Towards An Open Trace-based Mechanism position paper

Authors: Paul Leger and Éric Tanter

Department of Computer Science (DCC)
University of Chile

A Trace-based Mechanism.(TM) in a nutshell

A TM observes

the execution of the software and executes a piece of code when this TM matches a specified sequence of events.

The piece of code of TM

Matching à sequence

Trace of execution

Is it a valid match?

It depends because
different TMs have different semantics to define sequences

Strategies for multiple matching

Trace of execution

TM needs to match
a
a

Is there another match?

It depends because
different TMs have different strategies for multiple matching

The life cycle of sequences

Trace of execution

Most TMs cannot control the life cycle of sequences

> Pleiadi s

Current TMs

Tracematch [Allan+@OOPSLA05],

 Alpha [Herzeel+@ILC07], Halo [Ostermann+@ECOOP05], PTQL [Goldsmith+@OOPSLA05],
Specific and non-configurable features

What happens if developers have specific needs?

Is it a solution to "code around"?

Towards an Open TM (OTM)'model

We identified three points of openness in a TM:

- Sequences definition. For example:
- Regular expressions
- Context-free languages
- ...
- The multiple matching strategy. For example:
- To match several sequences at the same time
- To match only one sequence at the same time
-...
- The life cycle of the sequences. For example:
- To remove all sequences if some condition is satisfied (except example)
- To match all sequences if some condition is satisfied

OTM model

Trace of execution

$$
a \quad b
$$

TM needs to match \square

Nondeterminism support

- Some operators to define sequences, like OR, are not deterministic. For example:

$$
[\mathrm{a}-\mathrm{b}] \|[\mathrm{a}<\mathrm{c}]
$$

- If a happens, then two different histories of the matching of the same sequence are generated.

$$
\begin{aligned}
& \text { [b] || [a } \\
& {[\mathrm{a}-\mathrm{b}] \|\lceil\mathrm{c}]}
\end{aligned}
$$

Example: The AnyOrder Operator

The AnyOrder operator matches several sequences in any order.

Trace of execution

TM needs to match

$$
\left.\begin{array}{cc}
{[\mathrm{a}} & \mathrm{b}]
\end{array}\right],[\mathrm{c}-\mathrm{d}],\left[\begin{array}{l}
\mathrm{x}
\end{array}\right]
$$

Towards an Open TM (OTM) model

We identified three points of openness in a TM:

- Sequences definition. For example:
- Regular expressions
- Context-free languages
- ...
- The multiple matching strategy. For example:
- To match several sequences at the same time
- To match only one sequence at the same time
-...
- The life cycle of the sequences. For example:
- To remove all sequences if some condition is satisfied (except example)
- To match all sequences if some condition is satisfied

Extending OTM

- We add a multiplexer entity to define strategies for multiple matching.

Sequence 1
Multiplexer

- We add a sequence controller entity to control the life cycle of the sequences.
Sequence
controller

Sequence 1

Sequence 2

Conclusions

- We explored the points where a TM can be opened:
- Sequences definition
- Multiple matching strategies
- Life cycle of sequences
- Any others?
- We designed an open TM model, taking into account these points

Thank you!

Future work:

- Extend AspectScript[1] to support the OTM model.
[1] AspectScript: Expressive Aspects for the Web. Wednesday, March 17th at 12:30

$$
\text { Pleiad }{ }^{14}
$$

The class diagram of our open TM

1

Multiplexer

Except

\}
Developers can build strategies to control life cycle of sequences

Developers can build strategies for multiple matching.

Multiple
TraceMatch

A Open TM

Trace of Execution

TM needs
to match a b

