(..) —» abort

policy MumA fterRead {
boolean rf
it — rf:=false
read(f) —» read(f)|| rf = true
send(..) —» abort if rf

Transformation Automaton

Abbreviation: let

Policy cg + o — achieve R _ Policy

State 1 State 2
denote

Policy cg ko’ > [pre J{}posty, ART policy

State 1 State 2

Simple Information Flow Policy

Policy: No send actions allowed after file f is read

_ read(f) —»
policy automaton: @ @Q send(..) —» abort

policy MumA fterRead {

boolean rf

1nit — achieve rf = false

read(f)— achieve rf = true

send(..) — abort if rf

)

Example

Design fragment

(... Control-Flow Graph with
if (p) { x :=read(f)} results of static analysis
send(..); {oif) L
500 p true

! false

x :=read(f)
{rf}
{—rf, tf}
Transtormed Design fragment send(..);
{ rf ;= false; ...

if (p) { x :=read(f); rf := true; }
if (rf) {abort}
else {send(..); ...}

Enforcing a Policy

Logical
Policy/Requirement

l

Generator

l

Transformation Automaton —»

design,

|

Static Analysis
+ Transformation

l

design.,

Expressing System Constraints

Many systems constraints refer to

history (events, actions, state,...)

dynamic context (e.g. the call-stack, heap)
environment behavior

substrate properties (e.g. instruction timing, latence, ...)
heap

agency

Reified Variables

key 1dea: extend state with a virtual history variable

act
0 act act
So > S L > S 2

hist := (s,, act,, s;) " hist == hist ::(s,, act;, s,) > hist := hist ::(s,, act, ,S;)

Reified variables
» exist for purposes of specification
* sliced away prior to code generation

let actionsxhist denote the sequence of actions in hist

> 83 XY

Policy: Save data after every 5 changes

Invariants: 0O cnt = (length- dataOp > actions = hist) mod 5
Ocnt =0 = data =file

where dataOp(act) iff act changes the data set of interest.

Disruptive Actions: derivable as a necessary condition

on disruption of the invariant: 1(x) # I(X")

Calculating a Pointcut Specification

Disruptive Actions: necessary condition on [(X) # I(X)

Assume: cnt = (length- dataOp > actions * hist) mod 5
A hist” = hist :: (s, act, s°)
A cnt=cnt’
Simplify: (cnt = (length- dataOp > actions » hist) mod 5)

(cnt” = (length- dataOp > actions = hist’) mod 5)
(length- dataOp > actions = hist) mod 5 # (length- dataOp > actions hist”) mod 5
... # (length- dataOp > actions * hist :: (s, act, s")) mod 5
... 7 (length- dataOp > actions(hist) :: act) mod 5
... 7 If —dataOp(act)

then (length- dataOp > actions = hist)) mod 5

else (length- dataOp > actions « hist) :: act) mod 5
If —dataOp(act) then false else true
dataOp(act)

Calculating Maintenance Code

Spec for Maintenance Code: for each data-changing action act,

Assume: cnt = (length- dataOp > actions % hist) mod 5
A hist” = hist :: (s, act, s°)
A dataOp(act)

Achieve: cnt” = (length- dataOp > actions x hist”) mod 5

= (length- dataOp > actionsx(hist :: (s, act, s))) mod 5
= (length- dataOp > (actionsxhist) :: act) mod 5

= (length- (dataOp > (actionsxhist)) :: act) mod 5

= length- (dataOp > (actionsxhist)) + 1 mod 5

=cnt+ 1 mod 5

General Case

Invariant: 1(X)
Disruptive Actions: necessary condition on 1(X) # I(x")

Spec for Maintenance Code :

for each such action act with specification
Assume: P(X)
Achieve: Q(X, X))

generate and satisfy new specification
Assume: P(X) A (X)
Achieve: Q(X, X)) A I(X")

spec typically satisfied by code of the form: act || update

Optimized Transformation Automaton

to establish: [0 cnt = (length- dataOp > actions = hist) mod 5

dataOp(act) — achieve cnt' = cnt + 1 mod 5

Init > achieve cnt' =0 8

After carrying out the syntheses:

dataOp(act) — (act || cnt := cnt + 1 mod 5)

Init — (init|| cnt := 0) 8

Policy: Save data after every 5 changes

Invariant: O cnt =0 = data =file

Disruptive Actions: derivable as a necessary condition

on disruption of the mvariant: [(X) # I(X")

Calculating a Pointcut Specification

Disruptive Actions: necessary condition on [(X) # I(X)

Assume: cnt = 0 = data = file
A dataOp(act)
A hist” = hist :: (S, act)
A cnt = (length- dataOp > actions = hist) mod 5
Acnt” =cnt+1mod5
Simplify: — (cnt” =0 = data” =file")

cnt” =0 A data” # file
cnt+1mod5=0
cnt=4

Calculating Maintenance Code

Spec for Maintenance Code: for each data-changing action act,

Assume: cnt =0 — data = file
A dataOp(act)
A hist” = hist :: (S, act)
ACnNt=4
Acnt”=cnt+1mod5
Achieve: cnt'=0 = data” = file

= data” =file’

This postcondition can be achieved by a save() operation

Derived Transformation Automaton

1 cnt = (length- dataOp > actions * hist) mod 5
Jcnt =0 = data =file

dataOp() — achieve cnt' =cnt+1 if cnt<4

init = achieve cnt' =0

dataOp() — achieve file' =data' A cnt' =0 if cnt =4

After synthesis:
dataOp() — (act||cnt:=cnt+ 1 mod 5) if cnt<4

init — (init || cnt := 0)

dataOp() — (act;cnt:=0 || save()) ifcnt=4

Refinement

SaveData
establish invariant reqt R SD
Design, F R
establish S
Designl I R VAN S po“cy
' enforcement
P <

|

Design, FR A S ASD

Simple Information Flow Policy

Policy: No send actions allowed after file f is read

Invariants: 0O rf < read(f) € actionsxhist
O Send(act) = —rf

where Send(act) iff act is a transmission event

In the following we will skip the derivation of how
to maintain

O rf < read(f) e actionsxhist

Calculating a Pointcut Specification

Assume: hist” = hist :: (s, act, s°)
A If < read(f) e actionsxhist

Simplify: — (Send(act) = —rf)
= Send(act) A rf
= Send(act)

Calculating Maintenance Code

Spec for Maintenance Code: for each data-changing action act,

Assume: pre, A hist” = hist :: (s, act, s”)

A If < read(f) e actionsxhist
A Send?(act)

Achieve: post, A (Send(act) = —rf)

= post, A —If
=1if rf then post, A —If

else post, A —If
=1f rf then false

else post,

Generalized Refinement

SaveData Info Flow

establish invariant reqt R SD IF

l

Design, F R

establish S

A

Designl I R A S po“cy
I enforcement

P «
|

Design, FRAS ASD

policy
l enforcement

Design; F (R A S A SD A IF) Unless false

Enforcing a Policy

Logical
Policy/Requirement

l

Generator

l

Transformation Automaton —»

design,

|

Static Analysis
+ Transformation

l

design.,

Extras

Verification versus Refinement

Given Design, and temporal formula ¥

1. Static Verification: show Design, + 'V
2. Runtime Verification: for input e, show Designy|le 'Y
3. Synthesis/Refinement: Design, - @

transform l

Design, - ® AY

