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AOSD Community: Themes
Treatment of Concerns as Independent Artifactsp

• Each Containing State, Behaviour, and Flow for Classes
• Join Points – Cooperative Method Call / Events - Creation, Call, Response
• Dispatch / Routing / Orchestration of Joined Methods 
• Design / Code

=> Cooperative Method Call
• Events / Flow of Events

P tt d Id tifi ti f P bli h bl E t • Intention
• Generalized Dispatch

Patterned Identification of Publishable Events
Identification of Intent / “Higher-Order” State
Concern Mining / Extraction
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p
• Each Containing State and Behaviour for Classes
• Join Points – Cooperative Method Call / Events - Creation, Call, Response
• Dispatch / Routing / Orchestration of Joined Methods 
• Design / Code

Patterned Identification of Publishable Events
• Expected Joinpoints : Method Calls
• Injected Joinpoints : Pointcuts – Obliviousness / Asymmetry
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• Query Formulations, Exported Pointcuts – Expected Joinpoints
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AOSD Community: Themes
Treatment of Concerns as Independent Artifacts

Patterned Identification of P blishable E ents

p
• Each Containing State and Behaviour for Classes
• Join Points – Cooperative Method Call / Events - Creation, Call, Response
• Dispatch / Routing / Orchestration of Joined Methods 
• Design / Code

E t / C

Patterned Identification of Publishable Events
• Method Calls: Expected Joinpoints 
• Pointcuts: Injected Joinpoints – Obliviousness / Asymmetry
• Query Formulations, Exported Pointcuts – Expected Joinpoints
• Joinpoint Shadows, Methoids

complex: first, then two 
of second, then third

Identification of Intent / “Higher-Order” State
• Cflow
• Complex-event processing

=> Events / Concurrency
• Events / Flow of Events

Joinpoint Shadows, Methoids

Concern Mining / Extraction
complex: second in 
the context of first

Co ce g / ac o
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AOSD Community: Themes
Treatment of Concerns as Independent Artifacts

Patterned Identification of P blishable E ents

p
• Each Containing State and Behaviour for Classes
• Join Points – Cooperative Method Call / Events - Creation, Call, Response
• Dispatch / Routing / Orchestration of Joined Methods 
• Design / Code

Patterned Identification of Publishable Events
• Method Calls: Expected Joinpoints 
• Pointcuts: Injected Joinpoints – Obliviousness / Asymmetry
• Query Formulations, Exported Pointcuts – Expected Joinpoints
• Joinpoint Shadows, Methoids, Generalized Artifacts

Concern Mining / Extraction

Identification of Intent / “Higher-Order” State
• Cflow
• Complex-event processing

Joinpoint Shadows, Methoids, Generalized Artifacts

g
• Program Slicing
• Extraction – Complex region methoids/shadows
• Design / Code / Generalized Artifacts
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AOSD Community: Growth & Extension Issues

Dispatching Flexibility
• Not to the target
• Controlled by external rules
• Outside the Language
• Methods & Events

Cooperative Method Call
E t / Fl f E t

Other Communities
• Grid Computing
• Ubiquitous / Mobile / Autonomic Computing
• Service-Oriented Computing

• Methods & Events

Pointcuts
• Exports + Supports

• Events / Flow of Events
• Intention
• Generalized Dispatch

Service Oriented Computing
• Complex-Event Processing
• Multi-core chip suppliers

Continuum
Base

Events / Concurrency
• Events / Flow of Events

p pp

Aspects
• export and support cooperative method calls

Base
• is the flow of events
• can include flow constraints / model

• export and support cooperative method calls
and events – self or other responses

• provide plug-in Services model
Intentions and Glossaries

• adding Malleability to service plug-ins

(c) Copyright 2008 William Harrison, Trinity College, Dublin.

adding Malleability to service plug ins

Events & Concurrency
• extend Services model
• extend Malleability characteristics



Environment
C iti N di Fl ibl R tiCommunities Needing Flexible Routing

• Grid Computing
• Ubiquitous / Mobile / Autonomic Computing
• Service-Oriented Computing
• Complex-Event Processing

Service-Oriented: Real Black Boxes
Servicing implementations (classes) not chosen until executionexecution time

• Complex-Event Processing
• Multi-core realisations

Servicing implementations (classes) not chosen until executionexecution time
• All selection criteria must be manifest (explicit at use-time), not latent (examined at development-time)
• Precise functions performed
• Side-effects
• Dependencies

Emphasis on Concurrency
• Variable Latency  - local / remote / delayed
• Physical limits on sequentially over-constrained behaviour

Simplified expression of concurrent behavior• Simplified expression of concurrent behavior
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“Base” Skeletal Flow of Events
BBase
• is just the flow of events

• can include flow constraints / model
• “must occur before”

“ t b b f ”• “must be seen before”
• “must be followed by”
• etc.

• events derived from community of aspects “plugged-in”
• directly (as cooperative method calls)y ( p )
• as exported pointcuts
• or derived as part of a system architecture
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Aspect /Service Integration
/ SAspects / Services

• exports pointcuts to support cooperative behaviour (method calls and events)
• co-operators can be self or other responses
• synchronous cooperative call or asynchronous (independent) events

• provide plug-in Services model• provide plug-in Services model
• “first-class” linguistic element
• stores “persistent” state for objects
• provides reference decapsulation for methods to access object state
• bounds definition of ambiguity
• plugs into base (community)

• dynamically
• if consistent with base event model
• when needed

(c) Copyright 2008 William Harrison, Trinity College, Dublin.

exports
(pointcuts)

provides



Annotation for Intention / Malleability
Annotation

• supports run-time “service-finding” rather than development-time selection
• must say much more about required, expected, and supplied behaviour

• adds greater flexibility to matching services with clients
• multiple requirements satisfied by composite services• multiple requirements satisfied by composite services

• documents what functions methods do or must do
• replaces / supplements method name <reduces point of rigidly>
• allows satisfaction by service composition
• documents real intention of method use <pointcut annotation>

GlGlossary
• meets minimum requirements
• can be subject to direct matching
• glossaries are simplest of knowledge organizations, supertype of ontologies, etc.

ConvenienceConvenience
• applied in method definitions, not use – binds function to local name

“interface First {void one(int y) does(HardWork);}
((First) thing).one(6);”

Areas of application
• method name / function definition
• pointcut definition
• parameter matching / ordering
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“void one(Object x for control, int y for size) does(HardWork);



Events and Concurrency 
S fStage 1 – Attachment of aspect behaviour in advices as events

• “event() p(int a) {...};”
• advice produces “fork without join”

Stage 2 – Explicit sending of events
• “send methodName(this, “hello”);”
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Events and Concurrency 
S fStage 1 – Attachment of aspect behaviour in advices as events

• “event() p(int a) {...};”
• advice produces “fork without join”

Stage 2 – Explicit sending of events
• “send methodName(this, “hello”);”

Stage 3 – Events with future commitmentsStage 3 Events with future commitments
• “void one(Object x, int y) sends two(Object x, real z)”
• commits that if “one” is called, eventually “two” will be sent with same “x”

• could be sent by “one”
• could be sent by some event sent by “one”

d b t ti t h ki• assured by static type-checking
• needs the “services” model

• hold the implementations for “two”
• deal with failures

encourage use with convenience:
• “send one(this, 6) expect two(MyClass this, int a) {...};”
• avoids scattering and preserves local logic continuity
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Events and Concurrency 
S fStage 1 – Attachment of aspect behaviour in advices as events

• “event() p(int a) {...};”
• advice produces “fork without join”

Stage 2 – Explicit sending of events
• “send methodName(this, “hello”);”

Stage 3 – Events with future commitmentsStage 3 Events with future commitments
• “void one(Object x, int y) sends two(Object x, real z)”
• “send one(this, 6) expect two(MyClass this, int a) {...};”

Stage 4 – Errors in realising expectationsStage 4 Errors in realising expectations
• failure to meet or assure future expectation results in failure message
• same name and arguments
• caught by catch blocks
• “event two(Object x, real z) {...} catch(Error e) {... x ...}”
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Extended Malleability – Service-Orientation
Removed Some Barriers to Smooth Integrationg

• naming
• use function annotation

• method bundling
• use service composition

• method grouping• method grouping
• structural typing for interfaces

• parameter order
• glossary (call-by-keyword)

Remaining Barriers:e a g a e s
Clients Know what Interfaces a Class Supports
Clients Know Where Implementations Are Located

• dynamic expectations
• local knowledge of class capabilitieslocal knowledge of class capabilities

• static expectations
• floating responsibility for assurance
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• naming
• use function annotation

• method bundling
• use service composition

• method grouping• method grouping
• structural typing

• parameter order
• glossary (call-by-keyword)

Remaining Barriers:e a g a e s
Clients Know what Interfaces a Class Supports
Clients Know Where Implementations Are Located

• dynamic expectations
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void meth( Store{put(Store,Item}} store1, Store store2);

Store{put(Store,Item), boolean inStock(Item,Store)} more;

more = ({boolean inStock(Item,Store)}) store1;
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more = store2;

boolean t = item.inStock(store2);
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Extended Malleability – Service-Orientation
Unusual Characteristics

• Class (Store) and supported Interface {put(Store,Item)} can be asserted by client
• New facts {boolean inStock(Item,Store)} about classes (Store) “proven” by successful downcasts

(flow-dependent)
• Facts about a class are true for all references to that class
• Facts may include knowledge about other classes• Facts may include knowledge about other classes

• Facts can be transferred from one variable declaration to another (in the right flow circumstances) 
• Classes are names without implied characteristics, but arranged in a type hierarchy
• Interfaces are structurally typed, their names are irrelevant

void meth( Store{put(Store,Item)} store1, Store store2);

Store{put(Store,Item), boolean inStock(Item,Store)} more;

more = ({boolean inStock(Item,Store)}) store1;
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Extended Malleability – Service-Orientation
oved Some Barriers to Smooth Integrationg
naming

• use function annotation
function bundling in methods

• use service composition
method groupingmethod grouping

• structural typing
parameter order

• glossary (call-by-keyword)
aining Barriers:a g a e s
ents Know what Interfaces a Class Supports
ents Know Where Implementations Are Located

dynamic expectations
• local knowledge of class capabilitieslocal knowledge of class capabilities

static expectations
• floating responsibility for assurance

d meth( Store{put(Store,Item}} store1, Store store2);

re{put(Store,Item), boolean inStock(Item,Store)} more;

e = ({boolean inStock(Item,Store)}) store1;
e = store2;
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• Grid
• Ubiquitous / Mobile / Autonomic
• Service-Oriented
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• Base as Event Flow
• Aspects with Exported Pointcuts
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vents / Flow of Events

uts
xports + Supports

• Complex-Event Processing
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Dispatching Flexibility
• Not to the target
• Controlled by external rules
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Controlled by external rules
• Outside the Language
• Methods & Events
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