
De-constructing and Re-constructingg g
Aspect-Orientation

Bill Harrison
Department of Computer ScienceDepartment of Computer Science

Trinity College, Dublin

Presentation at FOAL 2008. For more comprehensive material see
William Harrison, “De-constructing and Re-constructing Aspect-Orientation”,
Proceedings of Seventh Annual Workshop on Foundations of Aspect

(c) Copyright 2008 William Harrison, Trinity College, Dublin.

This work is supported by a grant
from Science Foundation, Ireland

Languages, pp. 43-50, ACM Digital Library, ISBN 978-1-60558-110-1/08/0004

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.

AOSD Community: Themes
Treatment of Concerns as Independent Artifactsp
Patterned Identification of Publishable Events
Identification of Intent / “Higher-Order” State
Concern Mining / Extraction

AOSD Community: Growth & Extension Issues

(c) Copyright 2008 William Harrison, Trinity College, Dublin.

AOSD Community: Themes
Treatment of Concerns as Independent Artifactsp

• Each Containing State, Behaviour, and Flow for Classes
• Join Points – Cooperative Method Call / Events - Creation, Call, Response
• Dispatch / Routing / Orchestration of Joined Methods
• Design / Code

=> Cooperative Method Call
• Events / Flow of Events

P tt d Id tifi ti f P bli h bl E t • Intention
• Generalized Dispatch

Patterned Identification of Publishable Events
Identification of Intent / “Higher-Order” State
Concern Mining / Extraction

(c) Copyright 2008 William Harrison, Trinity College, Dublin.

AOSD Community: Themes
Treatment of Concerns as Independent Artifacts

Patterned Identification of P blishable E ents

p
• Each Containing State and Behaviour for Classes
• Join Points – Cooperative Method Call / Events - Creation, Call, Response
• Dispatch / Routing / Orchestration of Joined Methods
• Design / Code

Patterned Identification of Publishable Events
• Expected Joinpoints : Method Calls
• Injected Joinpoints : Pointcuts – Obliviousness / Asymmetry

Identification of Intent / “Higher-Order” State
Concern Mining / Extraction

(c) Copyright 2008 William Harrison, Trinity College, Dublin.

AOSD Community: Themes
Treatment of Concerns as Independent Artifacts

Patterned Identification of P blishable E ents

p
• Each Containing State and Behaviour for Classes
• Join Points – Cooperative Method Call / Events - Creation, Call, Response
• Dispatch / Routing / Orchestration of Joined Methods
• Design / Code

Patterned Identification of Publishable Events
• Expected Joinpoints : Method Calls
• Injected Joinpoints : Pointcuts – Obliviousness / Asymmetry
• Joinpoint Shadows, Methoids
• Query Formulations, Exported Pointcuts – Expected Joinpoints

=> Pointcuts
• Exports / Supports

Query Formulations, Exported Pointcuts Expected Joinpoints
Identification of Intent / “Higher-Order” State
Concern Mining / Extraction

(c) Copyright 2008 William Harrison, Trinity College, Dublin.

AOSD Community: Themes
Treatment of Concerns as Independent Artifacts

Patterned Identification of P blishable E ents

p
• Each Containing State and Behaviour for Classes
• Join Points – Cooperative Method Call / Events - Creation, Call, Response
• Dispatch / Routing / Orchestration of Joined Methods
• Design / Code

E t / C

Patterned Identification of Publishable Events
• Method Calls: Expected Joinpoints
• Pointcuts: Injected Joinpoints – Obliviousness / Asymmetry
• Query Formulations, Exported Pointcuts – Expected Joinpoints
• Joinpoint Shadows, Methoids

complex: first, then two
of second, then third

Identification of Intent / “Higher-Order” State
• Cflow
• Complex-event processing

=> Events / Concurrency
• Events / Flow of Events

Joinpoint Shadows, Methoids

Concern Mining / Extraction
complex: second in
the context of first

Co ce g / ac o

(c) Copyright 2008 William Harrison, Trinity College, Dublin.

AOSD Community: Themes
Treatment of Concerns as Independent Artifacts

Patterned Identification of P blishable E ents

p
• Each Containing State and Behaviour for Classes
• Join Points – Cooperative Method Call / Events - Creation, Call, Response
• Dispatch / Routing / Orchestration of Joined Methods
• Design / Code

Patterned Identification of Publishable Events
• Method Calls: Expected Joinpoints
• Pointcuts: Injected Joinpoints – Obliviousness / Asymmetry
• Query Formulations, Exported Pointcuts – Expected Joinpoints
• Joinpoint Shadows, Methoids, Generalized Artifacts

Concern Mining / Extraction

Identification of Intent / “Higher-Order” State
• Cflow
• Complex-event processing

Joinpoint Shadows, Methoids, Generalized Artifacts

g
• Program Slicing
• Extraction – Complex region methoids/shadows
• Design / Code / Generalized Artifacts

(c) Copyright 2008 William Harrison, Trinity College, Dublin.

AOSD Community: Growth & Extension Issues

Dispatching Flexibility
• Not to the target
• Controlled by external rules
• Outside the Language
• Methods & Events

Cooperative Method Call
E t / Fl f E t

Other Communities
• Grid Computing
• Ubiquitous / Mobile / Autonomic Computing
• Service-Oriented Computing

• Methods & Events

Pointcuts
• Exports + Supports

• Events / Flow of Events
• Intention
• Generalized Dispatch

Service Oriented Computing
• Complex-Event Processing
• Multi-core chip suppliers

Continuum
Base

Events / Concurrency
• Events / Flow of Events

p pp

Aspects
• export and support cooperative method calls

Base
• is the flow of events
• can include flow constraints / model

• export and support cooperative method calls
and events – self or other responses

• provide plug-in Services model
Intentions and Glossaries

• adding Malleability to service plug-ins

(c) Copyright 2008 William Harrison, Trinity College, Dublin.

adding Malleability to service plug ins

Events & Concurrency
• extend Services model
• extend Malleability characteristics

Environment
C iti N di Fl ibl R tiCommunities Needing Flexible Routing

• Grid Computing
• Ubiquitous / Mobile / Autonomic Computing
• Service-Oriented Computing
• Complex-Event Processing

Service-Oriented: Real Black Boxes
Servicing implementations (classes) not chosen until executionexecution time

• Complex-Event Processing
• Multi-core realisations

Servicing implementations (classes) not chosen until executionexecution time
• All selection criteria must be manifest (explicit at use-time), not latent (examined at development-time)
• Precise functions performed
• Side-effects
• Dependencies

Emphasis on Concurrency
• Variable Latency - local / remote / delayed
• Physical limits on sequentially over-constrained behaviour

Simplified expression of concurrent behavior• Simplified expression of concurrent behavior

(c) Copyright 2008 William Harrison, Trinity College, Dublin.

“Base” Skeletal Flow of Events
BBase
• is just the flow of events

• can include flow constraints / model
• “must occur before”

“ t b b f ”• “must be seen before”
• “must be followed by”
• etc.

• events derived from community of aspects “plugged-in”
• directly (as cooperative method calls)y (p)
• as exported pointcuts
• or derived as part of a system architecture

(c) Copyright 2008 William Harrison, Trinity College, Dublin.

“Base” Skeletal Flow of Events
BBase
• is just the flow of events

• can include flow constraints / model
• “must occur before”

“ t b b f ”• “must be seen before”
• “must be followed by”
• etc.

• events derived from community of aspects “plugged-in”
• directly (as cooperative method calls)y (p)
• as exported pointcuts
• or derived as part of a system architecture

(c) Copyright 2008 William Harrison, Trinity College, Dublin.

AspectsBase

Aspect /Service Integration
/ SAspects / Services

• exports pointcuts to support cooperative behaviour (method calls and events)
• co-operators can be self or other responses
• synchronous cooperative call or asynchronous (independent) events

• provide plug-in Services model• provide plug-in Services model
• “first-class” linguistic element
• stores “persistent” state for objects
• provides reference decapsulation for methods to access object state
• bounds definition of ambiguity
• plugs into base (community)

• dynamically
• if consistent with base event model
• when needed

(c) Copyright 2008 William Harrison, Trinity College, Dublin.

exports
(pointcuts)

provides

Annotation for Intention / Malleability
Annotation

• supports run-time “service-finding” rather than development-time selection
• must say much more about required, expected, and supplied behaviour

• adds greater flexibility to matching services with clients
• multiple requirements satisfied by composite services• multiple requirements satisfied by composite services

• documents what functions methods do or must do
• replaces / supplements method name <reduces point of rigidly>
• allows satisfaction by service composition
• documents real intention of method use <pointcut annotation>

GlGlossary
• meets minimum requirements
• can be subject to direct matching
• glossaries are simplest of knowledge organizations, supertype of ontologies, etc.

ConvenienceConvenience
• applied in method definitions, not use – binds function to local name

“interface First {void one(int y) does(HardWork);}
((First) thing).one(6);”

Areas of application
• method name / function definition
• pointcut definition
• parameter matching / ordering

(c) Copyright 2008 William Harrison, Trinity College, Dublin.

“void one(Object x for control, int y for size) does(HardWork);

Events and Concurrency
S fStage 1 – Attachment of aspect behaviour in advices as events

• “event() p(int a) {...};”
• advice produces “fork without join”

Stage 2 – Explicit sending of events
• “send methodName(this, “hello”);”

(c) Copyright 2008 William Harrison, Trinity College, Dublin.

Events and Concurrency
S fStage 1 – Attachment of aspect behaviour in advices as events

• “event() p(int a) {...};”
• advice produces “fork without join”

Stage 2 – Explicit sending of events
• “send methodName(this, “hello”);”

Stage 3 – Events with future commitmentsStage 3 Events with future commitments
• “void one(Object x, int y) sends two(Object x, real z)”
• commits that if “one” is called, eventually “two” will be sent with same “x”

• could be sent by “one”
• could be sent by some event sent by “one”

d b t ti t h ki• assured by static type-checking
• needs the “services” model

• hold the implementations for “two”
• deal with failures

encourage use with convenience:
• “send one(this, 6) expect two(MyClass this, int a) {...};”
• avoids scattering and preserves local logic continuity

(c) Copyright 2008 William Harrison, Trinity College, Dublin.

Events and Concurrency
S fStage 1 – Attachment of aspect behaviour in advices as events

• “event() p(int a) {...};”
• advice produces “fork without join”

Stage 2 – Explicit sending of events
• “send methodName(this, “hello”);”

Stage 3 – Events with future commitmentsStage 3 Events with future commitments
• “void one(Object x, int y) sends two(Object x, real z)”
• “send one(this, 6) expect two(MyClass this, int a) {...};”

Stage 4 – Errors in realising expectationsStage 4 Errors in realising expectations
• failure to meet or assure future expectation results in failure message
• same name and arguments
• caught by catch blocks
• “event two(Object x, real z) {...} catch(Error e) {... x ...}”

(c) Copyright 2008 William Harrison, Trinity College, Dublin.

Extended Malleability – Service-Orientation
Removed Some Barriers to Smooth Integrationg

• naming
• use function annotation

• method bundling
• use service composition

• method grouping• method grouping
• structural typing for interfaces

• parameter order
• glossary (call-by-keyword)

Remaining Barriers:e a g a e s
Clients Know what Interfaces a Class Supports
Clients Know Where Implementations Are Located

• dynamic expectations
• local knowledge of class capabilitieslocal knowledge of class capabilities

• static expectations
• floating responsibility for assurance

(c) Copyright 2008 William Harrison, Trinity College, Dublin.

Extended Malleability – Service-Orientation
Removed Some Barriers to Smooth Integrationg

• naming
• use function annotation

• method bundling
• use service composition

• method grouping• method grouping
• structural typing

• parameter order
• glossary (call-by-keyword)

Remaining Barriers:e a g a e s
Clients Know what Interfaces a Class Supports
Clients Know Where Implementations Are Located

• dynamic expectations
• local knowledge of class capabilitieslocal knowledge of class capabilities

void meth(Store{put(Store,Item}} store1, Store store2);

Store{put(Store,Item), boolean inStock(Item,Store)} more;

more = ({boolean inStock(Item,Store)}) store1;

(c) Copyright 2008 William Harrison, Trinity College, Dublin.

more = store2;

boolean t = item.inStock(store2);

Extended Malleability – Service-Orientation
Unusual Characteristics

• Class (Store) and supported Interface {put(Store,Item)} can be asserted by client

void meth(Store{put(Store,Item)} store1, Store store2);

Store{put(Store,Item), boolean inStock(Item,Store)} more;

more = ({boolean inStock(Item,Store)}) store1;

(c) Copyright 2008 William Harrison, Trinity College, Dublin.

more = store2;

boolean t = item.inStock(store2);

Extended Malleability – Service-Orientation
Unusual Characteristics

• Class (Store) and supported Interface {put(Store,Item)} can be asserted by client
• New facts {boolean inStock(Item,Store)} about classes (Store) “proven” by successful downcasts

(flow-dependent)

void meth(Store{put(Store,Item)} store1, Store store2);

Store{put(Store,Item), boolean inStock(Item,Store)} more;

more = ({boolean inStock(Item,Store)}) store1;

(c) Copyright 2008 William Harrison, Trinity College, Dublin.

more = store2;

boolean t = item.inStock(store2);

Extended Malleability – Service-Orientation
Unusual Characteristics

• Class (Store) and supported Interface {put(Store,Item)} can be asserted by client
• New facts {boolean inStock(Item,Store)} about classes (Store) “proven” by successful downcasts

(flow-dependent)
• Facts about a class are true for all references to that class

void meth(Store{put(Store,Item)} store1, Store store2);

Store{put(Store,Item), boolean inStock(Item,Store)} more;

more = ({boolean inStock(Item,Store)}) store1;

(c) Copyright 2008 William Harrison, Trinity College, Dublin.

more = store2;

boolean t = item.inStock(store2);

Extended Malleability – Service-Orientation
Unusual Characteristics

• Class (Store) and supported Interface {put(Store,Item)} can be asserted by client
• New facts {boolean inStock(Item,Store)} about classes (Store) “proven” by successful downcasts

(flow-dependent)
• Facts about a class are true for all references to that class
• Facts may include knowledge about other classes• Facts may include knowledge about other classes

void meth(Store{put(Store,Item)} store1, Store store2);

Store{put(Store,Item), boolean inStock(Item,Store)} more;

more = ({boolean inStock(Item,Store)}) store1;

(c) Copyright 2008 William Harrison, Trinity College, Dublin.

more = store2;

boolean t = item.inStock(store2);

Extended Malleability – Service-Orientation
Unusual Characteristics

• Class (Store) and supported Interface {put(Store,Item)} can be asserted by client
• New facts {boolean inStock(Item,Store)} about classes (Store) “proven” by successful downcasts

(flow-dependent)
• Facts about a class are true for all references to that class
• Facts may include knowledge about other classes• Facts may include knowledge about other classes

• Facts can be transferred from one variable declaration to another (in the right flow circumstances)
• Classes are names without implied characteristics, but arranged in a type hierarchy
• Interfaces are structurally typed, their names are irrelevant

void meth(Store{put(Store,Item)} store1, Store store2);

Store{put(Store,Item), boolean inStock(Item,Store)} more;

more = ({boolean inStock(Item,Store)}) store1;

(c) Copyright 2008 William Harrison, Trinity College, Dublin.

more = store2;

boolean t = item.inStock(store2);

Extended Malleability – Service-Orientation
oved Some Barriers to Smooth Integrationg
naming

• use function annotation
function bundling in methods

• use service composition
method groupingmethod grouping

• structural typing
parameter order

• glossary (call-by-keyword)
aining Barriers:a g a e s
ents Know what Interfaces a Class Supports
ents Know Where Implementations Are Located

dynamic expectations
• local knowledge of class capabilitieslocal knowledge of class capabilities

Extended Malleability – Service-Orientation
oved Some Barriers to Smooth Integrationg
naming

• use function annotation
function bundling in methods

• use service composition
method groupingmethod grouping

• structural typing
parameter order

• glossary (call-by-keyword)
aining Barriers:a g a e s
ents Know what Interfaces a Class Supports
ents Know Where Implementations Are Located

dynamic expectations
• local knowledge of class capabilitieslocal knowledge of class capabilities

static expectations
• floating responsibility for assurance

d meth(Store{put(Store,Item}} store1, Store store2);

re{put(Store,Item), boolean inStock(Item,Store)} more;

e = ({boolean inStock(Item,Store)}) store1;
e = store2;

AOSD Community: Themes

eatment of Concerns as Independent Artifacts
atterned Identification of Publishable Events
entification of Intent / “Higher-Order” Stateg
oncern Mining / Extraction

OSD Community: Growth & Extension Issues

t

rative Method Call
vents / Flow of Events
tention
eneralized Dispatch

Other Communities
• Grid
• Ubiquitous / Mobile / Autonomic
• Service-Oriented

Topics
• Base as Event Flow
• Aspects with Exported Pointcuts
• Aspects as Service Providers

/ Concurrency
vents / Flow of Events

uts
xports + Supports

• Complex-Event Processing
• Multi-core chips

Dispatching Flexibility
• Not to the target
• Controlled by external rules

• Intention & Annotation
• Malleability

Controlled by external rules
• Outside the Language
• Methods & Events

Thank you!Thank you!

