A Smooth Combination of Role-based
Languages and Context Activation

Tetsuo Kamina and Tetsuo Tamai
University of Tokyo
{kamina,tamai}@acm.org

mailto:kamina@acm.org
mailto:kamina@acm.org

Purpose

- Language constructs for context-awareness
- Primary concept for many applications
- Adaptive Ul based on user’s profile
. Location-aware information services
- Important for recent application areas

. Explicit treatment for context-specific behaviors
- modularization of context-specific behaviors

. composition/decomposition of context-specific behaviors

. Simple theoretical framework for “context-awareness” in languages

Role-based [anguages

- Epsilond: An adaptive role model based language (Tamai, 2005)
.- Context is modeled as a collaboration field between roles
. Context can be instantiated
- Context instance can be dynamically composed with class instance

(Instance of

4)

context Company { todai.Employer)

role Employer ({ <\ ('
void pay () { - ’/////,,(AJ LtanakaJ
Employer.getPaid() ;}
{:todai Employer

}

role Employee { Employee] (
void getPaid() { ... L
(InsStance of

\} J/ todai.Employee)

Company todai = new Company () ;]]
?Z’rson tanaka = new Person () ; Context activation by downcast

todai.Employer.newBind (tanaka) ; -
((todai.Employer) tanaka) .pay() ; No control of Scoping
. Not type-safe

Context-oriented programming

.- Representative work: ContextJ, ContextL, ContextS (Hirschfeld et al.,
2005, 2007, 2008)
. Layers
- Modularization concept orthogonal to classes
. Contain partial method definitions
.- Can be activated/deactivated dynamically at run-time
. Scope of context activation is explicitly controlled

Person tanaka = new Person() ;
with (Company) {
System.out.println(tanaka); // printing the Company specific info.

}

. COP focuses on behavioral variations of the same method
. Composition of unrelated behaviors is not considered in ContextJ
. Context-dependent behavior is class based

Our proposal: NextEJ

. Extension of Epsilond with the features of COP (Kamina, 09)
- Taking both advantages of Epsilond and COP

- Formalization

An example

. Featuring two contexts: building and shop
- building has roles
- guest
- administrator
. security agent
. owner
- shop has roles
- customer
- shopkeeper
- Interactions among roles
. A security agent notifies all the guests in the case of emergency
- A shopkeeper sells the customer an item
- Shops may be inside a building

Context and role declarations

The same structure with EpsilonJ . A context is a set of roles

class Building ({ . Contexts and roles can be
role Guest { . .
void escape() { ... Instantiated
} . .
role Security - A role instance depends on its
void notify() { Guest-escape(@ b enclosing context instance
} . . .
} - Multiple role instances with the

same context instance

escape ()

Instance of Instane of Guest

Building

Security

J

Instane of Security

Object adaptation and context activation

. Role instance Is created Iin the bind

Building midtown = new Building() ; .
Person tanaka = new Person () sentence and composed with

Person suzukl = new Person(); corresponding class instance
Person sato = new Person() ; _ _
bind tanaka with midtown.Guest(), |- Iype of each class instance is
suzuki with midtown.Guest(), h d to th .. L
sato with midtown.Security () { C ange O € MiXin COmpOSItIOﬂ
_ - Roles can be deactivated and
sato.notify() ;

} activated again

)

Security

J

Multiple context activation

Building midtown = new Building() ;
Person tanaka = new Person() ;

. bind can be nested
Person sato = new Person() ;

bind tanaka with midtown.Guest (), . tanaka, a guest of midtown IS
sato with midtown.Guest () {

also a customer of starbucks
Shop starbucks = new Shop() ;
bind tanaka with starbucks.Customer (),

sato with starbucks.Shopkeeper () {
tanaka.buy (caffeMocha) ;

)

C

Security

Seller
N O (e
sato

starbucks

Swapping roles

. Context is deactivated outside the bind sentences

- Decomposition of deactivated context is allowed in NextEJ
- Another object can assume the decomposed role of context

Person sato = new Person(); - role discarded by tanaka
bind sato with midtown.Employee)'ftKnaka{ and taken over by sato

}

Required interface

.- Requiring the binding object to provide the implementation

-

context Building {)
role Guest requires {String name () ;} {
void foo() { ... name(); ... }

-}

. name () IS imported 10 Guest

. The imported method may be overridden
- Structural subtyping between role and class

-

String name () ;

_

~N

J

FEJ: the core calculus

- Purely functional core of NextEJ based on FJ (Igarashi, 2001)
- FJ + dynamic composition and activation of contexts

- An object is followed by a sequence of role instances:
new C(e)®r

- Run-time expression language

Syntax

- Named types
T:=C.R|CR:C

- Interface types
Ts:=T|{Mi} Mi=Tm(T3);

- Class and role declarations
L:i=classC{TE,MA} L
A ::=roleR requires {Mi1} {T1; M}

. EXpressions
e :=x]|e.f|em(e)| new C(e)Pr |bind X withr fromy { Xy.co }

Subtyping

. Reflexive and transitive closure induced by mixin composition

S<:T T<:U CR:T<T

Is <:1s S<:U CR:T<:CR

. Structural subtyping b/w class and interface

Tm(TX); EMi = mtype(m, C)=T > T
C< (M|

Dynamic semantics (method invocation)

- Method invocation reduces the body of method declaration
.- The method is not found In roles:
. Substituting formal parameters and this

v=new C(v')®r mbody(m, r) is undefined
mbody(m, new C(v’)) = x.e
v.n(v) — [v/X, new C(v’)/this]e

. The method is found in roles:
. Substituting formal parameters, this, and super
v=new C(V))®r r=r1,w.R(e),
mbody(m, new C(v’)) = x.e,w.R(e) ¢cp(v) =new C(v’)®r>
v.m(v) — [v/X, new C(Vv’)/this, cp(Vv)/super]e

Dynamic semantics (bind expression)

- Bind expression reduces its body
. Substituting free variables with values appearing in bind and £rom

. Role instances appearing in with are composed with values from
bind and decomposed with values from f£rom

bind VwithT from W {Xy.e } — [(VET)/X,(W-T)/y]e

Expression typing

.- Field access and method invocation are the same as those of FJ
I |—eo:S T |—E:§_ -
mtype(m, Is)=T—->T S<T
I' Feom(e):T

I |— e:S ftype(f,S)=T
I |—eo.f:T

I | xI'(x)

. Typing rule for new checks that all the role instances are wellformed

fields(C)=Tf T |eS S<T
rn=dR(c) T Fd:U

U<:C_ T FroleOK(C;, R;, T, C)
[| new C(®)@r: C.R::C

Expression typing (bind expression)

- Environment [is updated in the first hypothesis
. In environment where variables X from bind are mixin

compositions and variables y from £rom are mixin decomposition,

the body Is well-typed
- All the role instances are well-typed

IX:CR:I'X), yI(F)/CR) fenT
Ii = di.Ri(E) I |-i§
I Fd: U<C T |—roleOK(Ci, Ri, i, Si)
I' .V T | unbindAllowed(V:, C.R)

[FbindXwithT fromV {Xy.eo } : T

Properties

. Subject reduction: If T -eT and e — ¢e’,then I |-¢e":S for some S<T

- Progress: If T |- eT and there exist no €’ such that e — €’, then e is a
value

. Type soundness: If ¢ |- eT and e —=* e’ with e’ a normal form, then ¢’
isavaluevwith ¢ Fv:SandS< T

Related work

. ObjectTeams (Hermann, 2003, 2007)
- Supporting context-dependent behavior
- lowering
- lifting
. Grouping of context-dependent behavior
- Binding Is class-based denoted by the name of class
. Caesard (Mezini, 2002)
- Deploying and undeploying aspects at any time
. CaesarJd: binding is specified in the binding classes
- NextEJ: binding is specified at the time of binding

Conclusion

- NextEJ: a smooth combination of Epsilond and COP
. Solving the typing problem of EpsilonJ
- Integrating context activation and composition of (possibly
unrelated) behaviors

- FEJ: the core calculus of NextEJ
- Ensuring type soundness

Thanks!

