Integrating Math Units and Proof Checking for Specification and Verification

Hampton Smith
Kim Roche
Murali Sitaraman
Clemson University

Joan Krone
Denison University

William F. Ogden
Ohio State University

SAVCBS Workshop 2008
SIGSOFT 2008 / FSE 16
November 9th, 2008
Overview

- RESOLVE Verification System
- Role of Proof Checker in Verification System
- Requirements of a Proof Checker in such a system
Overview

- RESOLVE Verification System
- Role of Proof Checker in Verification System
 - Issues
 - Solutions
- Requirements of a Proof Checker in such a system
 - Issues
 - Solutions
RESOLVE Verification System
RESOLVE

• Reusable Software Research Group at Clemson
• Integrated Programming, Specification, and Proof Language
• Full end-to-end verification
 o Scalability
 o Performance
• Isabelle Backend

[cs.clemson.edu/~resolve]
Proof Checkers in a Verification System
PROOF OBLIGATIONS
Precondition
Precondition

Postcondition
Precondition

Postcondition

Invariant
Enhancement for Stacks

Enhancement Flipping_Capability for Stack_Template;

Operation Flip(updates S : Stack);
 ensures S = Rev(#S);

end Flipping_Capability;
Implementation of Flipping

Realization Obvious_Flipping_Realization for Flipping_Capability of Stack_Template;

Procedure Flip (updates S : Stack);
 Var Next_Entry : Entry;
 Var S_Flipped : Stack;

 While (Depth(S) /= 0)
 changing S, Next_Entry, S_Flipped;
 maintaining #S = Rev(S_Flipped) o S;
 decreasing |S|;
 do
 Pop(Next_Entry, S);
 Push(Next_Entry, S_Flipped);
 end;

 S :=: S_Flipped;
end Flip;
end Obvious_Flipping_Realization;
Verification Condition

\[((|S| \leq \text{Max_Depth}) \land (S = (\text{Rev}(?S_Flipped) \circ \text{??S}) \land (|\text{??S}| \neq 0 \land \text{??S} = (<?\text{Next_Entry} > \circ ?S)))) \]

\[\Rightarrow \]

\[(\text{Rev}(?S_Flipped) \circ \text{??S}) = (\text{Rev}(<?\text{Next_Entry} > \circ ?S_Flipped) \circ ?S) \]
A little help

Theorem 1:
\[\forall \alpha \in \text{Str}(E), \forall x \in E, (\alpha \circ \mathcal{X})^\text{Rev} = (\mathcal{X} \circ \alpha^\text{Rev}) \]

Theorem 2:
\[\text{is_Associative}(\circ) \]
Precondition
Postcondition
Invariant

Math Results
Automated Prover

- Precondition
- Postcondition
- Invariant

Math Results
Automated Prover

- Precondition
- Postcondition
- Invariant

User Provided Proof + Proof Checker

Math Results
"Requiring programmers to engage in a fine level of proof activity is unlikely to lead to wide-spread verification [T]he limitations of automated theorem proving often require substantial human intervention."
"Requiring programmers to engage in a fine level of proof activity is unlikely to lead to wide-spread verification The limitations of automated theorem proving often require substantial human intervention."

Clear division between verification conditions and math results.

Rethink the latter as a job for trained mathematicians.
Requirements for such a Proof Checker
Automated Prover

- Precondition
- Postcondition
- Invariant

Math Results

User Provided Proof + Proof Checker
Reusability

<table>
<thead>
<tr>
<th>Programming Language</th>
<th>Proof Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstraction</td>
<td></td>
</tr>
<tr>
<td>Modules</td>
<td></td>
</tr>
<tr>
<td>Interfaces</td>
<td></td>
</tr>
<tr>
<td>Readability</td>
<td></td>
</tr>
</tbody>
</table>
Reusability

Programming Language
- Abstraction
- Modules
- Interfaces
- Readability

Proof Language
- Abstraction
- Modules
- Interfaces
- Readability
Abstraction and Modules

Stack Queue List ...

String Theory

...
Consumers of Theories

- Proof Checker
- Automated Prover
- Mathematicians
- Programmers
Précis vs. Proof Units

Header file for theories.
Précis vs. Proof Units

Précis Natural_Number_Theory;
uses Basic_Function_Properties,
 Monogenerator_Theory...

Inductive Definition on i : N of
 (a : N) + (b) : N is
 (i) a + 0 = a;
 (ii) a + suc(b) = suc(a + b);

Theorem N1:
 Is_Associative(+);

...
Précis vs. Proof Units

Précis Natural_Number_Theory;
uses Basic_Function_Properties, Monogenerator_Theory...

Inductive Definition on i : N of
 (a : N) + (b) : N is
 (i) a + 0 = a;
 (ii) a + suc(b) = suc(a + b);

Theorem N1:
 Is_Associative(+);

... end Natural_Number_Theory;

Proof unit
Natural_Number_Theory_Proofs
for Natural_Number_Theory;
Uses ...

Proof of Theorem N1:
 Goal for all k, m, n: N,
 k + (m + n) = (k + m) + n;
 Definition S1: Powerset(N) =
 {n : N, for all k, m : N,
 k + (m + n) = (k + m) + n};

...
Automated Prover

- Precondition
- Postcondition
- Invariant

User Provided Proof + Proof Checker

Math Results
Isabelle [2]
lemma assumes AB:
"large_A ∧ large_B"
shows
"large_B ∧ large_A"
(is "?B ∧ ?A")
using AB
proof
assume "?A" "?B"
show ?thesis ..
qed

Coq [1]
Variables A B C : Prop.
Lemma and_commutative :
(A ∧ B) -> (B ∧ A).
 intro.
 elim H.
 split.
 exact H1.
 exact H0.
Save.
Mathematical Proof

Supposition \(k, m : \mathbb{N} \)

Goal \(k + (m + 0) = (k + m) + 0 \)

\[k + (m + 0) = k + m \]

\[k + m = (k + m) + 0 \]

Deduction if \(k \in \mathbb{N} \) and \(m \in \mathbb{N} \) then

\[k + (m + 0) = (k + m) + 0 \]

[ZeroAssociativity] For all \(k : \mathbb{N} \), for all \(m : \mathbb{N} \),

\[k + (m + 0) = (k + m) + 0 \]

by universal generalization
RESOLVE Proof Language

Supposition \(k, m: \mathbb{N} \);
Goal \(k + (m + 0) = (k + m) + 0 \);
\(k + (m + 0) = k + m \)

\(k + m = (k + m) + 0 \)

Deduction if \(k \) is_in \(\mathbb{N} \) and \(m \) is_in \(\mathbb{N} \) then
\(k + (m + 0) = (k + m) + 0 \);

[ZeroAssociativity] For all \(k: \mathbb{N} \), for all \(m: \mathbb{N} \),
\(k + (m + 0) = (k + m) + 0 \)

by universal generalization;
Corollary Identity: \(a : N\) and
\[a + 0 = a;\]

Proof of Theorem Nothing:
Supposition \(k, m : N\);
\[(k + m) + 0 = k + m\]
by Corollary Identity & equality;
Deduction if \(k\) is_in \(N\) and
\(m\) is_in \(N\) then
\[(k + m) + 0 = k + m;\]
QED
Corollary Identity: $a : \mathbb{N}$ and $a + 0 = a$;

Proof of Theorem Nothing:
Supposition $k, m : \mathbb{N}$;
$(k + m) + 0 = m + 0$
by Corollary Identity & equality;
Deduction if k is_in \mathbb{N} and m is_in \mathbb{N} then
$(k + m) + 0 = k + m$;
QED

Error: Simple.mt(10):
Could not apply substitution to the justified expression.
$(k + m) + 0 = m + 0$
by Corollary Identity & equality;
Corollary Identity: $a : N$ and $a + 0 = a$;

Proof of Theorem Nothing:
Supposition $k, m : N$;
$(k + m) + 0 = k + m$
by Corollary Identity & or rule;
Deduction if k is_in N and m is_in N then
$(k + m) + 0 = k + m$;
QED

Error: Simple.mt(10):
Could not apply the rule Or Rule to the proof expression.
$(k + m) + 0 = k + m$
by Corollary Identity & or rule;
Conclusions

• A clearer distinction is required between those proof obligations that we expect to be dispatched by an automated prover, and those for which we intend to furnish a proof.

• Programmers should not be required to provide proofs.

• Robust mathematical library of theories is required.

• Techniques from programming languages should be applied to mitigate the complexity of such theories.
References
