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Summary

• Permissions are non-duplicable tokens that 
give access to state.

• Permissions give “effective” control over 
aliasing.

• Permission analysis determines whether 
code has access to state it uses.

• We use abstraction over permissions to 
have a uniform picture of method behavior.
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Hidden Structure?
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Hidden Structure?

Monday, March 16, 15



Abstraction: a Problem

• Consider

interface Runnable {
  public void run();
}

• What does a call do?

r.run();
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Permission Semantics

• In order to access mutable state, we need a

• WRITE permission to write,

• READ permission to read.

Fractional permissions unify these.

• Permissions cannot be copied, only passed 
along with control flow.

• Read perm’s can be split into “smaller” ones.
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Permission Semantics

• In order to access mutable state, we need a

• WRITE permission to write,

• READ permission to read.

Fractional permissions unify these.

• Permissions cannot be copied, only passed 
along with control flow.

• Read perm’s can be split into “smaller” ones.
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Permission Semantics

• In order to access mutable state, we need a

• WRITE permission to write,

• READ permission to read.

Fractional permissions unify these.

• Permissions cannot be copied, only passed 
along with control flow.

• Read perm’s can be split into “smaller” ones.

1
<1
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Permission Idioms (1)

• Single-threaded chaining: pass along all 
permissions with control-flow.

Call

Return
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Permission Idioms (2)

• Framing: withhold some permissions before 
calling a method, add after call returns.

Call

Return
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Permission Idioms (2)

• Framing: withhold some permissions before 
calling a method, add after call returns.

Call

Return

write
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Permission Idioms (2)

• Framing: withhold some permissions before 
calling a method, add after call returns.

Call

Return

readread
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Permission Idioms (2)

• Framing: withhold some permissions before 
calling a method, add after call returns.

Call

Return

write
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Permission Idioms (3)

• Fork: split permissions among threads
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Permission Idioms (4)

• Transfer: pass permissions through 
synchronization points.

release

acquire
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Permission Packaging

• Capability: pointer packaged with permission 
to access its contents.

- effectively unique: aliases cannot be used.

• Self-framed assertion:  program property/
invariant packaged with permission to access 
state described.

- unframed properties are “ineffective”; they 
cannot be checked.
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Permission Analysis

• Static analysis to determine whether 
permissions are always present.

• Sound analysis + program accepted → 
permissions can be ignored dynamically.

• Modularity requires description of input/
output permissions of a method call.
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Permission Analysis

• Static analysis to determine whether 
permissions are always present.

• Sound analysis + program accepted → 
permissions can be ignored dynamically.

• Modularity requires description of input/
output permissions of a method call.

Annotations
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Basic Annotations

• Method effects: perm’s passed in and out

- read (e.g. reads this.f, arg.g)

- write

Permissions are returned even upon abrupt 
termination.

• Immutable: read perm’s passed one-way

• Unique: write perm’s passed one-way
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Abstraction (1)

• For modularity, we need annotations.

• For modularity, annotations need abstraction

- we don’t want to list all (private?) fields

• What abstractions are appropriate?
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Abstraction (1)

• For modularity, we need annotations.

• For modularity, annotations need abstraction

- we don’t want to list all (private?) fields

• What abstractions are appropriate?

Regions / Data Groups

[Greenhouse&Boyland 1999, Leino 1998]
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Abstraction (2)

• Internal Objects (e.g. Nodes in a TreeMap)

- Option 1: Ownership

- Option 2: Uniqueness

• Concurrency Related

- Transfer through locks / volatiles

- Thread-local objects
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Two Dimensions
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Island [Hogg 1991]
Balloon [Almeida 1997]
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Two Dimensions
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Ownership [Clarke & others 1998]
Uniqueness [1000s]

Monday, March 16, 15



Two Dimensions

hf g

n
d

n
d

n
d

BA

Monday, March 16, 15



My Permission System

• (Positive) Fractions (with +, * and /)

• Packaging using existentials; encumberance 
with (linear) implications.

• Nesting:  X ≺  Y,  a generalization of

1. Adoption [Fähndrich & DeLine 2002]

2. (effective) Ownership

3. Data Groups
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My Permission System

• (Positive) Fractions (with +, * and /)

• Packaging using existentials; encumberance 
with (linear) implications.

• Nesting:  X ≺  Y,  a generalization of

1. Adoption [Fähndrich & DeLine 2002]

2. (effective) Ownership

3. Data Groups

Fact of nesting is
“nonlinear”, that is,

persistent/duplicable
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Object Invariants

• Self-Framed Assertion P(r), e.g. 

• Nesting fact: P(r)≺r.All
1. If you have permission to the state (r.All), 

then you can access the invariant, including 
permissions to the fields involved.  During 
access, you temporarily give up r.All

2. If you don’t have permission to the state, 
you know nothing.

9n · r.x ! n
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Object Invariants

• Self-Framed Assertion P(r), e.g. 

• Nesting fact: P(r)≺r.All
1. If you have permission to the state (r.All), 

then you can access the invariant, including 
permissions to the fields involved.  During 
access, you temporarily give up r.All

2. If you don’t have permission to the state, 
you know nothing.

encumber

9n · r.x ! n
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Case Studies

• Immutable Compounds

• Collections and Iterators

• GUI Event Thread

• Multi-Thread Broadcast

• Thread Communication with volatile
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Immutable Compounds
class Period {
  final Time start;
  final Duration length;
  public Period(Time t, Duration l) {
    check for errors (null, empty)
    time = t;
    length = l;
  }
  ...
}

• We want everything immutable.
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Partial Ownership

• Designate a special owner for immutables:

System.Immutable (“I” for short)

• An immutable object x has partial nesting:

• Every method passed a non-zero fraction:

9q · (qx.All) � I

9q · qI
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Partial Ownership

• Designate a special owner for immutables:

System.Immutable (“I” for short)

• An immutable object x has partial nesting:

• Every method passed a non-zero fraction:

9q · (qx.All) � I

9q · qI Implicitly!
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Access Immutable State

• Get fraction of fraction of nested state

• Get field read permissions from there.

• Rational numbers can get arbitrarily small.

q1q2x.All
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Constructing Immutable

• Immutable constructor contract:

- pre: write permission for all fields + read 
permission for all parameter objects

- post: (invariant � this.All) + (9q · qthis.All � I)
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Constructing Immutable

• Immutable constructor contract:

- pre: write permission for all fields + read 
permission for all parameter objects

- post: (invariant � this.All) + (9q · qthis.All � I)

Effective invariant:
true when one has (read) access
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Collections & Iterators

for (Iterator<String> it = c.iterator();
     it.hasNext();) {
    String v = it.next();
    ...
    if (...) {
        it.remove();
    }
}

• While any (other) iterator is active, collection 
must not be mutated (or else possible CME).
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Collections & Iterators

for (Iterator<String> it = c.iterator();
     it.hasNext();) {
    String v = it.next();
    ...
    if (...) {
        it.remove();
    }
}

• While any (other) iterator is active, collection 
must not be mutated (or else possible CME).

(dual to normal restriction)
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Collections & Iterators

for (Iterator<String> it = c.iterator();
     it.hasNext();) {
    String v = it.next();
    ...
    if (...) {
        it.remove();
    }
}

• While any (other) iterator is active, collection 
must not be mutated (or else possible CME).

can read c but 
not write c here
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Collections & Iterators

for (Iterator<String> it = c.iterator();
     it.hasNext();) {
    String v = it.next();
    ...
    if (...) {
        it.remove();
    }
}

• While any (other) iterator is active, collection 
must not be mutated (or else possible CME).

No other iterator
can be active here.
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Collection Permissions

• ! is a collection of E and we have access

• ! is a q iterator of E on !’ and we have access

Collection(⇢, E) + ⇢.All

Iterator(⇢, q, ⇢0, E) + ⇢.All

C ⌘ Collection(c, String) + c.All

Iq ⌘ Iterator(it, q, c, String) + it.All
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Collection Permissions

• ! is a collection of E and we have access

• ! is a q iterator of E on !’ and we have access

Collection(⇢, E) + ⇢.All higher order

Iterator(⇢, q, ⇢0, E) + ⇢.All

C ⌘ Collection(c, String) + c.All

Iq ⌘ Iterator(it, q, c, String) + it.All
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iterator() encumbers

• Permission contract of iterator()

- before:

- after:

• Expresses restriction on iterator as a 
restriction on the collection: we can’t get 
permission back until we give up iterator 
access.

Iq + (Iq �+ qC)

qC
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iterator() encumbers

• Permission contract of iterator()

- before:

- after:

• Expresses restriction on iterator as a 
restriction on the collection: we can’t get 
permission back until we give up iterator 
access.

Iq + (Iq �+ qC)

qC
write (        ) or read (        ) 

access to c
q < 1q = 1
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iterator() encumbers

• Permission contract of iterator()

- before:

- after:

• Expresses restriction on iterator as a 
restriction on the collection: we can’t get 
permission back until we give up iterator 
access.

Iq + (Iq �+ qC)

qC

linear implication:
consumes the premise
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iterator() encumbers

• Permission contract of iterator()

- before:

- after:

• Expresses restriction on iterator as a 
restriction on the collection: we can’t get 
permission back until we give up iterator 
access.

Iq + (Iq �+ qC)

qC
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Iterator methods

• hasNext() reads this.All

- before/after: 

• next() writes this.All

- before/after:

• remove writes this.All, requires “write” iter

- before/after: 

Iq

q0Iq

I1
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Temporary Read Access

• We need a way to permit read access to the 
collection while not removing elements.

I1  I 1
2
+

1

2
C +

✓
I 1

2
+

1

2
C �+ I1

◆
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Temporary Read Access

• We need a way to permit read access to the 
collection while not removing elements.

I1  I 1
2
+

1

2
C +

✓
I 1

2
+

1

2
C �+ I1

◆

(Requires an extension)
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Swing Event Thread
SwingUtilities.invokeLater(new Runnable() {
    JFrame f = new MyFrame();
    f.setSize(500,300);
    f.setVisible(true);

});

• Only Swing event thread can
1. create instances of GUI classes;
2. mutate state of GUI instances.

• Not a fixed thread. “setVisible” may yield 
control.
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GUI owns its state

• Designate a global field as owner of all GUI 
state, e.g. Swing.GUI (“G” for short)

• Every GUI class constructor has contract:

- pre: G + write permission to all fields

- post: G + (inv’t ≺ this.All) + (this.All ≺ G)

• Can’t access state of instances without G.
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GUI owns its state

• Designate a global field as owner of all GUI 
state, e.g. Swing.GUI (“G” for short)

• Every GUI class constructor has contract:

- pre: G + write permission to all fields

- post: G + (inv’t ≺ this.All) + (this.All ≺ G)

• Can’t access state of instances without G.
Object “owned” by GUI
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Chaining of GUI

• Any method that could lead to yielding 
control will require G including state of any 
GUI classes (hence invariants in effect).

- This prevents call-back problems.

• If a new thread is given responsibility for the 
GUI, it is passed the GUI permission.
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Runnable is Generic

• Java interface Runnable is generic in effect:
    interface Runnable<effect E> {
        public void run() writes E
    }

• SwingUtilities.invokeLater requires

        Runnable< G +E> task
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Runnable is Generic

• Java interface Runnable is generic in effect:
    interface Runnable<effect E> {
        public void run() writes E
    }

• SwingUtilities.invokeLater requires

        Runnable< G +E> task
Permissions from caller
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Multi-Thread Broadcast
void observe(Observer<T> ob, int i) ... {
 for (;;++i) {
    T elem;
    synchronized (cont) {
      while (i >= cont.size()){
        cont.wait();
      }
      elem = cont.get(i);
    }
    ob.update(this,elem);
  }
}
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Multi-Thread Broadcast
void observe(Observer<T> ob, int i) ... {
 for (;;++i) {
    T elem;
    synchronized (cont) {
      while (i >= cont.size()){
        cont.wait();
      }
      elem = cont.get(i);
    }
    ob.update(this,elem);
  }
}

Basis of distributed COMMAND pattern
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Multi-Thread Broadcast
void observe(Observer<T> ob, int i) ... {
 for (;;++i) {
    T elem;
    synchronized (cont) {
      while (i >= cont.size()){
        cont.wait();
      }
      elem = cont.get(i);
    }
    ob.update(this,elem);
  }
}

Could throw
InterruptedException
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Multi-Thread Broadcast
void observe(Observer<T> ob, int i) ... {
 for (;;++i) {
    T elem;
    synchronized (cont) {
      while (i >= cont.size()){
        cont.wait();
      }
      elem = cont.get(i);
    }
    ob.update(this,elem);
  }
}

private list
used as mutex
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Multi-Thread Broadcast
void observe(Observer<T> ob, int i) ... {
 for (;;++i) {
    T elem;
    synchronized (cont) {
      while (i >= cont.size()){
        cont.wait();
      }
      elem = cont.get(i);
    }
    ob.update(this,elem);
  }
}

During this call,
add() could add an element

and notifyAll()
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Multi-Thread Broadcast
void observe(Observer<T> ob, int i) ... {
 for (;;++i) {
    T elem;
    synchronized (cont) {
      while (i >= cont.size()){
        cont.wait();
      }
      elem = cont.get(i);
    }
    ob.update(this,elem);
  }
}

observer called while
lock not held
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RT owns mutexes

• Designate a special owner for mutexes:

System.Lock (“L” for short)

• Synchronization only allowed on x if

x.All ≺ L

Gives access to x.All (unless re-entered).

• No one ever gets access to L.
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Mutex Methods

• wait() writes this.All, requires this.All ≺ L 

- ensures invariants re-established.

• notify() writes this.All, requires this.All ≺ L

- just to ensure we have acquired mutex.

• lock()

- pre: this.All ≺ L + (lock-order ? 0 : this.All)

- post: this.All
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Mutex Methods

• wait() writes this.All, requires this.All ≺ L 

- ensures invariants re-established.

• notify() writes this.All, requires this.All ≺ L

- just to ensure we have acquired mutex.

• lock()

- pre: this.All ≺ L + (lock-order ? 0 : this.All)

- post: this.All deadlock check:
current lock level is less than this
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Mutex Methods

• wait() writes this.All, requires this.All ≺ L 

- ensures invariants re-established.

• notify() writes this.All, requires this.All ≺ L

- just to ensure we have acquired mutex.

• lock()

- pre: this.All ≺ L + (lock-order ? 0 : this.All)

- post: this.All + (lock-order’ ? (this.All     U) : U)�+
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Mutex Methods

• wait() writes this.All, requires this.All ≺ L 

- ensures invariants re-established.

• notify() writes this.All, requires this.All ≺ L

- just to ensure we have acquired mutex.

• lock()

- pre: this.All ≺ L + (lock-order ? 0 : this.All)

- post: this.All + (lock-order’ ? (this.All     U) : U)�+
old lock-order
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Mutex Methods

• wait() writes this.All, requires this.All ≺ L 

- ensures invariants re-established.

• notify() writes this.All, requires this.All ≺ L

- just to ensure we have acquired mutex.

• lock()

- pre: this.All ≺ L + (lock-order ? 0 : this.All)

- post: this.All + (lock-order’ ? (this.All     U) : U)�+
Token to permit
unlock()

Monday, March 16, 15



Observer is Generic

• As with Runnable, this interface also 
needs a generic effect parameter.

• And observe() is generic as well:

- permissions passed along to update().
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Volatile Communication
private volatile List<Connection> connex;
public void addConnection(Connection x){
    List<Connection> newL = 
        new ArrayList<>(connex);
    newL.add(x);
    connex = newL;
}
public void paintComponent(Graphics g) {
   for (Connection c : connex) { ... }
}

• List struct. must not change, elements may.

Monday, March 16, 15



Volatile Communication
private volatile List<Connection> connex;
public void addConnection(Connection x){
    List<Connection> newL = 
        new ArrayList<>(connex);
    newL.add(x);
    connex = newL;
}
public void paintComponent(Graphics g) {
   for (Connection c : connex) { ... }
}

• List struct. must not change, elements may.

Called by thread monitoring a ServerSocket
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Volatile Communication
private volatile List<Connection> connex;
public void addConnection(Connection x){
    List<Connection> newL = 
        new ArrayList<>(connex);
    newL.add(x);
    connex = newL;
}
public void paintComponent(Graphics g) {
   for (Connection c : connex) { ... }
}

• List struct. must not change, elements may.

a fresh object
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Volatile Communication
private volatile List<Connection> connex;
public void addConnection(Connection x){
    List<Connection> newL = 
        new ArrayList<>(connex);
    newL.add(x);
    connex = newL;
}
public void paintComponent(Graphics g) {
   for (Connection c : connex) { ... }
}

• List struct. must not change, elements may.

Called by GUI

Monday, March 16, 15



Volatile Communication
private volatile List<Connection> connex;
public void addConnection(Connection x){
    List<Connection> newL = 
        new ArrayList<>(connex);
    newL.add(x);
    connex = newL;
}
public void paintComponent(Graphics g) {
   for (Connection c : connex) { ... }
}

• List struct. must not change, elements may.
(Connections may be mutated elsewhere in GUI)
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Handling Volatile

• Volatile fields may be read/updated without 
any permission from any thread at any time.

• The value written to a volatile field must 
satisfy the field’s invariant.

• The value read from a volatile field can be 
assumed to meet the field’s invariant. 

• The invariant must be a “fact” (duplicable).
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Volatile: Solution

• “connex” invariant: immutable list of 
connection objects owned by GUI.

• “Connection x” added to list is owned by 
GUI (any unique object can be made to fit).

• GUI code can traverse (immutable) list and 
update fields of objects without 
interference.
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Conclusion

• Permissions make state access explicit.

• Static permission analysis requires an 
expressive static permission system.

• Even without analysis, thinking about 
permissions makes software cleaner.

• We have “faith” that a well-written program 
has a reasonably simple explanation of its 
permission behavior.
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Questions?

• See theoretical paper (w/ mechanized proof):
http://www.cs.uwm.edu/~boyland/papers/frac-nesting.html
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Aspect-Oriented 
Permissions?

• Adding fields/behavior using those fields is 
handled by adding to invariant (e.g. a new 
data group).

• Adding new synchronization is less modular 
because requirements on lock-level.
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