Enforcing Information Hiding in

& Interface Specifications:
s wit

e The AspectJML specification language

A Client-Aware checking Approach

Henrique Rebélo Gary T. Leavens
Universidade Federal de Pernambuco University of Central Florida
Brazil USA



What is information hiding?



How to abstract away the details?

A

~ ,-,;.
S,
N -_\?f Aogm
= s : )
'_;':;]‘__, @l. ‘ A :
'L "‘..'TO“‘\::' 3 o

The task of the software development team is to engineer the illusion of simplicity.

© Copyright 1994 — Extracted from
Booch”s OOAD book



Black-box abstraction

The task of the software development team is to engineer the illusion of simplicity.

© Copyright 1994 — Extracted from
Booch”s OOAD book



Parnas

Whatever is likely to change!

Hiding the secret of a module
behind an interface



Abstraction is an important key

Abstraction allows you to take a simpler view of a complex concept.

© Copyright 2004 — Extracted from
McConnell’s Code Complete book



Encapsulation helps in the process

E__—: .

Figure 5-8 Encapsulation says that, not only are you allowed to take a simpler view of a
complex concept, you are not allowed to look at any of the details of the complex concept.
What you see is what you get—it's all you get!

© Copyright 2004 — Extracted from
McConnell’s Code Complete book



Is Encapsulation
equivalent to
Information Hiding ?



Think about these examples

class EncapsulationWithoutinformationHiding {
private ArrayList list = new ArrayList();

public ArrayList getList() {
return this.list;

}
}

class InformationHidingWithoutEncapsulation {
public List list = new ArrayList();

}




Avoid exposure implementation details

Encapsulation hides the details of the implementation of an object.

© Copyright 1994 — Extracted from
Booch”s OOAD book



Information hiding for other artifacts
(Leavens and Muller. ICSE, 2007)

 Visibility modifiers on specifications

* Some specifications hidden
from some clients

* Some specifications say more
to privileged clients

class Package {

}

/l@ public model JMLDouble pWeight;
private double weight;
ll@ private represents weight = pWeight;

I*@ public normal_behavior
@ requires weight <= 5;
@ ensures this.pWeight == weight;
@ also
@ private normal_behavior
@ requires weight <= 5;
@ ensures this.weight == weight;
public void setWeight(double weight) {
this.weight = weight;
}

I* other methods omitted */




Design by Contract

- Specifications (contracts) in OO
programming Language

e preconditions

e postconditions

decrement is
-- Decrease counter by one.
require

item >0
ensure
item = old item - 1




Running example
(Package delivery system)

https://www.google.com.br/search?q=Package+delivery




Delivery package classes...

Package,

Gift-Package

Package

AN

Coupon-Package

Courier

setWeight(double)
setSize(double, double)

reSize(double, double)
containsSize(double, double)

Courier

i

GiftPackage

setWeight(double)
setSize(double, double)

CouponPackage

setWeight(double)

setSize(double, double)




Package contracts with a DbC language

class Package {
[* intentionally public */
public double weight;

public void setWeight(double weight)

@pre weight <= 5; | - ,
@post this.weight == weight; Package Courier
{
this.weight = weight; setWeight(...)
JAN
[* other methods omitted */
}
GiftPackage 2 CouponPackage
e——
setSize(...) setSize(...)
setSize(...) reSize(...)
containsSize(...) containsSize(...)
setWeight(...) setWeight(...)




Consider the following Package’s client

Written by Cathy

class ClientClass {

public void clientMeth(Package p) {
— ] p.setWeight(5);

}

} -

RAC

Y

PostconditionError:
this.weight is 6.0
weight is 5.0

Written by Alice

class Package {
[* intentionally public */
public double weight;

public void setWeight(double
weight)
[ @pre weight <= 5;
| @post this.weight == weight;
{
this.weight = weight + 1;
}

[* other methods omitted */

}




Consider now the following change by Alice

class Package {
private double weight;

public void setWeight(double weight)
@pre weight <= 5;

{@post this.weight == weight; Package L Courior
this.weight = weight;

} setWeight(...)

[* other methods omitted* | JAN

] -

GiftPackage 2 CouponPackage
e——

setSize(...) setSize(...)
reSize(...) reSize(...)
containsSize(...) containsSize(...)
setWeight(...) setWeight(...)




But now RAC breaks information hiding!

Written by Cathy

class ClientClass {

public void clientMeth(Package p) {

} -

} ad

— ] p.setWeight(5); _

&

RAC

@

PostconditionError:

this.weight is 6.0
weight is 5.0

Written by Alice

class Package {
private double weight;

public void setWeight(double weight)
[ @pre weight <= 5;
]\{@post this.weight == weight;

this.weight = weight + 1;
}

I* other methods omitted */

}




Kiczales: Beyond the black-box

Clients confront an issue

- that the interface claimed
to hide.

basa-
rogram -
preg e —
= # ¥ 5

T &~ Pprearam implementation

inmerface aresra presents two
- interfaces

= meila

interfacs



Do DbC languages present this
information hiding problem?



Micrasoft

Research

code contracts

Is this program correct?

1 using System;
2 using System.Diagnostics.Contracts;

4 class Package {

5

6 private double weight;

.

8 public void setWeight(double weight) {
9 Contract.Requires(weight <= 5);
1e Contract.Ensures(this.weight == weight);
11 this.weight = weight + 1;
0 3
13 }
14
15 class ClientClass {
16

17 public void clientMeth(Package p) {
18 p.setWeight(5);

19 }

20 }

hone | video J permatink|

"»' shortcut: Alt+B

Description
1 Possible precision mismatch for the arguments of ==
2 ensures is false: this.weight == weight




In this scenario, we can
say that...



... standard DbC/RAC tools are NOT...



But the DbC language JML
starting fixing the problem...



Java modeling language—JML

* Formal specification language for Java
— behavioral specification of Java modules

* Adopts design by contract based on Hoare-
style with assertions
— pre-, postconditions and invariants
~ {PrC{Q} JML

* Main goal = Improve functional software
correctness of Java programs

——

-



Information Hiding and Visibility in Interface Specifications

Gary T. Leavens®
lowa State University
Ames. lowa, USA
leavens @cs.iastate.edu

Abstract

Information hiding controls which parts of a class are
visible to non-privileged and privileged clients (e.g., sub-
classes). This affects detailed design specifications in two
ways. First, specifications should not expose hidden class
members. As noted in previous work, this is important
because such hidden members are not meaningful 1o all
clients. But it also allows changes to hidden implemen-
tation details withow invalidating correctness proofs for
client code, which is important for maintaining verified pro-
grams. Second, ta enable sound modular reasoning, certain
specifications must be visible to clients. We present rules
for information hiding in specifications for Java-like lan-
guages, and demonstrate their application to the specifica-
tion language JML. These rules restrict proof obligations to
only mention visible class members, but retain soundness.
This allows maintenance of implementations and their spec-
ifications without affecting client reasoning.

1 Introduction

When following information hiding. clients (including
subclasses) of each class are provided with the information
they need to use that class, but nothing more [28]. This aids
maintenance because hidden implementation details can be
changed without affecting clients. However. information
hiding and its benefits apply not only to code but also to
other artifacts, such as documentation and specifications.

In this paper, we focus on formal interface specifications
and correctness proofs. Formal interface specifications in-
clude contracts written in Eiffel [22], the Java Modeling
Language (JML) [14]. and Spec# [3]. We use JML exam-
ples for concreteness, but the rules we present can also be
applied to Eiffel and Spec#. We mainly discuss JML since

*Supported in part by the US NSF under grant CCF-0429567.

TFunded in part by the Information Society Technologies program of
the European Commission, Future and Emerging Technologies under the
IST-2005-015905 MOBIUS project.

29th Intemational Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007 |[EEE

Peter Miiller!

ETH Zurich

Switzerland
peter.mueller@int.ethz.ch

its syntax has visibility modifiers for specification con-
structs, such as invariants and method specification cases.
These modifiers allow one to specify a class’s public (non-
privileged client), protected (subclass), package (friend),
and private (implementation) interfaces [10, 13, 29, 30].

Our contribution is a set of rules for the modular use of
visibility modifiers in specifications. Formalization allows
us to precisely describe the subtle interactions between pro-
grams, specifications, and proofs and to prove soundness.

Our rules could also be applied to similar artifacts. For
example, they could be applied to the weak (incomplete)
specifications embodied in unit test cases and to the infor-
mal specifications embodied in documentation. Like for-
mal specifications they could also be specialized for differ-
ent visibility levels. For example, a unit test case could be
marked as public, which would imply that changes to hid-
den implementation details would not affect its type correct-
ness or meaning. Hence, it would not have to be changed
when hidden details change. Similarly, a class could have
documentation marked as protected, which describes how
its methods affect its protected members.

Information hiding affects specifications in two ways.
First, specifications should not expose hidden implementa-
tion details. Such details cannot be fully understood by all
clients [23]. Also they should not be used in a client’s cor-
rectness proof, since otherwise the proof would be invali-
dated when they change. For example, suppose method add
of a class BoundedList has a public precondition count <
capacity, where count and capacity are protected fields.
Then non-privileged clients do not know what this pre-
condition means exactly; for instance, they do not know
whether count is the number of elements in the list (count-
ing [rom one) or an array index (counting from zero). Such
details are hidden from clients to enhance maintainability,
which includes maintainability of correctness proofs.

Second, to enable sound modular reasoning, certain
specifications must be visible to clients. For instance, spec-
ifications of virtual (overrideable) methods must be visible
to overriding subclass methods, otherwise the overriding
method cannot respect behavioral subtyping [1, 5, 15, 21].

COMPUTER

50

CIETY



Kinds of clients in Java and JML

private client

.................................
----------
............ o

................................................. "

0“ H

K H

. H

H H

s H

H H

H H

H

H H

H

class C class F

class A % \
.......................... . package
. clients

] ] class D i | class E
public clients extends C ! | extends C

protected
clients

. “‘
.
.....................................................................



Package contracts with JML

class Package {
ll@ public model JMLDouble pWeight;
private double weight;
Il@ private represents weight = pWeight;

I*@ public normal_behavior
@ requires weight <= 5;
@ ensures this.pWeight == weight;
@ also
@ private normal_behavior
@ requires weight <= 5;
@ ensures this.weight == weight;
public void setWeight(double weight) {
this.weight = weight;
}

[* other methods omitted */

}

Package

*
I(— Courier

setWeight(...)

JAN

GiftPackage

setSize(...)
reSize(...)
containsSize(...)
setWeight(...)

2 CouponPackage
e——-——
setSize(...)
reSize(...)

containsSize(...)
setWeight(...)




JML RAC still breaks information hiding!

Written by Cathy

class ClientClass {

public void clientMeth(Package p) {
— ] p.setWeight(5);
} -

} -~

RAC

@

JMLPostconditionError: when

this.weight is 6.0
weight is 5.0

Written by Alice

class Package {
/l@ public model JMLDouble pWeight;
private double weight;
ll@ private represents weight = pWeight;

I*@ public normal_behavior

@ requires weight <= 5;

@ ensures this.pWeight == weight;

@ also

@ private normal_behavior

@ requires weight <= 5;

@ ensures this.weight == weight;
public void setWeight(double weight) {

this.weight = weight + 1;
}

[* other methods omitted */
}




The problem can become
even worse...



Package contracts for subtypes

class Package {
I/@ public model JMLDouble pWeight;
protected double weight;
I/@ protected represents weight = pWeight;

I*@ public normal_behavior
@ requires weight <= 5;
@ ensures this.pWeight == weight;
@ also
@ protected normal_behavior
@ requires weight <= 8;
@ ensures this.weight == weight;
public void setWeight(double weight) {
this.weight = weight;
}

[* other methods omitted */

}

Package

*
I(— Courier

setWeight(...)

JAN

GiftPackage

setSize(...)
reSize(...)
containsSize(...)
setWeight(...)

2 CouponPackage
e——-——
setSize(...)
reSize(...)

containsSize(...)
setWeight(...)




JML RAC misses a precondition violation!

Written by Cathy

class ClientClass {

public void clientMeth(Package p) {
— ] p.setWeight(8);

Written by Alice

class Package {
/l@ public model JMLDouble pWeight;
protected double weight;
ll@ protected represents weight = pWeight;

I*@ public normal_behavior
@ requires weight <= 5;
@ ensures this.pWeight == weight;
@ also
@ protected normal_behavior
@ requires weight <= 8;

L @ ensures this.weight == weight;
public void setWeight(double weight) {

this.weight = weight;

}

I* other methods omitted */

T

class GiftPackage extends Package {

}




JML/RAC is NOT...

fective

+

Useful



Unanswered questions can arise

What happened
with RAC? Did Alice
specified correctly?

Did | provide the
right
specifications?

Q% Alice O

Did Cathy
associated the
right specs
during RAC?

Cathy




This is caused by the...



..supplier-side instrumentation of contracts
in JML and any other RAC

class Package {
/i@ public model JMLDouble pWeight; class Package {
protected double weight; A _ _ ]
/l@ protected represents weight = pWeight; __public void setWeight(double weight) {
ll@ assume w<=5||w<=8;
I*@ public normal_behavior ]

: Nt s . _ o
% :1‘:::: tvr\:?s'ghvt\,ei fnt —= weight: - /l@ assert this.pWeight == weight
@ also PrE gn -7 o && this.weight == weight;
@ protected normal_behavior }

@ requires weight <= 8;
@ ensures this.weight == weight; _|
public void setWeight(double weight) { }

I* other methods omitted */

this.weight = weight;
}

I* other methods omitted */

}




Information hiding problem statement

we say that a RAC compiler that
checks specifications based at

supplier-side as overly-dynamic



{1 w ¥
JML |
"AOFP

—

The AspectlJML Language

IS one

solution

to the illustrated problem




Client-aware checking approach

class GiftPackage exiends
Package { :

public void setWeight(déuble w){

- !

class Courier :
public void deliver(dou!le w){

L
}

class OtherClient{

void cIientMeth(Packagé p) {
p.setWeight(-1); :

p.-setY(-1);
} :
void helper(.) { I
>
¥ I

class Package {

\ /*@ public behavior

@ requires w <= 5;
@ ensures this.pWeight == w;
@ also
@ protected behavior
@ requires w <= §8;
@ ensures this.weight == w;
@*/
public void setWeight(double w) {...}

CAC cuts through clients
* with proper runtime checks
Runtime checking itself is modular
* based on privacy-kind of clients



Harrison & Harold Ossher on Subjectivity

dandelion woodsman

A A A

pine dandelion bird woodsman

Copyright © 1993 IBM Corporation



Grady Booch on Subjectivity

Abstraction focusas upon the essential charactaristics of some object, relative to the
pearspeactive of the viewer.



CAC implementation with AspectJML

JML annotated
Java source files

s

OOP

AOP >

N

Aspects with
JML features

‘;‘
M|
AOP

i

~ 0 < 0o

=

Class.class

Class.class

Advice

Advice




To hide or not to hide?

class GiftPackage extends
Package { :

public void setWeight(déuble w){

class Package {

S

/*@ public behavior
@ requires w <= 5;

} |
class Courier :

public void dellver(doulle w){

L
}

@ ensures this.pWeight == w;
@ also

@ protected behavior

@ requires w <= §8;

@ ensures this.weight == w;

class OtherClient{

void cllentMeth(Package p) {
p.setWeight(-1); :

p.-setY(-1);
} :
void helper(.) { I
1
¥ I

@*/
public void setWeight(double w) {...}

e CAC cuts through clients

* with proper runtime checks
* Runtime checking itself is modular
* based on privacy-kind of clients



Future work

 Find case studies

* More study on the problems caused
by overly-dynamic checking

* dynamic-dispatch



AspectJML/CAC in action...




Dedicated to the Memory of

Robert France



