
1

Modular Verification of Strongly 
Invasive Aspects

Authors:
Emilia Katz, Shmuel Katz 
{emika,katz}@cs.technion.ac.il

The Technion



2

Modular verification of aspects -
Motivation

• Enables reuse without proof:
– An aspect that is proven to be “correct” can be woven 

into any “suitable” base system, without additional 
checks

– If several “correct” aspects have the same requirements 
from the base system, and it satisfies these requirements, 
each of the aspects can be applied to it without further 
checks (one at a time)

• Leads to smaller models
=> Model-checking is enhanced, and sometimes even made 

possible



3

The Setting: Aspect Representation
• Advice = state machine

– Abstract representation as state-transition system
– Obtained during the modeling stage, or built from code 

(e.g., by tools like Bandera)
• Pointcut = state predicate about the base system

– assume that the system has been preprocessed and the 
join-points states have already been marked

• Weaving (abstract version):
– Every join-point in the base is connected to the 

corresponding initial states of the advice (instead of its 
former next states)

– Every last state of the advice is connected to all the 
corresponding states in the base system model



4

Strongly Invasive Aspects

• All the aspects can be divided into categories, according to 
their influence on the base system:
– spectative, regulative, weakly invasive and strongly invasive
– each category is contained in all the following ones

• Modular verification exists for weakly invasive aspects.
– Aspects that can only gather information, or change paths in the  

reachable part of S 
• We propose a modular verification technique that works for 

strongly invasive aspects as well
• What are strongly invasive aspects?

– Aspects allowed to perform arbitrary modifications to the base 
system computations

– Can  reach previously unreachable parts of  S  and thus violate state 
invariants of the base system



5

Strongly Invasive Aspects - Intuition

Aspect 
A

Base System S Reachable part

Unreachable part



6

Strongly Invasive Aspect - Example

Aspect B (for “Bonus”):
• To be used in grades-managing systems
• Provides a way of giving bonus points for 

assignments / exams, including grades above 
100

• Still keeps the final grade in 0..100 range



7

Example – contd.

B’s behavior - two kinds of actions:
1. Pointcut: Assignment or exam grade is entered

Advice: - offer a possibility of giving a bonus 
- store the new grade successfully even 

if it exceeds 100
2. Pointcut: Final grade calculation of the base 

system is performed
Advice: if the calculation resulted in a grade that 

exceeds 100, the aspect replaces this grade by 100
(otherwise keeping the grade unchanged)



8

Why is B Strongly Invasive?

B

all grades  
≤ 100 some 

grades 
> 100

Reachable part

Unreachable part

storing grades 
after bonus is 

added …



9

Why is B Interesting?

• After weaving, the calculations are performed partly in 
the aspect, and partly in the base system code, but using 
new, previously impossible, inputs

• Highly reusable: doesn’t restrict the grade calculation 
process of the base system, as long as it can handle 
values>100

• Can appear in a library of aspects providing different 
grading policies. Then:
– All these aspects will have the same assumptions as B, so
– Enough to check a given base system for applicability of one 

of the aspects from this library, and applicability of all the 
others will follow

– The grading policy can be changed as needed at any time, by 
replacing the applied aspect, without any further checks on 
the base system



10

Refined Aspect Specification

Specification of an aspect A is (PA, UA, RA)
A assumes:
PA holds in the base system:

– what’s true at joinpoints
– global properties of base system
– properties of aspect parameters

UA holds in the unreachable part of the base system:
– what’s true for computations starting from all A’s resumption states 

that were unreachable in the base system
A guarantees: RA is true in the woven system

– new properties added by A
– properties of base system maintained in woven system

What is a “correct” aspect?

LTL formulas

in any reasonable
base system for A

in any woven 
system with A

possibly global!

… because model-
checking is used in 

proof method
automatization …



11

Refined Aspect Specification – contd.

A

PA: assumption on reachable 
UA: assumption on unreachable 
RA: guarantee on woven

UA

PA UA

S: Reachable part S: Unreachable part



12

Example – Aspect B specification
PB (B’s assumption on the reachable part):
1. All the grades appearing in the grading system are in 0..100 -

homeworks (hw_i), exams (exam_j), final (f)
2. After the final grade is ready (f_ready) (i.e., all the assignments and 

exams that comprise the grade have been checked, and the final grade has been calculated 
from them according to the base system grading policy), the final grade is 
published (f_published). 

3. calc represents the “ideal” result of the final grade 
calculation, according to the base system grading policy

PB = [ G(f_ready → ((f = calc) ∧ F f_published))
G(f_published → f = calc) ∧

G(0 ≤ f ≤ 100) ∧
G(∀1 ≤ i ≤ 10 (0 ≤ hw_i ≤ 100)) ∧
G(∀1 ≤ j ≤ 2 (0 ≤ exam_j ≤ 100))]

(1)

(3)
(2)



13

Aspect B specification – contd.

UB (B’s assumption on the unreachable part):
• A weakening of PB

• All the grades in the system are now in 0..120

UB = [ G(f_ready → ((f = calc) ∧ F f_published))
G(f_published → f = calc) ∧

G(0 ≤ f ≤ 120) ∧
G(∀1 ≤ i ≤ 10 (0 ≤ hw_i ≤ 120)) ∧
G(∀1 ≤ j ≤ 2 (0 ≤ exam_j ≤ 120))]

100 changed 
to 120

same as 
in PB



14

Aspect B specification – contd.

RB (B’s guarantee):
• Regardless of the existence of bonuses on the 

components of the final grade, the final grade will 
be the correct one, calculated according to the base 
system grading policy, but rounded down to 100 if 
needed

• RB might also include a statement about the bonus 
policy it enforces, saying that the aspect calculates 
the bonuses as desired …

RB = [G(f_published → f = min(calc, 100))]



15

Modular Verification as a Whole

• Verify that the aspect is “correct” w. r. t. its 
assume-guarantee specification

• Before weaving into a concrete base system, 
check that the base system satisfies all the 
assumptions of the aspect



16

Weakly Invasive Aspect Verification

Given a weakly invasive aspect A with the 
specification (PA, RA),

• Use MAVEN tool to automatically verify that 
whenever A is woven into a base system 
satisfying PA, the resulting system satisfies RA

• To weave A into a given base system, S: use 
model-checker (e.g., NuSMV) to verify that all 
the computations of S satisfy PA

prior 
work



17

Strategy – MAVEN tool

• Build a “generic” state machine version (TP )
of assumption PA (called “tableau”)

• Weave the aspect (A) into this model
• Prove that this augmented generic model 

(TP+A) satisfies the desired result, RA

TψTP Tψ

representation 
of all the 
possible 
systems 

satisfying PAby running NuSMV 
model-checker

prior 
work



18

General Aspect Verification – Part 1
(Verifying the Aspect)

A PA, UA RA

Compute the set of 
all the possible last 
states of A as a state 

predicate, LA

Construct T, a generic 
representation of 

“good” base systems, 
using PA, LA and UA

Weave A into T (use 
MAVEN)

NuSMV

result

1 2

3

4



19

General Aspect Verification – Part 1.1
(Computing LA)

A

φ = 
pointcut1 ∨
pointcut2 ∨ 

…

MAVEN:
1. Construct Tφ

2. Weave A into Tφ

NuSMV : compute 
reachable states

Last = R ∩ Return(A)

Tφ + A

R

LA = state 
predicate 

representation 
of Last

= all A’s 
join-points

run MAVEN on A 
with φ instead of PA

= all A’s return 
states

= representation 
of all the possible 
computations of A



20

General Aspect Verification – Part 1.1
(Computing LA) – contd.

• Sometimes it is easy to see a compact description 
of all the possible last states of A
– We want to be able to use user-specified predicate LA in 

the aspect verification algorithm
– Need to check the predicates provided

• Checking a user – specified predicate L:
– Construct the predicate LA by our algorithm
– Verify that (LA → L) always holds (using a SAT solver)
– If it does, using L instead of LA is sound



21

General Aspect Verification – Part 1.2
(Constructing T)

• T should represent all the “good” base systems
• What is a “good” system? 

– The reachable part of S satisfies PA
– The unreachable part of S satisfies (LA → UA)

• What kind of systems do we know how to represent?
– All the systems the reachable part of which satisfies some given 

LTL formula, φ
– Can do it automatically, using ltl2smv module of NuSMV

• The idea: 
– “pretend” the interesting part of the unreachable states is reachable
– construct the representation of such systems
– correct it to restore the original reachability



22

General Aspect Verification – Part 1.2
(Constructing T) – contd.

TPA∨(LA∧UA)

sat. PA
sat. LA
sat. PA and LA

init. state

~



23

General Aspect Verification – Part 2
(Checking the Base System)

SUA PA

Create the model of 
the newly-reachable 

part of S, SNR

NuSMV

NuSMV

12

3
4both OK?

✔✘

yesno

checking that 
reachable part 

sat. PA

checking that 
unreachable part 
sat. (LA → UA)

LA



24

General Aspect Verification – Part 2.2
(Constructing SNR from the base system)

S UA

SNR = S with 
init. states  

replaced by 
SU ∧LA

NuSMV

checking that 
unreachable part 
sat. (LA → UA)

LA

NuSMV : compute 
reachable states

SU = ¬ SR

SR

= all the 
unreachable 
states of S

result

SNR



25

Optimizations
Two places for optimization:
• When the verified aspect is proven to be weakly 

invasive, a simpler verification method can be used
– Thus we’d like to be able to check whether a given aspect 

is weakly invasive

• When base system verification is performed, the 
requirement on the unreachable part can sometimes 
be relaxed due to the structure of UA
– Then the proof is easier for the model-checker



26

Determining Aspect Category – 1
S

SAT Solver: 
check 

satisfiability 
of SU ∧LA

= no last states of the 
aspect in the 

unreachable part of S

LA

NuSMV : compute 
reachable states

SU = ¬ SR

SR

= all the 
unreachable 
states of S don’t 

know
weakly 

inv.

sat. unsat.

one way…



27

Determining Aspect Category – 2: 
1.1. Pruned Tableau

TP
…

…
… …

TP = pruned 
version of T

can be 
constructed 

automatically 
using 

NuSMV

another way…



29

Determining Aspect Category – 2: 
1.3. Is A Strongly Invasive w.r.t. PA?

TPA
…

…
… …

TPA = pruned 
version of TP

A is strongly invasive 
w.r.t. PA iff there exists a 

deadlock in TPA+A

A is woven 
in (using 
MAVEN)

Can be checked 
automatically 
using NuSMV



31

Optimizing Base System Verification

• If UA is a safety property (UA = Gφ):
– Enough to check φ only in segments between a 

resumption state of A and the next join-point or 
reachable state

– Verify LA→(φ U (reachable ∨ (pointcut ∧ φ))) 
instead of (LA→Gφ)

…φ φφ φ
LA

pointcut
A …

…

…φ φφ
LA

reachable 
part

…



33

Summary
• Specification for strongly invasive aspects
• Modular verification method treating 

aspects of all the categories
• Advantage of modular verification method 

- possibility of reuse without proof:
– Many base systems satisfying the same 

assumptions (=> can apply same aspect to many 
base systems)

– Many aspects have the same assumptions 
(=> can apply each of the aspects to the same base)



Thank you!


	Modular Verification of Strongly Invasive Aspects
	Modular verification of aspects -  Motivation
	The Setting: Aspect Representation
	Strongly Invasive Aspects
	Strongly Invasive Aspects - Intuition
	Strongly Invasive Aspect - Example
	Example – contd.
	Why is B Strongly Invasive?
	Why is B Interesting?
	Refined Aspect Specification
	Refined Aspect Specification – contd.
	Example – Aspect B specification
	Aspect B specification – contd.
	Aspect B specification – contd.
	Modular Verification as a Whole
	Weakly Invasive Aspect Verification
	Strategy – MAVEN tool
	General Aspect Verification – Part 1�(Verifying the Aspect)
	General Aspect Verification – Part 1.1�(Computing LA)
	General Aspect Verification – Part 1.1�(Computing LA) – contd.
	General Aspect Verification – Part 1.2�(Constructing T)
	General Aspect Verification – Part 1.2�(Constructing T) – contd.
	General Aspect Verification – Part 2�(Checking the Base System)
	General Aspect Verification – Part 2.2�(Constructing SNR from the base system)
	Optimizations
	Determining Aspect Category – 1
	Determining Aspect Category – 2: 1.1. Pruned Tableau
	Determining Aspect Category – 2: 1.3. Is A Strongly Invasive w.r.t. PA?
	Optimizing Base System Verification
	Summary
	Thank you!

