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Safe Composition
• Features

• Word Processor has formatting, printing, spell check, tables..
• Cut across traditional modularity boundaries
• Reify functionality into distinct feature modules

• Software Product Line (SPL)
• Multiple products from one code base
• Product = subset of features

• Safe Composition 
• Type check all products
• Products are exponential in number of features

• Goal
• Sound type system
• Foundation for efficient implementation



A Feature Example



A Feature Example
• Features are sets of class definitions and refinements



feature Account { 
  class Account extends Object { 
    int balance = 0; 
    void update(int x) { 
      int newBal = balance + x; 
      balance = newBal; 
    }
  }} Account

A Feature Example
• Features are sets of class definitions and refinements



InvestAccount

feature InvestAccount { 
  refines class Account extends WaMu { 
    int 401kbalance = 0; 
    refines void update (int x) { 
      x = x/2; 
      Super(); 
      401kbalance += x; 
    }
  }} 

feature Account { 
  class Account extends Object { 
    int balance = 0; 
    void update(int x) { 
      int newBal = balance + x; 
      balance = newBal; 
    }
  }} Account

A Feature Example
• Features are sets of class definitions and refinements

feature RetireAccount { 
  refines class Account extends Lehman { 
    int 401kbalance = 10000; 
     int update (int x) { 
      401kbalance += x; 
    }
  }} RetireAccount



InvestAccount

feature InvestAccount { 
  refines class Account extends WaMu { 
    int 401kbalance = 0; 
    refines void update (int x) { 
      x = x/2; 
      Super(); 
      401kbalance += x; 
    }
  }} 

feature Account { 
  class Account extends Object { 
    int balance = 0; 
    void update(int x) { 
      int newBal = balance + x; 
      balance = newBal; 
    }
  }} Account

Composing Features
• Features are sets of class definitions and refinements

feature RetireAccount { 
  refines class Account extends Lehman { 
    int 401kbalance = 10000; 
     int update (int x) { 
      401kbalance += x; 
    }
  }} RetireAccount



InvestAccountAccount

Composing Features

RetireAccount



InvestAccountAccount

InvestAccount • Investor

RetireAccount



InvestAccount

Account

InvestAccount • Investor

RetireAccount

=

Account

feature Account { 
  class Account extends Object  { 
    int balance = 0; 

void update(int x) { 
      int newBal = balance + x; 
      balance = newBal; 
    }
  }}



InvestAccountAccount

InvestAccount • Investor

RetireAccount

=

Account

feature Account { 
  class Account extends Object  { 
    int balance = 0; 

void update(int x) { 
      int newBal = balance + x; 
      balance = newBal; 
    }
  }}

InvestAccount

feature InvestAccount { 
  refines class Account extends WaMu { 
    int 401kbalance = 0; 
    refines void update (int x) { 
      x = x/2; 
      Super(); 
      401kbalance += x; 
    }
  }} 



InvestAccountAccount

InvestAccount • Investor

RetireAccount

=

Account

feature Account { 
  class Account extends Object  { 
    int balance = 0; 

void update(int x) { 

      int newBal = balance + x; 
      balance = newBal; 

    }
  }}

WaMu

    int 401kbalance = 0; 

x = x/2; 

      401kbalance += x; 

+

InvestAccount

feature InvestAccount { 
  refines class Account extends WaMu { 
    int 401kbalance = 0; 
    refines void update (int x) { 
      x = x/2; 
      Super(); 
      401kbalance += x; 
    }
  }} 



InvestAccountAccount

RetireAccount • Investor

RetireAccount



InvestAccount

Account

RetireAccount • Investor

RetireAccount

=

Account

feature Account { 
  class Account extends  Object   { 
    int balance = 0; 

void update(int x) { 
      int newBal = balance + x; 
      balance = newBal; 
    }
  }}



InvestAccount

Account

RetireAccount • Investor

RetireAccount =

Account

feature Account { 
  class Account extends  Object   { 
    int balance = 0; 

void update(int x) { 
      int newBal = balance + x; 
      balance = newBal; 
    }
  }}

feature RetireAccount { 
  refines class Account extends Lehman { 
    int 401kbalance = 10000; 
     int update (int x) { 
      401kbalance += x; 
    }
  }} RetireAccount



InvestAccount

Account

RetireAccount • Investor

RetireAccount =

Account

feature Account { 
  class Account extends  Object   { 
    int balance = 0; 

void update(int x) { 
      int newBal = balance + x; 
      balance = newBal; 
    }
  }}

feature RetireAccount { 
  refines class Account extends Lehman { 
    int 401kbalance = 10000; 
     int update (int x) { 
      401kbalance += x; 
    }
  }} RetireAccount

+
Lehman

    int 401kbalance = 10000; 

void update (int x) { 
      401kbalance += x;
}



Feature Models
• A SPL has a set of available features:

{Account, RetireAccount, InvestAccount}
• Typically feature combinations are constrained

• A feature model represents these constraints
• Propositional formula is compact representation [Batory05]

RetireAccount ∨ InvestAccount
• Product corresponds to truth assignment

• FMs should enforce implementation constraints
• Safe Composition

(RetireAccount ∨ InvestAccount) ∧ 
(RetireAccount ⇒ Account) ∧ (InvestAccount ⇒ Account)



Checking Safe Composition
• Could synthesize entire product line 

• Computationally expensive:



Checking Safe Composition
• Could synthesize entire product line 

• Computationally expensive:
InvestAccountAccount RetireAccount Bailout Employer NYSE



Checking Safe Composition
• Could synthesize entire product line 

• Computationally expensive:
InvestAccountAccount RetireAccount Bailout Employer NYSE

InvestAccountAccount

RetireAccountAccount

Account

Account Bailout

InvestAccountAccount Bailout

RetireAccountAccount Bailout

Account Bailout Employer

InvestAccountAccount Bailout Employer

RetireAccountAccount Bailout Employer

Account Employer

InvestAccountAccount Employer

RetireAccountAccount Employer

NYSEAccount Bailout Employer

InvestAccountAccount Bailout Employer NYSE

RetireAccountAccount Bailout Employer NYSE

Account NYSE

InvestAccountAccount NYSE

RetireAccountAccount NYSE

...



Difficulties
• Combinatorial nature of SPLs problematic:
feature Payroll { 
  class Employer extends Object { 
    Account Employee1;
    ...
    Employee1.401kbalance += 10000;
    ...
  }} Bailout

• Features are static
• Surrounding program is not

• Dependencies are resolved by a combination of features
• These features have their own set of dependencies 

• Bailout feature needs Account
• Account needs 401kbalance
• Multiple ways to satisfy

• Introduction
• Inheritance



Lightweight Feature Java
• Lightweight Java [Strnisa07]

• Minimal imperative subset of Java formalized in Coq
• Lightweight Feature Java

• Lightweight Java extended with features

Feature Table
FT ::= {FD}

Product specification
PS ::= F

Feature declaration
FD ::= feature F {cld; rcld}

Class refinement
rcld ::= refines class dcl extending cl {fd; md; rmd} 

Method Refinement
rmd ::= refines method ms {s; Super(); s; return y}

• Formalized in the Coq Proof Assistant



Composition in LFJ 
• Programs built from product specifications

• compose 
• Refine existing classes

• Apply method refinement
• Introduce fields, methods

• Introduce new classes

• Recursively apply compose to specification

LJ
Program

LFJ
Product 

Specification

composition



LJ Type System
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9: Typing Rules for LFJ method and class refinements.

is the union of the constraints on each of the features in PS .
Once the signature of a product specification PS is gener-

ated according to the rules in Figure 10, we evaluate whether
it is satisfied by PS using the rules in Figure 11. Compo-
sitional constraints on a feature F are satisfied when a fea-
ture with the appropriate introductions precedes F in PS .
Uniqueness constraints are satisfied when no two features in
PS introduce a member with the same name but different
signatures to a class dcl. In LFJ, satisfaction of structural
constraints is evaluated as in LJ, replacing uses of path with
the CT function built by composition of the features in PS .

The compositional and uniqueness constraints guarantee
that each step during the composition of a product specifica-
tion builds an intermediate program. These programs need
not be well-formed: they could rely on definitions which are
introduced in a later feature or have classes used to satisfy
typing constraints which could also be overwritten by a sub-
sequent feature. For this reason, our typing rules only con-
sider the final product specification, making no guarantees

about the behavior of intermediate programs.

4.1 Soundness of the LFJ Type System
The soundness proof is based on successive refinements

of the type systems of LJ and LFJ, reducing them to the
proofs of progress and preservation of the original LJ type
system given in [11]. We first use our constraint-based type
system for LJ, utilizing the structural constraints listed in
Figure 7 and the corresponding judgements in Figure 11 to
check constraint satisfaction. This type system is shown
to be equivalent to the original LJ type system, in that a
program with unique class names and an acyclic class hier-
archy satisfies its signature if and only if it is well-formed
according to the original typing rules. We then show that
if a single LFJ product specification is well-formed accord-
ing to the constraint-based LFJ type system, it produces a
LJ program that is also well-formed. We have formalized in
the Coq proof assistant the syntax and semantics of LJ and
LFJ presented in the previous section, as well as all of the
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ated according to the rules in Figure 10, we evaluate whether
it is satisfied by PS using the rules in Figure 11. Compo-
sitional constraints on a feature F are satisfied when a fea-
ture with the appropriate introductions precedes F in PS .
Uniqueness constraints are satisfied when no two features in
PS introduce a member with the same name but different
signatures to a class dcl. In LFJ, satisfaction of structural
constraints is evaluated as in LJ, replacing uses of path with
the CT function built by composition of the features in PS .

The compositional and uniqueness constraints guarantee
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tion builds an intermediate program. These programs need
not be well-formed: they could rely on definitions which are
introduced in a later feature or have classes used to satisfy
typing constraints which could also be overwritten by a sub-
sequent feature. For this reason, our typing rules only con-
sider the final product specification, making no guarantees

about the behavior of intermediate programs.

4.1 Soundness of the LFJ Type System
The soundness proof is based on successive refinements

of the type systems of LJ and LFJ, reducing them to the
proofs of progress and preservation of the original LJ type
system given in [11]. We first use our constraint-based type
system for LJ, utilizing the structural constraints listed in
Figure 7 and the corresponding judgements in Figure 11 to
check constraint satisfaction. This type system is shown
to be equivalent to the original LJ type system, in that a
program with unique class names and an acyclic class hier-
archy satisfies its signature if and only if it is well-formed
according to the original typing rules. We then show that
if a single LFJ product specification is well-formed accord-
ing to the constraint-based LFJ type system, it produces a
LJ program that is also well-formed. We have formalized in
the Coq proof assistant the syntax and semantics of LJ and
LFJ presented in the previous section, as well as all of the
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it is satisfied by PS using the rules in Figure 11. Compo-
sitional constraints on a feature F are satisfied when a fea-
ture with the appropriate introductions precedes F in PS .
Uniqueness constraints are satisfied when no two features in
PS introduce a member with the same name but different
signatures to a class dcl. In LFJ, satisfaction of structural
constraints is evaluated as in LJ, replacing uses of path with
the CT function built by composition of the features in PS .

The compositional and uniqueness constraints guarantee
that each step during the composition of a product specifica-
tion builds an intermediate program. These programs need
not be well-formed: they could rely on definitions which are
introduced in a later feature or have classes used to satisfy
typing constraints which could also be overwritten by a sub-
sequent feature. For this reason, our typing rules only con-
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of the type systems of LJ and LFJ, reducing them to the
proofs of progress and preservation of the original LJ type
system given in [11]. We first use our constraint-based type
system for LJ, utilizing the structural constraints listed in
Figure 7 and the corresponding judgements in Figure 11 to
check constraint satisfaction. This type system is shown
to be equivalent to the original LJ type system, in that a
program with unique class names and an acyclic class hier-
archy satisfies its signature if and only if it is well-formed
according to the original typing rules. We then show that
if a single LFJ product specification is well-formed accord-
ing to the constraint-based LFJ type system, it produces a
LJ program that is also well-formed. We have formalized in
the Coq proof assistant the syntax and semantics of LJ and
LFJ presented in the previous section, as well as all of the
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ated according to the rules in Figure 10, we evaluate whether
it is satisfied by PS using the rules in Figure 11. Compo-
sitional constraints on a feature F are satisfied when a fea-
ture with the appropriate introductions precedes F in PS .
Uniqueness constraints are satisfied when no two features in
PS introduce a member with the same name but different
signatures to a class dcl. In LFJ, satisfaction of structural
constraints is evaluated as in LJ, replacing uses of path with
the CT function built by composition of the features in PS .

The compositional and uniqueness constraints guarantee
that each step during the composition of a product specifica-
tion builds an intermediate program. These programs need
not be well-formed: they could rely on definitions which are
introduced in a later feature or have classes used to satisfy
typing constraints which could also be overwritten by a sub-
sequent feature. For this reason, our typing rules only con-
sider the final product specification, making no guarantees

about the behavior of intermediate programs.

4.1 Soundness of the LFJ Type System
The soundness proof is based on successive refinements

of the type systems of LJ and LFJ, reducing them to the
proofs of progress and preservation of the original LJ type
system given in [11]. We first use our constraint-based type
system for LJ, utilizing the structural constraints listed in
Figure 7 and the corresponding judgements in Figure 11 to
check constraint satisfaction. This type system is shown
to be equivalent to the original LJ type system, in that a
program with unique class names and an acyclic class hier-
archy satisfies its signature if and only if it is well-formed
according to the original typing rules. We then show that
if a single LFJ product specification is well-formed accord-
ing to the constraint-based LFJ type system, it produces a
LJ program that is also well-formed. We have formalized in
the Coq proof assistant the syntax and semantics of LJ and
LFJ presented in the previous section, as well as all of the
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is the union of the constraints on each of the features in PS .
Once the signature of a product specification PS is gener-

ated according to the rules in Figure 10, we evaluate whether
it is satisfied by PS using the rules in Figure 11. Compo-
sitional constraints on a feature F are satisfied when a fea-
ture with the appropriate introductions precedes F in PS .
Uniqueness constraints are satisfied when no two features in
PS introduce a member with the same name but different
signatures to a class dcl. In LFJ, satisfaction of structural
constraints is evaluated as in LJ, replacing uses of path with
the CT function built by composition of the features in PS .

The compositional and uniqueness constraints guarantee
that each step during the composition of a product specifica-
tion builds an intermediate program. These programs need
not be well-formed: they could rely on definitions which are
introduced in a later feature or have classes used to satisfy
typing constraints which could also be overwritten by a sub-
sequent feature. For this reason, our typing rules only con-
sider the final product specification, making no guarantees

about the behavior of intermediate programs.

4.1 Soundness of the LFJ Type System
The soundness proof is based on successive refinements

of the type systems of LJ and LFJ, reducing them to the
proofs of progress and preservation of the original LJ type
system given in [11]. We first use our constraint-based type
system for LJ, utilizing the structural constraints listed in
Figure 7 and the corresponding judgements in Figure 11 to
check constraint satisfaction. This type system is shown
to be equivalent to the original LJ type system, in that a
program with unique class names and an acyclic class hier-
archy satisfies its signature if and only if it is well-formed
according to the original typing rules. We then show that
if a single LFJ product specification is well-formed accord-
ing to the constraint-based LFJ type system, it produces a
LJ program that is also well-formed. We have formalized in
the Coq proof assistant the syntax and semantics of LJ and
LFJ presented in the previous section, as well as all of the
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it is satisfied by PS using the rules in Figure 11. Compo-
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ture with the appropriate introductions precedes F in PS .
Uniqueness constraints are satisfied when no two features in
PS introduce a member with the same name but different
signatures to a class dcl. In LFJ, satisfaction of structural
constraints is evaluated as in LJ, replacing uses of path with
the CT function built by composition of the features in PS .

The compositional and uniqueness constraints guarantee
that each step during the composition of a product specifica-
tion builds an intermediate program. These programs need
not be well-formed: they could rely on definitions which are
introduced in a later feature or have classes used to satisfy
typing constraints which could also be overwritten by a sub-
sequent feature. For this reason, our typing rules only con-
sider the final product specification, making no guarantees

about the behavior of intermediate programs.

4.1 Soundness of the LFJ Type System
The soundness proof is based on successive refinements

of the type systems of LJ and LFJ, reducing them to the
proofs of progress and preservation of the original LJ type
system given in [11]. We first use our constraint-based type
system for LJ, utilizing the structural constraints listed in
Figure 7 and the corresponding judgements in Figure 11 to
check constraint satisfaction. This type system is shown
to be equivalent to the original LJ type system, in that a
program with unique class names and an acyclic class hier-
archy satisfies its signature if and only if it is well-formed
according to the original typing rules. We then show that
if a single LFJ product specification is well-formed accord-
ing to the constraint-based LFJ type system, it produces a
LJ program that is also well-formed. We have formalized in
the Coq proof assistant the syntax and semantics of LJ and
LFJ presented in the previous section, as well as all of the
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ture with the appropriate introductions precedes F in PS .
Uniqueness constraints are satisfied when no two features in
PS introduce a member with the same name but different
signatures to a class dcl. In LFJ, satisfaction of structural
constraints is evaluated as in LJ, replacing uses of path with
the CT function built by composition of the features in PS .
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that each step during the composition of a product specifica-
tion builds an intermediate program. These programs need
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of the type systems of LJ and LFJ, reducing them to the
proofs of progress and preservation of the original LJ type
system given in [11]. We first use our constraint-based type
system for LJ, utilizing the structural constraints listed in
Figure 7 and the corresponding judgements in Figure 11 to
check constraint satisfaction. This type system is shown
to be equivalent to the original LJ type system, in that a
program with unique class names and an acyclic class hier-
archy satisfies its signature if and only if it is well-formed
according to the original typing rules. We then show that
if a single LFJ product specification is well-formed accord-
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LJ program that is also well-formed. We have formalized in
the Coq proof assistant the syntax and semantics of LJ and
LFJ presented in the previous section, as well as all of the

P

P ⊢
P ⊢

!τ,F md | C Method well-formed in class with signature

distinct(vark
k) type(clk) = τk

k
type(cl) = τ ′

Γ =[ vark "→ τk
k][this "→ τ ] Γ ! s" | C"

"
Γ(y) = τ ′′

!τ cl meth (clk vark
k
) {s"

" return y; } | {τ ′′ ≺ τ ′,defined clk
k} ∪

S
" C"

(WF-Method)

! cld | C Class well-formed with signature

distinct(fj) distinct(mk) dcl &= cl type(dcl) = τ !τ clk methk (cl",k var",k
"
) mbk | Ck

k

ξ =
S

j{fj &∈ fields(parent(dcl))} υ =
S

j{clj fj unique in dcl} υ′ =
S

k{clk methk (cl",k var",k
"
) unique in dcl}

ξ′ =
S

k{pmtype(dcl, methk) = cl",k
" → clk}

! class dcl extends cl {clj fj
j
; clk methk (cl",k var",k

",k
) mbk

k

} |
S

k Ck ∪ {defined cl,defined clj
j} ∪ ξ ∪ ξ′ ∪ υ ∪ υ′

(WF-Class)

!τ,F rmd | C Refined method well-formed in class of feature with signature

type(cl) = τ ′ Γ =[ vark "→ τk
k][this "→ τ ]

Γ(y) = τ ′′ Γ ! sj | Cj
j

Γ ! s" | C"
"

C = {τ ′′ ≺ τ ′, τ introduces cl meth (clk vark
k
) before F} ∪

S
j Cj ∪

S
" C"

!τ,F refines method cl meth (clk vark
k
) {sj

j ; Super(); s"
"; return y; } | C

(WF-Refines-Method)

!F rcld | C Class refinement well-formed in feature with signature

dcl &= cl type(dcl) = τ !τ clk methk (cl",k var",k
"
) mbk | Ck

k

!τ,F rmdm | C′
m

m

ξ =
S

j{fj &∈ fields(parent(dcl))} υ =
S

j{clj fj unique in dcl} υ′ =
S

k{clk methk (cl",k var",k
"
) unique in dcl}

ξ′ =
S

k{pmtype(dcl, methk) = cl",k
" → clk}

!F refines class dcl extending cl {clj fj
j
;!τ clk methk (cl",k var",k

",k
) mbk

k

; rmd",k
",k} |

S
k Ck ∪

S
m C′

m∪
{defined cl,defined clj

j
, dcl introduced before F, } ∪ ξ ∪ ξ′ ∪ υ ∪ υ′

(WF-Refines-Class)

9: Typing Rules for LFJ method and class refinements.

is the union of the constraints on each of the features in PS .
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it is satisfied by PS using the rules in Figure 11. Compo-
sitional constraints on a feature F are satisfied when a fea-
ture with the appropriate introductions precedes F in PS .
Uniqueness constraints are satisfied when no two features in
PS introduce a member with the same name but different
signatures to a class dcl. In LFJ, satisfaction of structural
constraints is evaluated as in LJ, replacing uses of path with
the CT function built by composition of the features in PS .
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that each step during the composition of a product specifica-
tion builds an intermediate program. These programs need
not be well-formed: they could rely on definitions which are
introduced in a later feature or have classes used to satisfy
typing constraints which could also be overwritten by a sub-
sequent feature. For this reason, our typing rules only con-
sider the final product specification, making no guarantees

about the behavior of intermediate programs.

4.1 Soundness of the LFJ Type System
The soundness proof is based on successive refinements

of the type systems of LJ and LFJ, reducing them to the
proofs of progress and preservation of the original LJ type
system given in [11]. We first use our constraint-based type
system for LJ, utilizing the structural constraints listed in
Figure 7 and the corresponding judgements in Figure 11 to
check constraint satisfaction. This type system is shown
to be equivalent to the original LJ type system, in that a
program with unique class names and an acyclic class hier-
archy satisfies its signature if and only if it is well-formed
according to the original typing rules. We then show that
if a single LFJ product specification is well-formed accord-
ing to the constraint-based LFJ type system, it produces a
LJ program that is also well-formed. We have formalized in
the Coq proof assistant the syntax and semantics of LJ and
LFJ presented in the previous section, as well as all of the
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Uniqueness constraints are satisfied when no two features in
PS introduce a member with the same name but different
signatures to a class dcl. In LFJ, satisfaction of structural
constraints is evaluated as in LJ, replacing uses of path with
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about the behavior of intermediate programs.
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system given in [11]. We first use our constraint-based type
system for LJ, utilizing the structural constraints listed in
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check constraint satisfaction. This type system is shown
to be equivalent to the original LJ type system, in that a
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archy satisfies its signature if and only if it is well-formed
according to the original typing rules. We then show that
if a single LFJ product specification is well-formed accord-
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ture with the appropriate introductions precedes F in PS .
Uniqueness constraints are satisfied when no two features in
PS introduce a member with the same name but different
signatures to a class dcl. In LFJ, satisfaction of structural
constraints is evaluated as in LJ, replacing uses of path with
the CT function built by composition of the features in PS .

The compositional and uniqueness constraints guarantee
that each step during the composition of a product specifica-
tion builds an intermediate program. These programs need
not be well-formed: they could rely on definitions which are
introduced in a later feature or have classes used to satisfy
typing constraints which could also be overwritten by a sub-
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sider the final product specification, making no guarantees
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proofs of progress and preservation of the original LJ type
system given in [11]. We first use our constraint-based type
system for LJ, utilizing the structural constraints listed in
Figure 7 and the corresponding judgements in Figure 11 to
check constraint satisfaction. This type system is shown
to be equivalent to the original LJ type system, in that a
program with unique class names and an acyclic class hier-
archy satisfies its signature if and only if it is well-formed
according to the original typing rules. We then show that
if a single LFJ product specification is well-formed accord-
ing to the constraint-based LFJ type system, it produces a
LJ program that is also well-formed. We have formalized in
the Coq proof assistant the syntax and semantics of LJ and
LFJ presented in the previous section, as well as all of the
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sitional constraints on a feature F are satisfied when a fea-
ture with the appropriate introductions precedes F in PS .
Uniqueness constraints are satisfied when no two features in
PS introduce a member with the same name but different
signatures to a class dcl. In LFJ, satisfaction of structural
constraints is evaluated as in LJ, replacing uses of path with
the CT function built by composition of the features in PS .

The compositional and uniqueness constraints guarantee
that each step during the composition of a product specifica-
tion builds an intermediate program. These programs need
not be well-formed: they could rely on definitions which are
introduced in a later feature or have classes used to satisfy
typing constraints which could also be overwritten by a sub-
sequent feature. For this reason, our typing rules only con-
sider the final product specification, making no guarantees
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of the type systems of LJ and LFJ, reducing them to the
proofs of progress and preservation of the original LJ type
system given in [11]. We first use our constraint-based type
system for LJ, utilizing the structural constraints listed in
Figure 7 and the corresponding judgements in Figure 11 to
check constraint satisfaction. This type system is shown
to be equivalent to the original LJ type system, in that a
program with unique class names and an acyclic class hier-
archy satisfies its signature if and only if it is well-formed
according to the original typing rules. We then show that
if a single LFJ product specification is well-formed accord-
ing to the constraint-based LFJ type system, it produces a
LJ program that is also well-formed. We have formalized in
the Coq proof assistant the syntax and semantics of LJ and
LFJ presented in the previous section, as well as all of the
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Uniqueness constraints are satisfied when no two features in
PS introduce a member with the same name but different
signatures to a class dcl. In LFJ, satisfaction of structural
constraints is evaluated as in LJ, replacing uses of path with
the CT function built by composition of the features in PS .

The compositional and uniqueness constraints guarantee
that each step during the composition of a product specifica-
tion builds an intermediate program. These programs need
not be well-formed: they could rely on definitions which are
introduced in a later feature or have classes used to satisfy
typing constraints which could also be overwritten by a sub-
sequent feature. For this reason, our typing rules only con-
sider the final product specification, making no guarantees
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of the type systems of LJ and LFJ, reducing them to the
proofs of progress and preservation of the original LJ type
system given in [11]. We first use our constraint-based type
system for LJ, utilizing the structural constraints listed in
Figure 7 and the corresponding judgements in Figure 11 to
check constraint satisfaction. This type system is shown
to be equivalent to the original LJ type system, in that a
program with unique class names and an acyclic class hier-
archy satisfies its signature if and only if it is well-formed
according to the original typing rules. We then show that
if a single LFJ product specification is well-formed accord-
ing to the constraint-based LFJ type system, it produces a
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the Coq proof assistant the syntax and semantics of LJ and
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if a single LFJ product specification is well-formed accord-
ing to the constraint-based LFJ type system, it produces a
LJ program that is also well-formed. We have formalized in
the Coq proof assistant the syntax and semantics of LJ and
LFJ presented in the previous section, as well as all of the
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ated according to the rules in Figure 10, we evaluate whether
it is satisfied by PS using the rules in Figure 11. Compo-
sitional constraints on a feature F are satisfied when a fea-
ture with the appropriate introductions precedes F in PS .
Uniqueness constraints are satisfied when no two features in
PS introduce a member with the same name but different
signatures to a class dcl. In LFJ, satisfaction of structural
constraints is evaluated as in LJ, replacing uses of path with
the CT function built by composition of the features in PS .

The compositional and uniqueness constraints guarantee
that each step during the composition of a product specifica-
tion builds an intermediate program. These programs need
not be well-formed: they could rely on definitions which are
introduced in a later feature or have classes used to satisfy
typing constraints which could also be overwritten by a sub-
sequent feature. For this reason, our typing rules only con-
sider the final product specification, making no guarantees

about the behavior of intermediate programs.

4.1 Soundness of the LFJ Type System
The soundness proof is based on successive refinements

of the type systems of LJ and LFJ, reducing them to the
proofs of progress and preservation of the original LJ type
system given in [11]. We first use our constraint-based type
system for LJ, utilizing the structural constraints listed in
Figure 7 and the corresponding judgements in Figure 11 to
check constraint satisfaction. This type system is shown
to be equivalent to the original LJ type system, in that a
program with unique class names and an acyclic class hier-
archy satisfies its signature if and only if it is well-formed
according to the original typing rules. We then show that
if a single LFJ product specification is well-formed accord-
ing to the constraint-based LFJ type system, it produces a
LJ program that is also well-formed. We have formalized in
the Coq proof assistant the syntax and semantics of LJ and
LFJ presented in the previous section, as well as all of the
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ated according to the rules in Figure 10, we evaluate whether
it is satisfied by PS using the rules in Figure 11. Compo-
sitional constraints on a feature F are satisfied when a fea-
ture with the appropriate introductions precedes F in PS .
Uniqueness constraints are satisfied when no two features in
PS introduce a member with the same name but different
signatures to a class dcl. In LFJ, satisfaction of structural
constraints is evaluated as in LJ, replacing uses of path with
the CT function built by composition of the features in PS .

The compositional and uniqueness constraints guarantee
that each step during the composition of a product specifica-
tion builds an intermediate program. These programs need
not be well-formed: they could rely on definitions which are
introduced in a later feature or have classes used to satisfy
typing constraints which could also be overwritten by a sub-
sequent feature. For this reason, our typing rules only con-
sider the final product specification, making no guarantees
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4.1 Soundness of the LFJ Type System
The soundness proof is based on successive refinements

of the type systems of LJ and LFJ, reducing them to the
proofs of progress and preservation of the original LJ type
system given in [11]. We first use our constraint-based type
system for LJ, utilizing the structural constraints listed in
Figure 7 and the corresponding judgements in Figure 11 to
check constraint satisfaction. This type system is shown
to be equivalent to the original LJ type system, in that a
program with unique class names and an acyclic class hier-
archy satisfies its signature if and only if it is well-formed
according to the original typing rules. We then show that
if a single LFJ product specification is well-formed accord-
ing to the constraint-based LFJ type system, it produces a
LJ program that is also well-formed. We have formalized in
the Coq proof assistant the syntax and semantics of LJ and
LFJ presented in the previous section, as well as all of the
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Once the signature of a product specification PS is gener-

ated according to the rules in Figure 10, we evaluate whether
it is satisfied by PS using the rules in Figure 11. Compo-
sitional constraints on a feature F are satisfied when a fea-
ture with the appropriate introductions precedes F in PS .
Uniqueness constraints are satisfied when no two features in
PS introduce a member with the same name but different
signatures to a class dcl. In LFJ, satisfaction of structural
constraints is evaluated as in LJ, replacing uses of path with
the CT function built by composition of the features in PS .

The compositional and uniqueness constraints guarantee
that each step during the composition of a product specifica-
tion builds an intermediate program. These programs need
not be well-formed: they could rely on definitions which are
introduced in a later feature or have classes used to satisfy
typing constraints which could also be overwritten by a sub-
sequent feature. For this reason, our typing rules only con-
sider the final product specification, making no guarantees

about the behavior of intermediate programs.

4.1 Soundness of the LFJ Type System
The soundness proof is based on successive refinements

of the type systems of LJ and LFJ, reducing them to the
proofs of progress and preservation of the original LJ type
system given in [11]. We first use our constraint-based type
system for LJ, utilizing the structural constraints listed in
Figure 7 and the corresponding judgements in Figure 11 to
check constraint satisfaction. This type system is shown
to be equivalent to the original LJ type system, in that a
program with unique class names and an acyclic class hier-
archy satisfies its signature if and only if it is well-formed
according to the original typing rules. We then show that
if a single LFJ product specification is well-formed accord-
ing to the constraint-based LFJ type system, it produces a
LJ program that is also well-formed. We have formalized in
the Coq proof assistant the syntax and semantics of LJ and
LFJ presented in the previous section, as well as all of the
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Once the signature of a product specification PS is gener-

ated according to the rules in Figure 10, we evaluate whether
it is satisfied by PS using the rules in Figure 11. Compo-
sitional constraints on a feature F are satisfied when a fea-
ture with the appropriate introductions precedes F in PS .
Uniqueness constraints are satisfied when no two features in
PS introduce a member with the same name but different
signatures to a class dcl. In LFJ, satisfaction of structural
constraints is evaluated as in LJ, replacing uses of path with
the CT function built by composition of the features in PS .

The compositional and uniqueness constraints guarantee
that each step during the composition of a product specifica-
tion builds an intermediate program. These programs need
not be well-formed: they could rely on definitions which are
introduced in a later feature or have classes used to satisfy
typing constraints which could also be overwritten by a sub-
sequent feature. For this reason, our typing rules only con-
sider the final product specification, making no guarantees

about the behavior of intermediate programs.

4.1 Soundness of the LFJ Type System
The soundness proof is based on successive refinements

of the type systems of LJ and LFJ, reducing them to the
proofs of progress and preservation of the original LJ type
system given in [11]. We first use our constraint-based type
system for LJ, utilizing the structural constraints listed in
Figure 7 and the corresponding judgements in Figure 11 to
check constraint satisfaction. This type system is shown
to be equivalent to the original LJ type system, in that a
program with unique class names and an acyclic class hier-
archy satisfies its signature if and only if it is well-formed
according to the original typing rules. We then show that
if a single LFJ product specification is well-formed accord-
ing to the constraint-based LFJ type system, it produces a
LJ program that is also well-formed. We have formalized in
the Coq proof assistant the syntax and semantics of LJ and
LFJ presented in the previous section, as well as all of the
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ated according to the rules in Figure 10, we evaluate whether
it is satisfied by PS using the rules in Figure 11. Compo-
sitional constraints on a feature F are satisfied when a fea-
ture with the appropriate introductions precedes F in PS .
Uniqueness constraints are satisfied when no two features in
PS introduce a member with the same name but different
signatures to a class dcl. In LFJ, satisfaction of structural
constraints is evaluated as in LJ, replacing uses of path with
the CT function built by composition of the features in PS .

The compositional and uniqueness constraints guarantee
that each step during the composition of a product specifica-
tion builds an intermediate program. These programs need
not be well-formed: they could rely on definitions which are
introduced in a later feature or have classes used to satisfy
typing constraints which could also be overwritten by a sub-
sequent feature. For this reason, our typing rules only con-
sider the final product specification, making no guarantees

about the behavior of intermediate programs.

4.1 Soundness of the LFJ Type System
The soundness proof is based on successive refinements

of the type systems of LJ and LFJ, reducing them to the
proofs of progress and preservation of the original LJ type
system given in [11]. We first use our constraint-based type
system for LJ, utilizing the structural constraints listed in
Figure 7 and the corresponding judgements in Figure 11 to
check constraint satisfaction. This type system is shown
to be equivalent to the original LJ type system, in that a
program with unique class names and an acyclic class hier-
archy satisfies its signature if and only if it is well-formed
according to the original typing rules. We then show that
if a single LFJ product specification is well-formed accord-
ing to the constraint-based LFJ type system, it produces a
LJ program that is also well-formed. We have formalized in
the Coq proof assistant the syntax and semantics of LJ and
LFJ presented in the previous section, as well as all of the
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is the union of the constraints on each of the features in PS .
Once the signature of a product specification PS is gener-

ated according to the rules in Figure 10, we evaluate whether
it is satisfied by PS using the rules in Figure 11. Compo-
sitional constraints on a feature F are satisfied when a fea-
ture with the appropriate introductions precedes F in PS .
Uniqueness constraints are satisfied when no two features in
PS introduce a member with the same name but different
signatures to a class dcl. In LFJ, satisfaction of structural
constraints is evaluated as in LJ, replacing uses of path with
the CT function built by composition of the features in PS .

The compositional and uniqueness constraints guarantee
that each step during the composition of a product specifica-
tion builds an intermediate program. These programs need
not be well-formed: they could rely on definitions which are
introduced in a later feature or have classes used to satisfy
typing constraints which could also be overwritten by a sub-
sequent feature. For this reason, our typing rules only con-
sider the final product specification, making no guarantees

about the behavior of intermediate programs.

4.1 Soundness of the LFJ Type System
The soundness proof is based on successive refinements

of the type systems of LJ and LFJ, reducing them to the
proofs of progress and preservation of the original LJ type
system given in [11]. We first use our constraint-based type
system for LJ, utilizing the structural constraints listed in
Figure 7 and the corresponding judgements in Figure 11 to
check constraint satisfaction. This type system is shown
to be equivalent to the original LJ type system, in that a
program with unique class names and an acyclic class hier-
archy satisfies its signature if and only if it is well-formed
according to the original typing rules. We then show that
if a single LFJ product specification is well-formed accord-
ing to the constraint-based LFJ type system, it produces a
LJ program that is also well-formed. We have formalized in
the Coq proof assistant the syntax and semantics of LJ and
LFJ presented in the previous section, as well as all of the
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ture with the appropriate introductions precedes F in PS .
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PS introduce a member with the same name but different
signatures to a class dcl. In LFJ, satisfaction of structural
constraints is evaluated as in LJ, replacing uses of path with
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introduced in a later feature or have classes used to satisfy
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proofs of progress and preservation of the original LJ type
system given in [11]. We first use our constraint-based type
system for LJ, utilizing the structural constraints listed in
Figure 7 and the corresponding judgements in Figure 11 to
check constraint satisfaction. This type system is shown
to be equivalent to the original LJ type system, in that a
program with unique class names and an acyclic class hier-
archy satisfies its signature if and only if it is well-formed
according to the original typing rules. We then show that
if a single LFJ product specification is well-formed accord-
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it is satisfied by PS using the rules in Figure 11. Compo-
sitional constraints on a feature F are satisfied when a fea-
ture with the appropriate introductions precedes F in PS .
Uniqueness constraints are satisfied when no two features in
PS introduce a member with the same name but different
signatures to a class dcl. In LFJ, satisfaction of structural
constraints is evaluated as in LJ, replacing uses of path with
the CT function built by composition of the features in PS .

The compositional and uniqueness constraints guarantee
that each step during the composition of a product specifica-
tion builds an intermediate program. These programs need
not be well-formed: they could rely on definitions which are
introduced in a later feature or have classes used to satisfy
typing constraints which could also be overwritten by a sub-
sequent feature. For this reason, our typing rules only con-
sider the final product specification, making no guarantees

about the behavior of intermediate programs.

4.1 Soundness of the LFJ Type System
The soundness proof is based on successive refinements

of the type systems of LJ and LFJ, reducing them to the
proofs of progress and preservation of the original LJ type
system given in [11]. We first use our constraint-based type
system for LJ, utilizing the structural constraints listed in
Figure 7 and the corresponding judgements in Figure 11 to
check constraint satisfaction. This type system is shown
to be equivalent to the original LJ type system, in that a
program with unique class names and an acyclic class hier-
archy satisfies its signature if and only if it is well-formed
according to the original typing rules. We then show that
if a single LFJ product specification is well-formed accord-
ing to the constraint-based LFJ type system, it produces a
LJ program that is also well-formed. We have formalized in
the Coq proof assistant the syntax and semantics of LJ and
LFJ presented in the previous section, as well as all of the
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ated according to the rules in Figure 10, we evaluate whether
it is satisfied by PS using the rules in Figure 11. Compo-
sitional constraints on a feature F are satisfied when a fea-
ture with the appropriate introductions precedes F in PS .
Uniqueness constraints are satisfied when no two features in
PS introduce a member with the same name but different
signatures to a class dcl. In LFJ, satisfaction of structural
constraints is evaluated as in LJ, replacing uses of path with
the CT function built by composition of the features in PS .

The compositional and uniqueness constraints guarantee
that each step during the composition of a product specifica-
tion builds an intermediate program. These programs need
not be well-formed: they could rely on definitions which are
introduced in a later feature or have classes used to satisfy
typing constraints which could also be overwritten by a sub-
sequent feature. For this reason, our typing rules only con-
sider the final product specification, making no guarantees

about the behavior of intermediate programs.

4.1 Soundness of the LFJ Type System
The soundness proof is based on successive refinements

of the type systems of LJ and LFJ, reducing them to the
proofs of progress and preservation of the original LJ type
system given in [11]. We first use our constraint-based type
system for LJ, utilizing the structural constraints listed in
Figure 7 and the corresponding judgements in Figure 11 to
check constraint satisfaction. This type system is shown
to be equivalent to the original LJ type system, in that a
program with unique class names and an acyclic class hier-
archy satisfies its signature if and only if it is well-formed
according to the original typing rules. We then show that
if a single LFJ product specification is well-formed accord-
ing to the constraint-based LFJ type system, it produces a
LJ program that is also well-formed. We have formalized in
the Coq proof assistant the syntax and semantics of LJ and
LFJ presented in the previous section, as well as all of the
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Once the signature of a product specification PS is gener-

ated according to the rules in Figure 10, we evaluate whether
it is satisfied by PS using the rules in Figure 11. Compo-
sitional constraints on a feature F are satisfied when a fea-
ture with the appropriate introductions precedes F in PS .
Uniqueness constraints are satisfied when no two features in
PS introduce a member with the same name but different
signatures to a class dcl. In LFJ, satisfaction of structural
constraints is evaluated as in LJ, replacing uses of path with
the CT function built by composition of the features in PS .

The compositional and uniqueness constraints guarantee
that each step during the composition of a product specifica-
tion builds an intermediate program. These programs need
not be well-formed: they could rely on definitions which are
introduced in a later feature or have classes used to satisfy
typing constraints which could also be overwritten by a sub-
sequent feature. For this reason, our typing rules only con-
sider the final product specification, making no guarantees

about the behavior of intermediate programs.

4.1 Soundness of the LFJ Type System
The soundness proof is based on successive refinements

of the type systems of LJ and LFJ, reducing them to the
proofs of progress and preservation of the original LJ type
system given in [11]. We first use our constraint-based type
system for LJ, utilizing the structural constraints listed in
Figure 7 and the corresponding judgements in Figure 11 to
check constraint satisfaction. This type system is shown
to be equivalent to the original LJ type system, in that a
program with unique class names and an acyclic class hier-
archy satisfies its signature if and only if it is well-formed
according to the original typing rules. We then show that
if a single LFJ product specification is well-formed accord-
ing to the constraint-based LFJ type system, it produces a
LJ program that is also well-formed. We have formalized in
the Coq proof assistant the syntax and semantics of LJ and
LFJ presented in the previous section, as well as all of the
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it is satisfied by PS using the rules in Figure 11. Compo-
sitional constraints on a feature F are satisfied when a fea-
ture with the appropriate introductions precedes F in PS .
Uniqueness constraints are satisfied when no two features in
PS introduce a member with the same name but different
signatures to a class dcl. In LFJ, satisfaction of structural
constraints is evaluated as in LJ, replacing uses of path with
the CT function built by composition of the features in PS .

The compositional and uniqueness constraints guarantee
that each step during the composition of a product specifica-
tion builds an intermediate program. These programs need
not be well-formed: they could rely on definitions which are
introduced in a later feature or have classes used to satisfy
typing constraints which could also be overwritten by a sub-
sequent feature. For this reason, our typing rules only con-
sider the final product specification, making no guarantees
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4.1 Soundness of the LFJ Type System
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of the type systems of LJ and LFJ, reducing them to the
proofs of progress and preservation of the original LJ type
system given in [11]. We first use our constraint-based type
system for LJ, utilizing the structural constraints listed in
Figure 7 and the corresponding judgements in Figure 11 to
check constraint satisfaction. This type system is shown
to be equivalent to the original LJ type system, in that a
program with unique class names and an acyclic class hier-
archy satisfies its signature if and only if it is well-formed
according to the original typing rules. We then show that
if a single LFJ product specification is well-formed accord-
ing to the constraint-based LFJ type system, it produces a
LJ program that is also well-formed. We have formalized in
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Uniqueness constraints are satisfied when no two features in
PS introduce a member with the same name but different
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constraints is evaluated as in LJ, replacing uses of path with
the CT function built by composition of the features in PS .
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not be well-formed: they could rely on definitions which are
introduced in a later feature or have classes used to satisfy
typing constraints which could also be overwritten by a sub-
sequent feature. For this reason, our typing rules only con-
sider the final product specification, making no guarantees
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The soundness proof is based on successive refinements

of the type systems of LJ and LFJ, reducing them to the
proofs of progress and preservation of the original LJ type
system given in [11]. We first use our constraint-based type
system for LJ, utilizing the structural constraints listed in
Figure 7 and the corresponding judgements in Figure 11 to
check constraint satisfaction. This type system is shown
to be equivalent to the original LJ type system, in that a
program with unique class names and an acyclic class hier-
archy satisfies its signature if and only if it is well-formed
according to the original typing rules. We then show that
if a single LFJ product specification is well-formed accord-
ing to the constraint-based LFJ type system, it produces a
LJ program that is also well-formed. We have formalized in
the Coq proof assistant the syntax and semantics of LJ and
LFJ presented in the previous section, as well as all of the
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• External premises become constraints

• Compositional Constraints
• Uniqueness Constraints
• Structural Constraints
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Constraint-Based Typing

• Two typing phases
• Typing Feature Tables

⊢ FDk | WFk

⊢{FDk } | ⋃k{InFDk⇒WFk} 
• Well-typed product specification

PS ⊨ ⋃k{InFDk⇒WFk}

k

• Feature Constraint
• Compositional Constraints
• Uniqueness Constraints
• Structural Constraints



Soundness of LFJ Type System
Theorem:

⊢{FDk } | ⋃k{InFDk⇒WFk} 
PS ⊨ ⋃k{InFDk⇒WFk}

⊢FJ compose(PS)

• Space of products

• First premise describes subset of type-safe products
• Second ensures product in this space
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• Feature Models describe desired product space 
• Should be contained in type-safe space

• Recall Feature Models are propositional formulas
• Describe type-safe space in propositional logic, WFSafe

• Reduction from typing constraints
• Reduce to SAT:

FM ⇒ WFSafe 
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Evaluation

Product Line  # of Features  # of Programs  Code Base 
Jak/Java LOC

 Program Jak/
Java LOC

Typechecking 
Time

JPL 70 56  34K/48K  22K/35K <30s

• Checking validity coNP-complete in general
• Our formulas are highly structured

• Previous implementation of approach [Thaker07]
• Identified errors in existing product lines

• Evidence of erroneous product



Conclusion
• Feature-based Software Product Lines
• Safe Composition
• Lightweight Feature Java

• Verified in Coq proof assistant
• Constraints describe program space

• Validating Feature Models
• Reduce to SAT
• Efficient evaluation



Questions?


