

- Introduction
 - specific geospatial domain, battlespace reasoning

Complex and important task

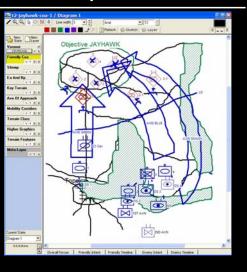
– Warfare

- Requires coordinating an array of various units, equipment
- Achieve goals in situations with great uncertainty and danger
- Terrain effects movement, provides cover and concealment, and effects the operation of sensors

Thus, geospatial reasoning must provide a role in generating and reasoning about battle plans

Qualitative Spatial Reasoning about Sketch Maps

- Introduction
 - Problem with current systems
 - Commanders don't want to use mouse and menus
 - Want to use sketch and interact with their people


- Solution...

nuSketch Battlespace (nSB)

Overview of nSB

- Avoid recognition issues by using clever interface design
- Focus on richer visual and conceptual understanding of what is sketched
- Two Systems have been developed:
 - nuSketch Battlespace (nSB): for battlespace reasoning
 - Sketch Knowledge Entry Associate (sKEA): generalpurpose knowledge capture

- large knowledge base concerning specialized military concepts
- Allows user to specify conceptual information
 - · Types of entities
 - Timing information
 - Intent of actions
- Also
 - Sketch terrain
 - · Specialized areas
 - Paths (engagement areas, axes of advance)
 - Position units
 - · Assign tasks and reasons for doing them

- Representing Glyphs and Sketches
 - Basic unit in a sketch is a glyph, every glyph has *ink* and its *content*
 - <u>Ink</u> consists of one or more polylines (points/width/color)
 - <u>Content</u> is a conceptual entity (the kind of thing that the glyph is representing)
 - [example] if user drew a mountain range, there would be an entity created to represent the glyph itself and an entity to represent the mountain range.

Glyph bar -

- Type of glyph content affects the interpretation of its spatial properties
- [example] spatial extent representation of glyphs
 - Spatial extent of mountains and lakes are taken to be the spatial extent of that terrain feature.
 - Spatial extent of military unit is ignored, since the size of such glyphs has nothing to do with its footprint on the ground
 – centroid is used in spatial reasoning
 - Spatial extent of paths (roads and rivers) have one-dimensional extent, where width is not tied to the width of the line but is specified by special gestures

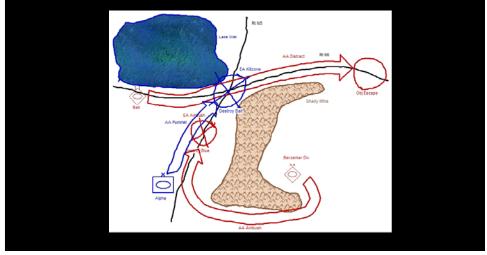
- Three types of Spatial Relationships
 - Types of Qualitative topological relationships
 - 2 glyphs can be disjoint (DC), touching (EC), or inside one another (TPP, NTPP)
 - Voronoi relationships
 - Diagram consisting of edges that are equidistant from a pair of points
 - Constructs obstacle and cost diagrams and the quad tree representation used in path-finding
 - Positional relationships
 - Provide position and orientation with respect to a global coordinate system

Qualitative Spatial Reasoning about Sketch Maps

- Position-finding
 - Two important constraints in military spatial reasoning:
 - fields of fire (i.e., what can someone's weapon see?)
 - Observations (i.e., what can someone see?)
 - terrain features
 - Mountaints block weapons, and thus provide cover
 - Forest block visibility, and thus provide <u>concealment</u>
 - ...finding these positions is an important subtask in

military planning

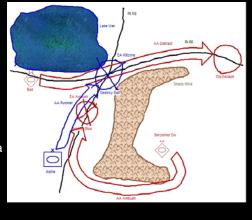
[concealment example]

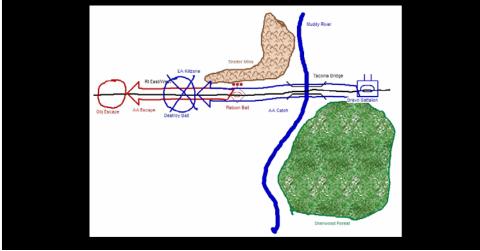

- Trying to find all regions where someone could hide from us
- Table indicates what kinds of terrain regions units can hide in
- (V) For each unit on our side, a new polygon is constructed by ray-casting to represent the region that is visible from that unit
- (W) polygons that result from subtracting out places where units cannot be (e.g., in lakes)
- (W V) places where an enemy could hide
- Fields of fire and cover, are computed similarly, using cover constraints and weapon ranges

Terrain Type	Concealed?	Cover?
Mountains	Yes	Yes
Hills	Yes	Yes
Open/rolling hills	No	Yes
Forest	Yes	Partial
Jungle	Yes	Partial
Desert	No	No
River	No	No
Bridge	No	No
City	Yes	Yes
Road	No	No

- Path-finding
 - Obstacles depend on type of unit moving
 [example] Forests are considered untrafficable for vehicles but trafficable by infantry
 - Cost of movement depends on type of terrain
 - [example] Takes longer for infantry to move through a swamp than through a desert
 - Divide space into regions
 - UR, "go" unrestricted terrain
 - R, "slow go" restricted terrain (high cost)
 - SR, "no go" severly restricted terrain (obstacles)

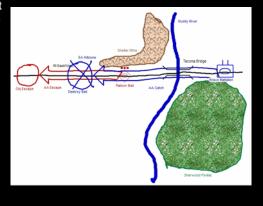
Terrain Type	Armor	Infantry
Mountain	SR	R
Hills	R	UR
Open/rolling hills	UR	UR
Forest	SR	R
Jungle	R	R
Desert	UR	UR
River	SR	SR
Bridge	UR	UR
City	R	UR
Road	UR	UR


Example: Hypothesizing enemy intent by analogy


Qualitative Spatial Reasoning about Sketch Maps

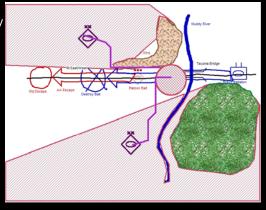
Example: Hypothesizing enemy intent by analogy

- unit Bait is trying to escape Alpha Battalion which is planning to destroy it at EA killzone
- Berserker Division (hiding behind the mountain range) attacks Alpha from the rear as Alpha goes after Bait, causing considerable damage
- The ambush is successful because the attacker was concealed and could travel to an engagement area on Alpha's path


Example: Hypothesizing enemy intent by analogy

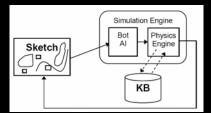
Qualitative Spatial Reasoning about Sketch Maps

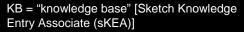
Example: Hypothesizing enemy intent by analogy


- Your unit, Bravo, sees enemy unit Bait trying to escape, and you are tempted to go after it
- Having heard about what happened to Alpha, you are worried.
- Using nSB, you can ask for hypothesized enemy tasks about the current situation based on the precedent sketched state

Example: Hypothesizing enemy intent by analogy

Answer


- There are 2 places that an enemy unit might be hiding, to carry out an ambush similar to what happened before
- The pink circle represents the engagement area, the regions represent possible starting locations for Red, and the purple lines indicate hypothetical paths



Qualitative Spatial Reasoning about Sketch Maps

Example: Hypothesizing enemy intent by analogy

- Structure-Mapping Engine (SME) is the cognitive simulation of analogical matching
 - Backed by considerable psychological evidence
- nSB runs SME on both visual and conceptual information
- SME derives set of candidate inferences about the current situation based on the comparison
- Next, the set is searched to see if there is a hypothesized task which acts on a blue unit
 - Such a task represents something the enemy might be doing



Example: Hypothesizing enemy intent by analogy

- If such a task is found, a new entity is created to represent that task, and SME is re-invoked to mine the analogy further
- After all info about the hypothetical task is mined from the analogy, the system will determine if this task is plausible
- (current system) ignores factors such as relative combat power
 - Solve for locations and paths involved in the task to see if we can find positions and a path that satisfy the task's contraints

- User Experience
 - AlphaTech and Teknowledge
 - BBN's CADET system if active-duty military personnel could successfully create COAs
 Result: 3-5x faster w/o degradation in plan quality
 - DARPA's Rapid Knowledge Formation program
 - DARPA's Command Post of the Future program
 - KRAKEN system from the Cycorp team combined with the SHAKEN system from the SRI team
- Overall generals were able to analogies between battlespace states within an hour of sitting down with the software for the first time.

- Future Work [3 key problems to address]
 - 1. Optimization within constraint solutions (e.g., picking optimal combinations of starting and ending positions and paths)
 - Important for supporting war-gaming, where one wants to see how a plan survives the best that an opponent might throw at it
 - 2. Sketch retrieval (i.e., automatically finding precedents to be used in generating enemy intent hypotheses and COAs)
 - 3. Moving beyond *blob semantics* (i.e., using more info about glyph shapes in matching and retrieval)

