
Modular Reasoning about
Aliasing using Permissions

FOAL 2015

John Boyland University of Wisconsin-
Milwaukee

Monday, March 16, 15

Summary

• Permissions are non-duplicable tokens that
give access to state.

• Permissions give “effective” control over
aliasing.

• Permission analysis determines whether
code has access to state it uses.

• We use abstraction over permissions to
have a uniform picture of method behavior.

Monday, March 16, 15

Hidden Structure?

Monday, March 16, 15

Hidden Structure?

Monday, March 16, 15

Abstraction: a Problem

• Consider

interface Runnable {
 public void run();
}

• What does a call do?

r.run();

Monday, March 16, 15

Permission Semantics

• In order to access mutable state, we need a

• WRITE permission to write,

• READ permission to read.

Fractional permissions unify these.

• Permissions cannot be copied, only passed
along with control flow.

• Read perm’s can be split into “smaller” ones.

Monday, March 16, 15

Permission Semantics

• In order to access mutable state, we need a

• WRITE permission to write,

• READ permission to read.

Fractional permissions unify these.

• Permissions cannot be copied, only passed
along with control flow.

• Read perm’s can be split into “smaller” ones.

1

Monday, March 16, 15

Permission Semantics

• In order to access mutable state, we need a

• WRITE permission to write,

• READ permission to read.

Fractional permissions unify these.

• Permissions cannot be copied, only passed
along with control flow.

• Read perm’s can be split into “smaller” ones.

1
<1

Monday, March 16, 15

Permission Idioms (1)

• Single-threaded chaining: pass along all
permissions with control-flow.

Call

Return

Monday, March 16, 15

Permission Idioms (2)

• Framing: withhold some permissions before
calling a method, add after call returns.

Call

Return

Monday, March 16, 15

Permission Idioms (2)

• Framing: withhold some permissions before
calling a method, add after call returns.

Call

Return

write

Monday, March 16, 15

Permission Idioms (2)

• Framing: withhold some permissions before
calling a method, add after call returns.

Call

Return

readread

Monday, March 16, 15

Permission Idioms (2)

• Framing: withhold some permissions before
calling a method, add after call returns.

Call

Return

write
Monday, March 16, 15

Permission Idioms (3)

• Fork: split permissions among threads

Monday, March 16, 15

Permission Idioms (4)

• Transfer: pass permissions through
synchronization points.

release

acquire

Monday, March 16, 15

Permission Packaging

• Capability: pointer packaged with permission
to access its contents.

- effectively unique: aliases cannot be used.

• Self-framed assertion: program property/
invariant packaged with permission to access
state described.

- unframed properties are “ineffective”; they
cannot be checked.

Monday, March 16, 15

Permission Analysis

• Static analysis to determine whether
permissions are always present.

• Sound analysis + program accepted →
permissions can be ignored dynamically.

• Modularity requires description of input/
output permissions of a method call.

Monday, March 16, 15

Permission Analysis

• Static analysis to determine whether
permissions are always present.

• Sound analysis + program accepted →
permissions can be ignored dynamically.

• Modularity requires description of input/
output permissions of a method call.

Annotations

Monday, March 16, 15

Basic Annotations

• Method effects: perm’s passed in and out

- read (e.g. reads this.f, arg.g)

- write

Permissions are returned even upon abrupt
termination.

• Immutable: read perm’s passed one-way

• Unique: write perm’s passed one-way

Monday, March 16, 15

Abstraction (1)

• For modularity, we need annotations.

• For modularity, annotations need abstraction

- we don’t want to list all (private?) fields

• What abstractions are appropriate?

Monday, March 16, 15

Abstraction (1)

• For modularity, we need annotations.

• For modularity, annotations need abstraction

- we don’t want to list all (private?) fields

• What abstractions are appropriate?

Regions / Data Groups

[Greenhouse&Boyland 1999, Leino 1998]

Monday, March 16, 15

Abstraction (2)

• Internal Objects (e.g. Nodes in a TreeMap)

- Option 1: Ownership

- Option 2: Uniqueness

• Concurrency Related

- Transfer through locks / volatiles

- Thread-local objects

Monday, March 16, 15

Two Dimensions

hf g

n
d

n
d

n
d

Monday, March 16, 15

Two Dimensions

hf g

n
d

n
d

n
d

BA

Monday, March 16, 15

Two Dimensions

hf g

n
d

n
d

n
d

BA

Data Groups

Monday, March 16, 15

Two Dimensions

hf g

n
d

n
d

n
d

BA

Island [Hogg 1991]
Balloon [Almeida 1997]

Monday, March 16, 15

Two Dimensions

hf g

n
d

n
d

n
d

BA

Ownership [Clarke & others 1998]
Uniqueness [1000s]

Monday, March 16, 15

Two Dimensions

hf g

n
d

n
d

n
d

BA

Monday, March 16, 15

My Permission System

• (Positive) Fractions (with +, * and /)

• Packaging using existentials; encumberance
with (linear) implications.

• Nesting: X ≺ Y, a generalization of

1. Adoption [Fähndrich & DeLine 2002]

2. (effective) Ownership

3. Data Groups

Monday, March 16, 15

My Permission System

• (Positive) Fractions (with +, * and /)

• Packaging using existentials; encumberance
with (linear) implications.

• Nesting: X ≺ Y, a generalization of

1. Adoption [Fähndrich & DeLine 2002]

2. (effective) Ownership

3. Data Groups

Fact of nesting is
“nonlinear”, that is,

persistent/duplicable

Monday, March 16, 15

Object Invariants

• Self-Framed Assertion P(r), e.g.

• Nesting fact: P(r)≺r.All
1. If you have permission to the state (r.All),

then you can access the invariant, including
permissions to the fields involved. During
access, you temporarily give up r.All

2. If you don’t have permission to the state,
you know nothing.

9n · r.x ! n

Monday, March 16, 15

Object Invariants

• Self-Framed Assertion P(r), e.g.

• Nesting fact: P(r)≺r.All
1. If you have permission to the state (r.All),

then you can access the invariant, including
permissions to the fields involved. During
access, you temporarily give up r.All

2. If you don’t have permission to the state,
you know nothing.

encumber

9n · r.x ! n

Monday, March 16, 15

Case Studies

• Immutable Compounds

• Collections and Iterators

• GUI Event Thread

• Multi-Thread Broadcast

• Thread Communication with volatile

Monday, March 16, 15

Immutable Compounds
class Period {
 final Time start;
 final Duration length;
 public Period(Time t, Duration l) {
 check for errors (null, empty)
 time = t;
 length = l;
 }
 ...
}

• We want everything immutable.

Monday, March 16, 15

Partial Ownership

• Designate a special owner for immutables:

System.Immutable (“I” for short)

• An immutable object x has partial nesting:

• Every method passed a non-zero fraction:

9q · (qx.All) � I

9q · qI

Monday, March 16, 15

Partial Ownership

• Designate a special owner for immutables:

System.Immutable (“I” for short)

• An immutable object x has partial nesting:

• Every method passed a non-zero fraction:

9q · (qx.All) � I

9q · qI Implicitly!

Monday, March 16, 15

Access Immutable State

• Get fraction of fraction of nested state

• Get field read permissions from there.

• Rational numbers can get arbitrarily small.

q1q2x.All

Monday, March 16, 15

Constructing Immutable

• Immutable constructor contract:

- pre: write permission for all fields + read
permission for all parameter objects

- post: (invariant � this.All) + (9q · qthis.All � I)

Monday, March 16, 15

Constructing Immutable

• Immutable constructor contract:

- pre: write permission for all fields + read
permission for all parameter objects

- post: (invariant � this.All) + (9q · qthis.All � I)

Effective invariant:
true when one has (read) access

Monday, March 16, 15

Collections & Iterators

for (Iterator<String> it = c.iterator();
 it.hasNext();) {
 String v = it.next();
 ...
 if (...) {
 it.remove();
 }
}

• While any (other) iterator is active, collection
must not be mutated (or else possible CME).

Monday, March 16, 15

Collections & Iterators

for (Iterator<String> it = c.iterator();
 it.hasNext();) {
 String v = it.next();
 ...
 if (...) {
 it.remove();
 }
}

• While any (other) iterator is active, collection
must not be mutated (or else possible CME).

(dual to normal restriction)

Monday, March 16, 15

Collections & Iterators

for (Iterator<String> it = c.iterator();
 it.hasNext();) {
 String v = it.next();
 ...
 if (...) {
 it.remove();
 }
}

• While any (other) iterator is active, collection
must not be mutated (or else possible CME).

can read c but
not write c here

Monday, March 16, 15

Collections & Iterators

for (Iterator<String> it = c.iterator();
 it.hasNext();) {
 String v = it.next();
 ...
 if (...) {
 it.remove();
 }
}

• While any (other) iterator is active, collection
must not be mutated (or else possible CME).

No other iterator
can be active here.

Monday, March 16, 15

Collection Permissions

• ! is a collection of E and we have access

• ! is a q iterator of E on !’ and we have access

Collection(⇢, E) + ⇢.All

Iterator(⇢, q, ⇢0, E) + ⇢.All

C ⌘ Collection(c, String) + c.All

Iq ⌘ Iterator(it, q, c, String) + it.All

Monday, March 16, 15

Collection Permissions

• ! is a collection of E and we have access

• ! is a q iterator of E on !’ and we have access

Collection(⇢, E) + ⇢.All higher order

Iterator(⇢, q, ⇢0, E) + ⇢.All

C ⌘ Collection(c, String) + c.All

Iq ⌘ Iterator(it, q, c, String) + it.All

Monday, March 16, 15

iterator() encumbers

• Permission contract of iterator()

- before:

- after:

• Expresses restriction on iterator as a
restriction on the collection: we can’t get
permission back until we give up iterator
access.

Iq + (Iq �+ qC)

qC

Monday, March 16, 15

iterator() encumbers

• Permission contract of iterator()

- before:

- after:

• Expresses restriction on iterator as a
restriction on the collection: we can’t get
permission back until we give up iterator
access.

Iq + (Iq �+ qC)

qC
write () or read ()

access to c
q < 1q = 1

Monday, March 16, 15

iterator() encumbers

• Permission contract of iterator()

- before:

- after:

• Expresses restriction on iterator as a
restriction on the collection: we can’t get
permission back until we give up iterator
access.

Iq + (Iq �+ qC)

qC

linear implication:
consumes the premise

Monday, March 16, 15

iterator() encumbers

• Permission contract of iterator()

- before:

- after:

• Expresses restriction on iterator as a
restriction on the collection: we can’t get
permission back until we give up iterator
access.

Iq + (Iq �+ qC)

qC

Monday, March 16, 15

Iterator methods

• hasNext() reads this.All

- before/after:

• next() writes this.All

- before/after:

• remove writes this.All, requires “write” iter

- before/after:

Iq

q0Iq

I1

Monday, March 16, 15

Temporary Read Access

• We need a way to permit read access to the
collection while not removing elements.

I1 I 1
2
+

1

2
C +

✓
I 1

2
+

1

2
C �+ I1

◆

Monday, March 16, 15

Temporary Read Access

• We need a way to permit read access to the
collection while not removing elements.

I1 I 1
2
+

1

2
C +

✓
I 1

2
+

1

2
C �+ I1

◆

(Requires an extension)

Monday, March 16, 15

Swing Event Thread
SwingUtilities.invokeLater(new Runnable() {
 JFrame f = new MyFrame();
 f.setSize(500,300);
 f.setVisible(true);

});

• Only Swing event thread can
1. create instances of GUI classes;
2. mutate state of GUI instances.

• Not a fixed thread. “setVisible” may yield
control.

Monday, March 16, 15

GUI owns its state

• Designate a global field as owner of all GUI
state, e.g. Swing.GUI (“G” for short)

• Every GUI class constructor has contract:

- pre: G + write permission to all fields

- post: G + (inv’t ≺ this.All) + (this.All ≺ G)

• Can’t access state of instances without G.

Monday, March 16, 15

GUI owns its state

• Designate a global field as owner of all GUI
state, e.g. Swing.GUI (“G” for short)

• Every GUI class constructor has contract:

- pre: G + write permission to all fields

- post: G + (inv’t ≺ this.All) + (this.All ≺ G)

• Can’t access state of instances without G.
Object “owned” by GUI

Monday, March 16, 15

Chaining of GUI

• Any method that could lead to yielding
control will require G including state of any
GUI classes (hence invariants in effect).

- This prevents call-back problems.

• If a new thread is given responsibility for the
GUI, it is passed the GUI permission.

Monday, March 16, 15

Runnable is Generic

• Java interface Runnable is generic in effect:
 interface Runnable<effect E> {
 public void run() writes E
 }

• SwingUtilities.invokeLater requires

 Runnable< G +E> task

Monday, March 16, 15

Runnable is Generic

• Java interface Runnable is generic in effect:
 interface Runnable<effect E> {
 public void run() writes E
 }

• SwingUtilities.invokeLater requires

 Runnable< G +E> task
Permissions from caller

Monday, March 16, 15

Multi-Thread Broadcast
void observe(Observer<T> ob, int i) ... {
 for (;;++i) {
 T elem;
 synchronized (cont) {
 while (i >= cont.size()){
 cont.wait();
 }
 elem = cont.get(i);
 }
 ob.update(this,elem);
 }
}

Monday, March 16, 15

Multi-Thread Broadcast
void observe(Observer<T> ob, int i) ... {
 for (;;++i) {
 T elem;
 synchronized (cont) {
 while (i >= cont.size()){
 cont.wait();
 }
 elem = cont.get(i);
 }
 ob.update(this,elem);
 }
}

Basis of distributed COMMAND pattern

Monday, March 16, 15

Multi-Thread Broadcast
void observe(Observer<T> ob, int i) ... {
 for (;;++i) {
 T elem;
 synchronized (cont) {
 while (i >= cont.size()){
 cont.wait();
 }
 elem = cont.get(i);
 }
 ob.update(this,elem);
 }
}

Could throw
InterruptedException

Monday, March 16, 15

Multi-Thread Broadcast
void observe(Observer<T> ob, int i) ... {
 for (;;++i) {
 T elem;
 synchronized (cont) {
 while (i >= cont.size()){
 cont.wait();
 }
 elem = cont.get(i);
 }
 ob.update(this,elem);
 }
}

private list
used as mutex

Monday, March 16, 15

Multi-Thread Broadcast
void observe(Observer<T> ob, int i) ... {
 for (;;++i) {
 T elem;
 synchronized (cont) {
 while (i >= cont.size()){
 cont.wait();
 }
 elem = cont.get(i);
 }
 ob.update(this,elem);
 }
}

During this call,
add() could add an element

and notifyAll()

Monday, March 16, 15

Multi-Thread Broadcast
void observe(Observer<T> ob, int i) ... {
 for (;;++i) {
 T elem;
 synchronized (cont) {
 while (i >= cont.size()){
 cont.wait();
 }
 elem = cont.get(i);
 }
 ob.update(this,elem);
 }
}

observer called while
lock not held

Monday, March 16, 15

RT owns mutexes

• Designate a special owner for mutexes:

System.Lock (“L” for short)

• Synchronization only allowed on x if

x.All ≺ L

Gives access to x.All (unless re-entered).

• No one ever gets access to L.

Monday, March 16, 15

Mutex Methods

• wait() writes this.All, requires this.All ≺ L

- ensures invariants re-established.

• notify() writes this.All, requires this.All ≺ L

- just to ensure we have acquired mutex.

• lock()

- pre: this.All ≺ L + (lock-order ? 0 : this.All)

- post: this.All

Monday, March 16, 15

Mutex Methods

• wait() writes this.All, requires this.All ≺ L

- ensures invariants re-established.

• notify() writes this.All, requires this.All ≺ L

- just to ensure we have acquired mutex.

• lock()

- pre: this.All ≺ L + (lock-order ? 0 : this.All)

- post: this.All deadlock check:
current lock level is less than this

Monday, March 16, 15

Mutex Methods

• wait() writes this.All, requires this.All ≺ L

- ensures invariants re-established.

• notify() writes this.All, requires this.All ≺ L

- just to ensure we have acquired mutex.

• lock()

- pre: this.All ≺ L + (lock-order ? 0 : this.All)

- post: this.All + (lock-order’ ? (this.All U) : U)�+

Monday, March 16, 15

Mutex Methods

• wait() writes this.All, requires this.All ≺ L

- ensures invariants re-established.

• notify() writes this.All, requires this.All ≺ L

- just to ensure we have acquired mutex.

• lock()

- pre: this.All ≺ L + (lock-order ? 0 : this.All)

- post: this.All + (lock-order’ ? (this.All U) : U)�+
old lock-order

Monday, March 16, 15

Mutex Methods

• wait() writes this.All, requires this.All ≺ L

- ensures invariants re-established.

• notify() writes this.All, requires this.All ≺ L

- just to ensure we have acquired mutex.

• lock()

- pre: this.All ≺ L + (lock-order ? 0 : this.All)

- post: this.All + (lock-order’ ? (this.All U) : U)�+
Token to permit
unlock()

Monday, March 16, 15

Observer is Generic

• As with Runnable, this interface also
needs a generic effect parameter.

• And observe() is generic as well:

- permissions passed along to update().

Monday, March 16, 15

Volatile Communication
private volatile List<Connection> connex;
public void addConnection(Connection x){
 List<Connection> newL =
 new ArrayList<>(connex);
 newL.add(x);
 connex = newL;
}
public void paintComponent(Graphics g) {
 for (Connection c : connex) { ... }
}

• List struct. must not change, elements may.

Monday, March 16, 15

Volatile Communication
private volatile List<Connection> connex;
public void addConnection(Connection x){
 List<Connection> newL =
 new ArrayList<>(connex);
 newL.add(x);
 connex = newL;
}
public void paintComponent(Graphics g) {
 for (Connection c : connex) { ... }
}

• List struct. must not change, elements may.

Called by thread monitoring a ServerSocket

Monday, March 16, 15

Volatile Communication
private volatile List<Connection> connex;
public void addConnection(Connection x){
 List<Connection> newL =
 new ArrayList<>(connex);
 newL.add(x);
 connex = newL;
}
public void paintComponent(Graphics g) {
 for (Connection c : connex) { ... }
}

• List struct. must not change, elements may.

a fresh object

Monday, March 16, 15

Volatile Communication
private volatile List<Connection> connex;
public void addConnection(Connection x){
 List<Connection> newL =
 new ArrayList<>(connex);
 newL.add(x);
 connex = newL;
}
public void paintComponent(Graphics g) {
 for (Connection c : connex) { ... }
}

• List struct. must not change, elements may.

Called by GUI

Monday, March 16, 15

Volatile Communication
private volatile List<Connection> connex;
public void addConnection(Connection x){
 List<Connection> newL =
 new ArrayList<>(connex);
 newL.add(x);
 connex = newL;
}
public void paintComponent(Graphics g) {
 for (Connection c : connex) { ... }
}

• List struct. must not change, elements may.
(Connections may be mutated elsewhere in GUI)

Monday, March 16, 15

Handling Volatile

• Volatile fields may be read/updated without
any permission from any thread at any time.

• The value written to a volatile field must
satisfy the field’s invariant.

• The value read from a volatile field can be
assumed to meet the field’s invariant.

• The invariant must be a “fact” (duplicable).

Monday, March 16, 15

Volatile: Solution

• “connex” invariant: immutable list of
connection objects owned by GUI.

• “Connection x” added to list is owned by
GUI (any unique object can be made to fit).

• GUI code can traverse (immutable) list and
update fields of objects without
interference.

Monday, March 16, 15

Conclusion

• Permissions make state access explicit.

• Static permission analysis requires an
expressive static permission system.

• Even without analysis, thinking about
permissions makes software cleaner.

• We have “faith” that a well-written program
has a reasonably simple explanation of its
permission behavior.

Monday, March 16, 15

Questions?

• See theoretical paper (w/ mechanized proof):
http://www.cs.uwm.edu/~boyland/papers/frac-nesting.html

Monday, March 16, 15

http://www.cs.uwm.edu/~boyland/papers/frac-nesting.html
http://www.cs.uwm.edu/~boyland/papers/frac-nesting.html

Aspect-Oriented
Permissions?

• Adding fields/behavior using those fields is
handled by adding to invariant (e.g. a new
data group).

• Adding new synchronization is less modular
because requirements on lock-level.

Monday, March 16, 15

