
A Smooth Combination of Role-based
Languages and Context Activation
Tetsuo Kamina and Tetsuo Tamai
University of Tokyo
{kamina,tamai}@acm.org

mailto:kamina@acm.org
mailto:kamina@acm.org

Purpose

• Language constructs for context-awareness
• Primary concept for many applications
• Adaptive UI based on user’s profile
• Location-aware information services

• Important for recent application areas

• Explicit treatment for context-specific behaviors
• modularization of context-specific behaviors
• composition/decomposition of context-specific behaviors

• Simple theoretical framework for “context-awareness” in languages

Role-based languages

• EpsilonJ: An adaptive role model based language (Tamai, 2005)
• Context is modeled as a collaboration field between roles
• Context can be instantiated
• Context instance can be dynamically composed with class instance

context Company {
 role Employer {
 void pay() {
 Employer.getPaid();}
 }
 role Employee {
 void getPaid() { ... }
 }
}

tanaka

Company todai = new Company();
Person tanaka = new Person();
todai.Employer.newBind(tanaka);
((todai.Employer)tanaka).pay();

(Instance of
todai.Employer)

(Instance of
todai.Employee)

todai Employer

Employee

Context activation by downcast
• No control of scoping
• Not type-safe

Context-oriented programming

• Representative work: ContextJ, ContextL, ContextS (Hirschfeld et al.,
2005, 2007, 2008)
• Layers
• Modularization concept orthogonal to classes
• Contain partial method definitions
• Can be activated/deactivated dynamically at run-time

• Scope of context activation is explicitly controlled

• COP focuses on behavioral variations of the same method
• Composition of unrelated behaviors is not considered in ContextJ

• Context-dependent behavior is class based

Person tanaka = new Person();
with (Company) {
 System.out.println(tanaka); // printing the Company specific info.
}

Our proposal: NextEJ

• Extension of EpsilonJ with the features of COP (Kamina, 09)
• Taking both advantages of EpsilonJ and COP

• Formalization

An example

• Featuring two contexts: building and shop
• building has roles
• guest
• administrator
• security agent
• owner

• shop has roles
• customer
• shopkeeper

• Interactions among roles
• A security agent notifies all the guests in the case of emergency
• A shopkeeper sells the customer an item

• Shops may be inside a building

Context and role declarations

• A context is a set of roles
• Contexts and roles can be
instantiated
• A role instance depends on its
enclosing context instance
• Multiple role instances with the
same context instance

class Building {
 role Guest {
 void escape() { ... }
 }
 role Security {
 void notify() { Guest.escape(); }
 }
}

Instance of
Building

Guest

Security

Instane of Guest

Instane of Security

escape()

escape()

escape()

The same structure with EpsilonJ

Object adaptation and context activation

• Role instance is created in the bind
sentence and composed with
corresponding class instance
• Type of each class instance is
changed to the mixin composition
• Roles can be deactivated and
activated again

Building midtown = new Building();
Person tanaka = new Person();
Person suzuki = new Person();
Person sato = new Person();
bind tanaka with midtown.Guest(),
 suzuki with midtown.Guest(),
 sato with midtown.Security() {
 ...
 sato.notify();
}

midtown
Guest

Security

tanaka

suzuki

sato

escape()

escape()

Can be activated again

Multiple context activation

• bind can be nested
• tanaka, a guest of midtown is
also a customer of starbucks

Building midtown = new Building();
Person tanaka = new Person();
Person sato = new Person();
bind tanaka with midtown.Guest(),
 sato with midtown.Guest() {
 ...
 Shop starbucks = new Shop();
 bind tanaka with starbucks.Customer(),
 sato with starbucks.Shopkeeper() {
 tanaka.buy(caffeMocha);
 }
}

midtown
Guest

Security

tanaka

sato

starbucks
Customer

Seller

Swapping roles

• Context is deactivated outside the bind sentences

• Decomposition of deactivated context is allowed in NextEJ
• Another object can assume the decomposed role of context

Person sato = new Person();
bind sato with midtown.Employee from tanaka {
 ...
}

role discarded by tanaka
and taken over by sato

Required interface

• Requiring the binding object to provide the implementation

• name() is imported to Guest
• The imported method may be overridden
• Structural subtyping between role and class

context Building {

}

role Guest requires {String name();} {
 void foo() { ... name(); ... }
 ... }

String name();

FEJ: the core calculus

• Purely functional core of NextEJ based on FJ (Igarashi, 2001)
• FJ + dynamic composition and activation of contexts

• An object is followed by a sequence of role instances:

• Run-time expression language

new C(e)⊕r

Syntax

• Named types

• Interface types

• Class and role declarations

• Expressions

T ::= C.R | C.R::C

Ts ::= T | { Mi } Mi = T m(T x);

L ::= class C { T f; M A }
A ::= role R requires { Mi } { T f; M }

e ::= x | e.f | e.m(e) | new C(e)⊕r | bind x with r from y { xy.e0 }

Subtyping

• Reflexive and transitive closure induced by mixin composition

• Structural subtyping b/w class and interface

Ts <: Ts S <: T T <: U
S <: U

T m(T x); ∈ Mi ⇒ mtype(m, C) = T → T
C <: { Mi }

C.R::T <: T
C.R::T <: C.R

Dynamic semantics (method invocation)

• Method invocation reduces the body of method declaration
• The method is not found in roles:
• Substituting formal parameters and this

• The method is found in roles:
• Substituting formal parameters, this, and super

v = new C(v’)⊕r mbody(m, r) is undefined
mbody(m, new C(v’)) = x.e

v.m(v) → [v/x, new C(v’)/this]e

v = new C(v’)⊕r r = r1,w.R(e), r2

mbody(m, new C(v’)) = x.e,w.R(e) cp(v) = new C(v’)⊕r2

v.m(v) → [v/x, new C(v’)/this, cp(v)/super]e

Dynamic semantics (bind expression)

• Bind expression reduces its body
• Substituting free variables with values appearing in bind and from
• Role instances appearing in with are composed with values from
bind and decomposed with values from from

bind v with r from w { xy.e } → [(v⊕r)/x,(w-r)/y]e

Expression typing

• Field access and method invocation are the same as those of FJ

• Typing rule for new checks that all the role instances are wellformed

Γ ├ x:Γ(x) Γ ├ e0:S ftype(f, S) = T
Γ ├ e0.f:T

Γ ├ e0:S Γ ├ e:S
mtype(m, Ts) = T → T S <: T

Γ ├ e0.m(e):T

fields(C) = T f Γ ├ e:S S <: T
ri = di.Ri(ci) Γ ├ di:Ui

Ui <: Ci Γ ├ roleOK(Ci, Ri, ci, C)
Γ ├ new C(e)⊕r : C.R::C

Expression typing (bind expression)

• Environment Γ is updated in the first hypothesis
• In environment where variables x from bind are mixin
compositions and variables y from from are mixin decomposition,
the body is well-typed

• All the role instances are well-typed

Γ(x:C.R::Γ(x), y:Γ(y)/C.R) ├ e0:T
ri = di.Ri(ci) Γ ├ x:S

Γ ├ d:U U <: C Γ ├ roleOK(Ci, Ri, ci, Si)
Γ ├ y:V Γ ├ unbindAllowed(Vi, C.R)
Γ ├ bind x with r from y { xy.e0 } : T

Properties

• Subject reduction: If Γ├ e:T and e → e’, then Γ├ e’:S for some S<:T

• Progress: If Γ├ e:T and there exist no e’ such that e → e’, then e is a
value

• Type soundness: If φ├ e:T and e →* e’ with e’ a normal form, then e’
is a value v with φ├ v:S and S <: T

Related work

• ObjectTeams (Hermann, 2003, 2007)
• Supporting context-dependent behavior
• lowering
• lifting

• Grouping of context-dependent behavior
• Binding is class-based denoted by the name of class

• CaesarJ (Mezini, 2002)
• Deploying and undeploying aspects at any time
• CaesarJ: binding is specified in the binding classes
• NextEJ: binding is specified at the time of binding

Conclusion

• NextEJ: a smooth combination of EpsilonJ and COP
• Solving the typing problem of EpsilonJ
• Integrating context activation and composition of (possibly
unrelated) behaviors

• FEJ: the core calculus of NextEJ
• Ensuring type soundness

Thanks!

