
Features Extraction for Sketch-Based Recognition

Lecture #8: Feature Extraction Joseph J. LaViola Jr. Fall 2007

Fall 200

CAP 5937 - Topics in Pen-Based User Interfaces

Feature Extraction and Analysis

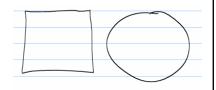
- What came first, the feature or the machine learning algorithm?
- Want to distinguish sketch components from one another
- Good features are critical
- Extract important information
 - geometrical, statistical, contextual
- Examples include
 - arc length, histograms, cusps, aspect ratio
 - self-intersections, stroke area, etc...

Fall 200

CAP 5937 - Topics in Pen-based User Interfaces

©Joseph J. LaViola Jı

Finding Features


- Challenging problem
 - need fast algorithms for gathering information
 - features must be good discriminators
- Often trial and error
- Can be domain specific

all 2007

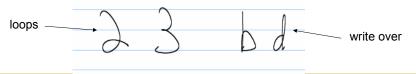
CAP 5937 - Topics in Pen-based User Interfaces

Geometric Features (1)

- Number of strokes
 - if you know how many strokes a symbol has, you can break up your recognizer into pieces (i.e., recognizer for 1 stroke symbols, recognizer for 2 stroke symbols ...)
- Cusps
 - smooth vs. jagged strokes
 - distance between cusps
 - useful for when cusps are close together/far apart

Fall 200

CAP 5937 - Topics in Pen-based User Interfaces


©Joseph J. LaViola Jr

Geometric Features (2)

- Aspect ratio (width / height)
 - □ tall vs. flat

- □ loops vs. no loops
- strokes with write over
- distance between self intersections also useful
- use line segment intersection algorithm

Fall 2007

CAP 5937 - Topics in Pen-based User Interfaces

Geometric Features (3)

- First and last distance
 - Strokes where first and last points are close together vs. far apart
 - \Box simple computation $-\|p_n p_1\|$

- Arc length
 - many different symbols have varying arc lengths
 - □ simple computation as well –

$$l = \sum_{i=2}^{n} ||p_i - p_{i-1}||$$

Fall 2007

CAP 5937 - Topics in Pen-based User Interfaces

©Joseph J. LaViola Jr

Geometric Features (4)

- Stroke area
 - area defined by the vectors created with the initial stroke point and consecutive stroke points.
 - good discriminator for straight vs. curved lines

Given
$$\vec{u}_i = p_{i+1} - p_1$$
 and $\vec{v}_i = p_{i+2} - p_1$

$$s_{area} = \sum_{i=1}^{n-2} \frac{1}{2} (\vec{\mathbf{u}}_{i} \times \vec{\mathbf{v}}_{i}) \cdot \operatorname{sgn}(\vec{\mathbf{u}}_{i} \times \vec{\mathbf{v}}_{i})$$

where $\vec{u}_i \times \vec{v}_i$ is a scalar

Fall 2007

CAP 5937 - Topics in Pen-based User Interfaces

Geometric Features (5)

- Fit line feature
 - sophisticated approach to finding how close a stroke is to a straight line
 - finds a least-squares approximation to a line using principal components and then uses this approximation to find the distance of the projection of the stroke points onto the approximated line
 - outputs a value in [0,1]
- What is another name for this approach?

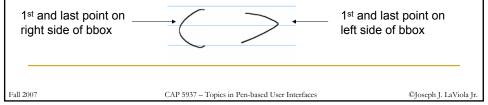
Fall 200

CAP 5937 - Topics in Pen-based User Interfaces

©Joseph J. LaViola Jr.

Fit Line Feature Implementation

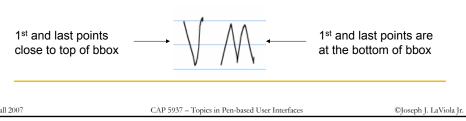
```
(18)
                                                                                         _{
m else}
Input: A set of stroke points P.
                                                                                              if xy_2 = 0
Output: A distance measure
                                                                               (20)
                                                                                                   a \leftarrow b \leftarrow c \leftarrow 0
FITLINE(P)
       \begin{aligned} x_1 \leftarrow \sum_{i=1}^n X(P_i) \\ y_1 \leftarrow \sum_{i=1}^n Y(P_i) \\ x_2 \leftarrow \sum_{i=1}^n X(P_i)^2 \\ y_2 \leftarrow \sum_{i=1}^n Y(P_i)^2 \\ x_{10} \leftarrow \sum_{i=1}^n Y(P_i) \end{aligned}
                                                                               (21)
                                                                                                    error \leftarrow +\infty
                                                                               (22)
                                                                                               else
                                                                              (23)
                                                                               (24)
                                                                                         mag \leftarrow \sqrt{a^2 + b^2}
                                                                               (25)
           xy_1 \leftarrow \sum_{i=1}^n X(P_i)Y(P_i)
                                                                                                  (-ax_1-by_1)/n
                                                                               (26)
(6)
           x_3 \leftarrow x_2 - x_1^2/n
                                                                              (27)
           y_3 \leftarrow y_2 - y_1^2/n
                                                                               (28)
            xy_2 \leftarrow xy_1 - (x_1y_1)/n
                                                                               (29)
           rad \leftarrow \sqrt{(x_3 - y_3)^2 + 4xy_2^2}
(9)
                                                                               (30)
                                                                                         max_1 \leftarrow -\infty
          error \leftarrow (x_3 + y_3 - rad)/2
(10)
                                                                                       for i=1 to n
          rms \leftarrow \sqrt{error/n}
(11)
                                                                                              err \leftarrow aX(P_i) + bY(P_i) + c
                                                                               (32)
          if x_3 > y_3
                                                                                              pX \leftarrow X(P_i) - a \cdot err
                                                                               (33)
               a \leftarrow -2xy_2
(13)
                                                                                              pY \leftarrow Y(P_i) - b \cdot err
                                                                               (34)
(14)
                                                                                             ploc \leftarrow -b \cdot pX + b \cdot pY
                b \leftarrow x_3 - y_3 + rad
                                                                               (35)
          else if x_3 < y_3
(15)
                                                                               (36)
                                                                                              min_1 \leftarrow \min(min_1, ploc)
                                                                              (37) max_1 \leftarrow \max(max_1, ploc)
(38) \operatorname{return} \frac{100 \cdot pms}{max - min}
(16)
                a \leftarrow y_3 - x_3 + rad
(17)
                b \leftarrow -2xy_2
```


Fall 2007

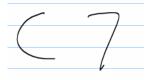
CAP 5937 - Topics in Pen-based User Interfaces

Statistical Features (1)

Side ratios


- first and last point of strokes have variable locations with respect to the bounding box
- Approach
 - take the x coordinates of the first and last point of a stroke
 - subtract them from the left side of the symbol's bounding box (i.e., the bounding box's leftmost x value)
 - divide by the bounding box width.

Statistical Features (2)


Top and Bottom ratios

- similar to side ratios except we are dealing with y coordinate
- approach
 - take y coordinate of the first and last point of a stroke
 - subtract from the top of the symbol's bounding box (i.e., the bounding box's topmost y value)
 - these values are divided by the bounding box height.

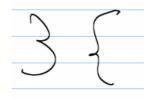
Statistical Features (3)

- Point Histogram
 - distribution of point locations in stroke bounding box
 - discrimination where point concentrations are high
 - approach
 - break up box into n x m grid
 - Count number of points in each sub box
 - divide by total number of points

Fall 2007

CAP 5937 - Topics in Pen-based User Interfaces

©Joseph J. LaViola Jr

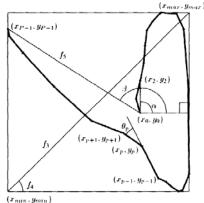

Statistical Features (4)

- Angle Histogram
 - similar to point histogram except dealing with angles
 - Approach

Given
$$\vec{\mathbf{v}}_{j} = p_{i} - p_{i-1}$$
 for $2 \le i \le n$ and $\vec{x} = (1,0)$

$$\alpha_{j} = \arccos\left(\vec{x} \cdot \frac{\vec{v}_{j}}{\left\|\vec{v}_{j}\right\|}\right)$$

put angles into bins of n degrees



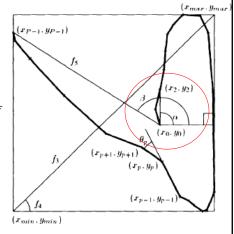
Fall 2007

CAP 5937 - Topics in Pen-based User Interfaces

The Rubine Feature Set (Rubine 1991)

- Part of Rubine's gesture recognition system
 - we will see this next class
- Stroke
 - P = total number of points
 - p = middle point
 - \Box first point (x_0, y_0, t_0)
 - \Box last point $(x_{P-1}, y_{P-1}, t_{P-1})$

Fall 200

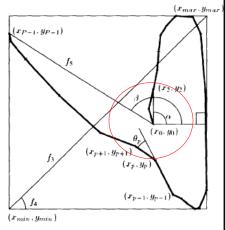

CAP 5937 - Topics in Pen-based User Interfaces

©Joseph J. LaViola Jr.

Feature f₁

Cosine of starting angle

$$f_1 = \cos(\alpha) = \frac{(x_2 - x_0)}{\sqrt{(x_2 - x_0)^2 + (y_2 - y_0)^2}}$$


Fall 2007

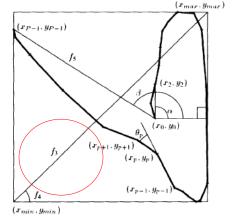
CAP 5937 - Topics in Pen-based User Interfaces

Feature f₂

Sine of starting angle

$$f_2 = \sin(\alpha) = \frac{(y_2 - y_0)}{\sqrt{(x_2 - x_0)^2 + (y_2 - y_0)^2}}$$

Fall 2007

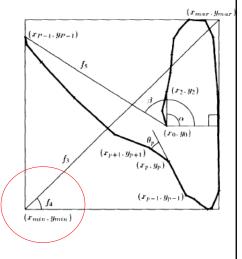

CAP 5937 - Topics in Pen-based User Interfaces

©Joseph J. LaViola Jr.

Feature f₃

$$f_3 = \sqrt{(x_{\text{max}} - x_{\text{min}})^2 + (y_{\text{max}} - y_{\text{min}})^2}$$

 Length of diagonal of bounding box (gives an idea of the size of the bounding box)


Fall 2007

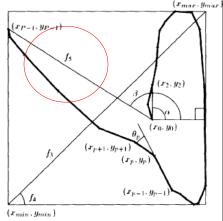
CAP 5937 - Topics in Pen-based User Interfaces

Feature f₄

- Angle of diagonal
- gives an idea of the shape of the bounding box (long, tall, square)

$$f_4 = \arctan\left(\frac{y_{\text{max}} - y_{\text{min}}}{x_{\text{max}} - x_{\text{min}}}\right)$$

Fall 2007

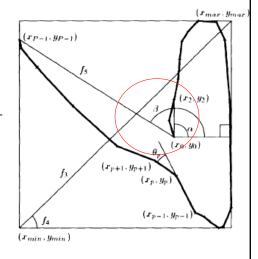

CAP 5937 - Topics in Pen-based User Interfaces

©Joseph J. LaViola Jr.

Feature f₅

$$f_5 = \sqrt{(x_{P-1} - x_0)^2 + (y_{P-1} - y_0)^2}$$

 Distance from start to end of stroke


Fall 2007

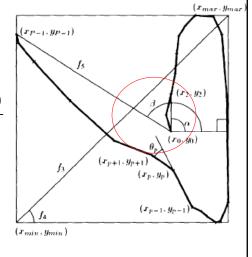
CAP 5937 - Topics in Pen-based User Interfaces

Feature f₆

Cosine of ending angle

$$f_6 = \cos(\beta) = \frac{(x_{P-1} - x_0)}{f_5}$$

Fall 200


CAP 5937 - Topics in Pen-based User Interfaces

©Joseph J. LaViola Jr.

Feature f₇

Sine of ending angle

$$f_7 = \sin(\beta) = \frac{(x_{P-1} - x_0)}{f_5}$$

Fall 2007

CAP 5937 - Topics in Pen-based User Interfaces

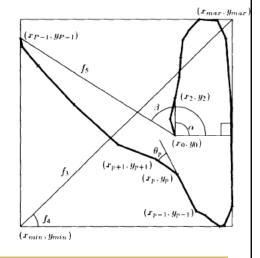
More Definitions (before we continue)

Let
$$\Delta \mathbf{x}_p = x_{p+1} - x_p$$
 and $\Delta y_p = y_{p+1} - y_p$

$$\mathrm{Let}\,\theta_p = \mathrm{arctan}\,\frac{\Delta x_p \Delta y_{p-1} - \Delta x_{p-1} \Delta y_p}{\Delta x_p \Delta x_{p-1} + \Delta y_p \Delta y_{p-1}} \quad \mathrm{^{Directional}}_{\mathrm{angle}}$$

$$\operatorname{Let} \Delta t_p = t_{p+1} - t_p \quad \text{ Time delta}$$

Fall 200

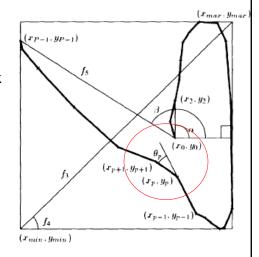

CAP 5937 - Topics in Pen-based User Interfaces

©Joseph J. LaViola Jr.

Feature f₈

Total stroke length

$$f_8 = \sum_{p=0}^{P-2} \sqrt{\Delta x_p^2 + \Delta y_p^2}$$


Fall 2007

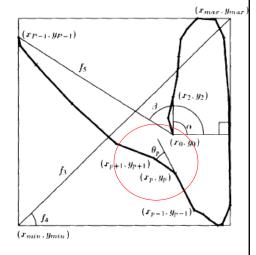
CAP 5937 - Topics in Pen-based User Interfaces

Feature f₉

- Total rotation (from start to end point)
- (not the same as β-α think of spirals)

$$f_9 = \sum_{p=1}^{P-2} \theta_p$$

Fall 2007

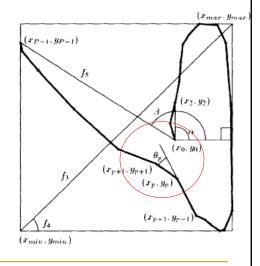

CAP 5937 - Topics in Pen-based User Interfaces

©Joseph J. LaViola Jr.

Feature f₁₀

- Absolute rotation
- How much does it move around

$$f_{10} = \sum_{p=1}^{P-2} \left| \theta_p \right|$$


Fall 2007

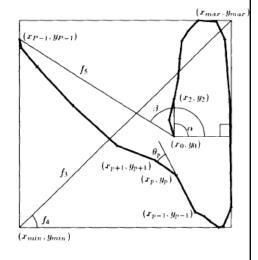
CAP 5937 - Topics in Pen-based User Interfaces

Feature f₁₁

- Rotation squared
- How smooth are the turns?
- Measure of sharpness

$$f_{11} = \sum_{p=1}^{P-2} \theta_p^2$$

Fall 2007

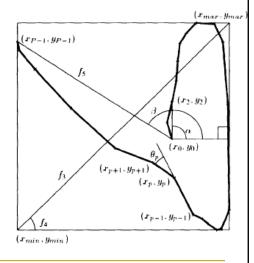

CAP 5937 - Topics in Pen-based User Interfaces

©Joseph J. LaViola Jr.

Feature f₁₂

The maximum speed reached (squared)

$$f_{12} = \max_{p=0}^{P-2} \frac{\Delta x_p^2 + \Delta y_p^2}{\Delta t_p^2}$$


Fall 2007

CAP 5937 - Topics in Pen-based User Interfaces

Feature f₁₃

Total time of stroke

$$f_{13} = t_{P-1} - t_0$$

Fall 2007

CAP 5937 - Topics in Pen-based User Interfaces

©Joseph J. LaViola Jr.

Next Class

- Start discussing machine learning algorithms
 - □ linear classifiers (e.g., Rubine)
 - template matching
 - SVM
 - AdaBoost
 - □ etc...

Fall 2007

CAP 5937 - Topics in Pen-based User Interfaces