
1

Interface-based aspect-oriented  programming in Compose*: 

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Interface-based aspect-oriented 
programming in Compose*: 
its language independency, 

semantic point-cuts and 
aspect-interface detection possibilities

Mehmet Aksit
Chair Software Engineering (TRESE)

Department of Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede, The Netherlands

aksit@ewi.utwente.nl
trese.cs.utwente.nl/

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Table of contents
Key concepts of languages

Composition mechanisms

Invasive AOP

Language independence

Verification of semantic interference

Conclusions and future work



2

Interface-based aspect-oriented  programming in Compose*: 

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

M
ac

hi
ne

or
ie

nt
ed

Ap
pl

ica
tio

n
or

ie
nt

ed

Where are we now in programming?

Von Neumann machine

Procedures &
control statements

Abstract data types

OOP

AOP

Transitive hierarchical
composition
(Inheritance)

Non-hierarchical
composition

This looks 
great, BUT!

Non-hierarchical 
mechanisms:
Classification,
Composition-

decomposition,
Generalization-
specialization

Universal abstraction 
mechanisms:
Classification,
Composition-

decomposition,
Generalization-
specialization

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

What are the key concepts of 
programming languages?

(for programming in the large!)



3

Interface-based aspect-oriented  programming in Compose*: 

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

What are programming languages 
good for?

I guess, 
Problem solving by
delivering the right

program

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

pain

Requirements

problem1

Problems

Solution
domain1

solution1

problem2

problemn

solution2

Solution
domain2

+

If all is about problem solving..

Problem 
analysis

Solution 
domain 
analysissynthesis

verification



4

Interface-based aspect-oriented  programming in Compose*: 

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Requirements

Problems

Solution
domain1

solution1solution2

Solution
domain2

+

Problem decomposition, solution 
composition & semantics!

problem1

problem2

problemn

It must be about 
separation of 

concerns, 
composition of 
concerns, and 

semantics!!

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

But, then, ..
what is the 

right 
composition
mechanism?



5

Interface-based aspect-oriented  programming in Compose*: 

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Once upon a time..

End
80’s

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Delegation, inheritance & reflection debate
Delegation is 
inheritance

Delegation is 
better

I can do 
anything with

reflection

OOPSLA’86 OOPSLA’87 OOPSLA’87



6

Interface-based aspect-oriented  programming in Compose*: 

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Non-invasive generalization approaches (1)

point

Bh_point

Solid_line

Dashed-line Protection

History
point

Bounded
point

Reuse
mechanisms

“interface
Predicates”

OOPSLA’88

The Sina language

The general idea behind 
the data abstraction 
model of Sina/st is that, 
starting from a simple 
object-based model, 
one can simulate 
various forms of 
abstractions without 
committing to a fixed 
number of alternative 
abstraction techniques 
such as delegation, 
relations or inheritance.

“Dispatch
Control”

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Non-invasive generalization approaches (2)

OOPSLA’87

The law-governed system

point History
point

Law-governed 
System

In Prolog
“Dispatch
Control”



7

Interface-based aspect-oriented  programming in Compose*: 

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

But, what 
about the 
semantics

?

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Then some time has passed..

Begin
90’s



8

Interface-based aspect-oriented  programming in Compose*: 

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Synchronization inheritance anomalies

Bergmans PhD 94
MIT Press: Research directions

In concurrent OOP

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Synchronization
inheritance
anomalies

BoundedBuffer

data

put
get

Locker

Lock
unclock

HistoryBuffer

data
put
get

gget

LockingBuffer

data

put
get

This is an 
anomaly, I have 

no reuse!
Inheritance is 

useless



9

Interface-based aspect-oriented  programming in Compose*: 

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Research on synchronization inheritance 
anomalies attracted some attention

ECOOP’93

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Real-time inheritance anomalies

ECOOP’94



10

Interface-based aspect-oriented  programming in Compose*: 

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Obstacles in object-oriented programming
included seven “crosscutting-like” problems

OOPSLA’92

Coordinated 
behavior:

tangled & scattered

Associative 
inheritance:

predicate dispatch

Multiple views:
conditional dispatch

& logical order

Synchronization
inheritance:

synchron. dispatch

Arbitrary
inheritance:
Any dispatch

Atomic delegation:
Atomic dispatch
& logical order

Inheritance
& delegation:

dispatching aspect

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

MCSEAI 98
Sync.

IEEE PDS 97
Distr sync

Composition-filters without superimposition

ECOOP92
Multiple views

OBDS93
Coordination

ECOOP94
Realtime

JPDC 96
Realtime & Sync

IEEE 
Software 91

Transactions



11

Interface-based aspect-oriented  programming in Compose*: 

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Aspect-identification and aspect-based re-
engineering example (from OBDS’93)

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Then some more time has passed..

2nd half 

of
90’s



12

Interface-based aspect-oriented  programming in Compose*: 

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Invasive approaches

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Examples of AOP languages:
AspectJ, HyperJ and

framework-based approaches



13

Interface-based aspect-oriented  programming in Compose*: 

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

AspectJOO languages

MOP
(1985)

CLOS-MOP

Crosscutting
aspects (1996)

AspectJ
(1997)

Reflection
(Smith 81)

Adaptive
programming

(1996)

AspectJ
(2001)

Domain
specific
aspects

General
purpose
aspects

ECOOP’97

ECOOP’01

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

AspectJ like models

Clearing 
House Account1 Account2

transfer
withdraw

deposit
advice Pointcut

designator

Call join 
point

execution 
join point



14

Interface-based aspect-oriented  programming in Compose*: 

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

HyperJ

OO languagesMultiple views
concerns

Combination of
inheritance hierarchies

(ECOOP 1992)

Subject-oriented
programming

(1993)

HyperJ
(2001)

Adapting
interfaces

according to
the context

Composition of
Classes via
relational 
operators

OOPSLA’93

Kluwer01

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

HyperJ (continued)
Class1

a1
a2

m1
m2

Class2

ax
ay

mx
my

Class3

a1
a2
ax
ay

M1
m2
mx
my

[ ]



15

Interface-based aspect-oriented  programming in Compose*: 

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Framework-based aspect-oriented 
approaches

Supported within a platform with a number of libraries & 
tools

Provides aspect weaving mechanisms as a tool

Becoming more and more popular

Mostly implement Composition Filters like mechanisms
(using proxies/interceptors, etc.)

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

AOP languages have some concerns

Being able to compose crosscutting concerns is an 
additional benefit but, crosscutting concern mechanisms 
are “tangled with language semantics” (language 
dependent);

Extending existing languages with AOP constructs 
makes the languages too complex;

Verifying semantic correctness of compositions is still 
difficult;

Joinpoint level of composition is too low-level .



16

Interface-based aspect-oriented  programming in Compose*: 

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

How to address these problems?

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Step 1:
Separation of composition operators 

from concerns



17

Interface-based aspect-oriented  programming in Compose*: 

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Composition operators as dedicated 
interface extensions

User
defined

error

meta

dispatch

wait

real-time

Composition
semantics

Composition
language

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Step 2:
Composing composition operators 

with concerns



18

Interface-based aspect-oriented  programming in Compose*: 

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Composition of composition operators
using “quantifiers”

Formatter

Software
Module 1

Software
Module 2

OR composer

Formatter

Software
Module 3

Software
Module 4

OR composer

Filters

Formatter

OR composer

superimposition

Concern
format&compose

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

The Composition-filters model

Filters are
modular and
composable
extensions
& manipulate
messages

• Uniform model (everything is a “concern”)
• Supports strong encapsulation (“interface programming”)

Super imposition
in prolog

Concern my-concern

error

meta

dispatch

wait

real-time

User
defined User

defined
error

meta

dispatch

wait

real-time

Programming
language
C, C++, Java, etc.

AspectJ: aspects – base code

AspectJ: weak encapsulation,

fine-grained joinpoint model



19

Interface-based aspect-oriented  programming in Compose*: 

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

First two claims of composition filters:

language independence

domain specific aspects as filters

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Simulated demonstration of the proof of 
these two claims



20

Interface-based aspect-oriented  programming in Compose*: 

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

What we will show in the demo

Composing a word counting ‘feature’ with the book shelf
application as a modular concern

Composing a cache optimization concern with the word 
counting concern. 

Language/platform independence

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Example: Bookshelf



21

Interface-based aspect-oriented  programming in Compose*: 

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Counting words and sentences

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Design using Composition Filters



22

Interface-based aspect-oriented  programming in Compose*: 

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Result of using Composition Filters

myBook.countWords();

myChapter.countWords();

myPar.countWords();

filters
Dispatch

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Cache

Adding Caching

myBook.countWords();

myChapter.countWords();

myPar.countWords();

filters
Dispatch



23

Interface-based aspect-oriented  programming in Compose*: 

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Conclusion of the first demonstration

Composing a word counting ‘feature’ with the 
bookshelf application

Composing the caching optimization concern as a 
high level concern with the word counting concern

Composition Filters tools work on C/ .NET / Java

BookShelf + WordCounting + Caching in Java
Fibonacci + Caching in C
Same concern code (Caching) reused!

Efficiency: filters can be in-lined -> low overhead

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

The third claim of the Composition-Filters

Should be easier to verify the semantic 
correctness of filter compositions since

filters are modular extensions;



24

Interface-based aspect-oriented  programming in Compose*: 

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

CF’s: Should be easier to verify

• Controlling the order of aspect superimpositions using 
partial, advice-based priority specifications 

• Resource-model based aspect-interference analysis 
approach

• Graph- based aspect-interference analysis approach

advice1 Pointcut
designator1

adviceN Pointcut
designatorN

Correct
composition

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Controlling the order of aspect 
superimpositions using partial, advice-based 

priority specifications

Node’05



25

Interface-based aspect-oriented  programming in Compose*: 

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Resource-model based aspect-
interference analysis approach

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Serialization-based aspect-interference 
approach (continued)
From the set of filters (from multiple filtermodules), per resource a sequence 

of operations is compiled, e.g.:

NB: not for all combinations of accept & reject a corresponding message 
exists: this is filtered out 

These sequences are matched with conflict patterns (defined per 
resource), e.g. “R*WR

So: RR and RRRW don’t match, but RWR does match conflict

filters

RWRRRW W



26

Interface-based aspect-oriented  programming in Compose*: 

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Serialization-based aspect-interference 
approach (continued)

The process:

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Graph-based aspect-interference 
analysis



27

Interface-based aspect-oriented  programming in Compose*: 

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Graph-based aspect-interface analysis 
approach

Detect aspect-interference on a shared joinpoints without:

– (formally) specifying the aspect
– (formally) specifying the base program
– specifying the base language semantics

“Only analyse the aspects, not the base program.”

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Graph-based aspect-interface approach 
(continued)

generate abstract syntax graph
substitute filter-types with filter-actions
construct control flow graph
create runtime state (method call)

simulation: generate state space 
– Fixed production system for operational semantics

verification: analyse state space



28

Interface-based aspect-oriented  programming in Compose*: 

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Graph-based aspect-interface approach 
(continued)

Two kinds of 
non-determinism:

– Assignment of 
unknown runtime 
values (conditions)

– Selection of filter 
module order

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Conclusions about the semantic interference 
detection

Prioritization of compositions is sometimes necessary. 
Prioritization must be based on partial specifications. 
This is integrated in filters.

Well-defined interfaces of concerns (filters) and/or 
concerns with well-defined semantics (domain specific 
concerns) make it easier to analyze & verify semantic 
interference among concerns (for example by using 
graph-based verification)

In case of large state spaces, concerns can be abstracted 
as semantic signatures (related to a resource model) and 
be analyzed based on the references to  the resource-
model.



29

Interface-based aspect-oriented  programming in Compose*: 

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Our future work

Define larger set of filters (filter library) identified from 
practical needs

Work further on semantic composition also for not shared 
joinpoints

Composition patterns

Higher-level compositions

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Software
Module 1

Formatter

(a)

Software
Module 1

Software
Module 2

Selector

(c)

Strategy

Software
Module 1

Software
Module 2

OR composer

(b)

(d)

Software
Module 1

coordinator Coordination
protocol

Software
Module 2

coordinator

Larger set of explicit composition operator



30

Interface-based aspect-oriented  programming in Compose*: 

© Mehmet Aksit Interface-based programming in Compose*: Foundations of Aspect-Oriented Languages 2009

Conclusions

Non-invasive AOP has some advantages; language 
independence, semantic verification, etc.

Non-invasive AOP must be supported with a high-level 
compositional language.

Invasive AOP is probably good for applications like run-
time verification kind of applications, but the ideal level of 
detail of the joinpoints is difficult to determine. 
Open joinpoint models can be the answer!


