
Providing Data Structure Animations in a

Lightweight IDE

Dean Hendrix1 James H. Cross2 Jhilmil Jain3

Larry Barowski4

Department of Computer Science and Software Engineering
Auburn University

Auburn, Alabama 36849 USA

Abstract

This paper presents the data structure animation tool jGRASP, which can automatically generate multiple
synchronized views while the underlying code is being developed. The seamless integration of the the IDE
with pedagogically effective software visualizations makes jGRASP an interesting tool for both educators
and students.

Keywords: Visualization, data structures, IDE, jGRASP

1 Introduction

Although many visualization techniques have been shown to be pedagogically ef-

fective, they are still not widely adopted. The reasons include: lack of suitable

methods of automatic-generation of visualizations; lack of integration among visu-

alizations; and lack of integration with basic integrated development environment

(IDE) support. To effectively use visualizations when developing code, it is useful to

automatically generate multiple synchronized views without leaving the IDE. The

jGRASP IDE (http://jgrasp.org) provides object viewers that automatically gener-

ate dynamic, state-based visualizations of objects and primitive variables in Java.

Such seamless integration of a lightweight IDE with a set of pedagogically effective

software visualizations should have a positive effect on the usefulness of software

1 Email: hendrtd@auburn.edu
2 Email: crossjh@auburn.edu
3 Email: jainjhi@auburn.edu
4 Email: barowla@auburn.edu

Electronic Notes in Theoretical Computer Science 178 (2007) 101–109

1571-0661/$ – see front matter © 2007 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2007.01.039

mailto:hendrtd@auburn.edu
file:crossjh@auburn.edu
mailto:jainjhi@auburn.edu
mailto:barowla@auburn.edu
http://www.elsevier.com/locate/entcs


visualizations in a classroom environment. Multiple instructors have reported pos-

itive anecdotal evidence of their usefulness. We conducted formal, repeatable ex-

periments to investigate the effect of these viewers for singly linked lists on student

performance and we found a statistically significant improvement over traditional

methods of visual debugging that use break-points. Similar experiments, but which

focus on binary search trees, are currently underway.

2 Related Work

The approach we have taken for the state-based viewers in jGRASP to automat-

ically generate the visualization from the user’s executing program and then to

dynamically update it as the user steps through the source code in either debug or

workbench mode. This is somewhat similar to the method used in Jeliot [7]. How-

ever, jGRASP differs significantly from Jeliot in its target audience. Whereas Jeliot

focuses on beginning concepts such as expression evaluation and assignment of vari-

ables, jGRASP includes visualizations for more complex structures such as linked

lists and trees. In this respect, jGRASP is similar to DDD [10]. The data structure

visualization in DDD shows each object with its fields and shows field pointers and

reference edges. In jGRASP, each category of data structure (e.g., linked list vs.

binary tree) has its own set of views and subviews which are intended to be similar

to those found in textbooks. Although we are planning to add a general linked

structure view, we began with the more intuitive “textbook” views to provide the

best opportunity for improving the comprehensibility of data structures. We have

specifically avoided basing the visualizations in jGRASP on a scripting language,

which is a common approach for algorithm visualization systems such as JHAVE [8].

We also decided against modifying the user’s source code as is required by systems

such as LJV [2]. Our philosophy is that for visualizations to have the most impact

on program understanding, they must be generated as needed from the user’s actual

program during routine development.

3 Motivation

All Computer Science, Software Engineering, and Wireless Engineering majors at

Auburn University are required to take the COMP 1210 course (an objects-early CS1

in Java) followed by the COMP 2210 course (a Java-based CS2). Data structures

and algorithms are abstract concepts, and the understanding of this topic and the

material covered in class can be divided into two levels: a) Conceptual - where

students learn concepts of operations such as create, add, delete, sort etc; and b)

Coding - where students implement the data structure and its operations using any

programming language (Java in our case). Attrition from our computing majors is

most noticeable during the CS2 course.

We conducted paper-based surveys and one-on-one interviews in Fall 2004 and

Spring 2005 to understand the aspects of the CS2 course that students find most

difficult [4]. One result of the surveys was a clear indication that students did not

D. Hendrix et al. / Electronic Notes in Theoretical Computer Science 178 (2007) 101–109102



find fundamental concepts difficult to understand but had much more trouble with

the implementation. This survey result was supported by data from the course

grades. About 75% of students indicated that they had an appropriate level of

expertise in Java to complete the requirements of CS2. The basic problem was

that students have difficulty transitioning from static textbook concepts to dynamic

programming implementation [9]. Thus, there is a need to bridge the gap from

concepts to implementation.

[1] report that between 75-80% of students are visual learners. Most students

will retain more information when it is presented with visual elements (pictures,

diagrams, flowcharts, etc). In programming, visual learners can benefit from creat-

ing diagrams of problem solutions (e.g., flowcharts) before coding. Similarly, visual

representations of data structure states should help in data structure understand-

ing. Thus, it would be beneficial to have a tool that enables students to visualize

both the conceptual and the implementation aspects of data-structures.

We surveyed over 21 tools that are used for the purpose of data structure vi-

sualization [5] and found that most tools (more than 14 in our survey) focused on

conceptual understanding. We found that only 7 implementation level tools were

available to help students during program comprehension and debugging activities.

None of these implementation tools fulfilled all of our goals, viz.,

• serve the dual purpose of classroom demonstration and development environment

(i.e. can be used for lab exercises and assignments)

• provide automatic generation of views

• provide multiple and synchronized views

• provide full control over the speed of the visualization

• bridge the gap between abstract learning and code implementation

4 jGRASP Object Viewers

During execution, Java programs will usually create a variety of objects from both

user and library classes. Since these objects only exist during execution, being

able to visualize them in a meaningful way can be an important element of program

comprehension. Although this visualization can be done mentally for simple objects,

most programmers can benefit from seeing more tangible representations of complex

objects while the program is running.

Beginning with version 1.8, the jGRASP IDE provides a family of dynamic

viewers for objects and primitives. These viewers are the most recent addition to

the software visualizations provided by jGRASP. The purpose of a viewer is to

provide one or more views of a particular class of objects. When a class has more

than one view associated with it, the user can open multiple viewers on the same

object with a separate view in each viewer. These viewers are tightly integrated

with the jGRASP workbench and debugger and can be opened for any item in

the Workbench or Debug tabs from the Virtual Desktop (see Figure 1). Since the

jGRASP integrated debugger is used to collect the runtime information necessary to

D. Hendrix et al. / Electronic Notes in Theoretical Computer Science 178 (2007) 101–109 103



Fig. 1. jGRASP Virtual Desktop

render the visualizations, a program must run in the debugger or from the jGRASP

workbench for its data structures to be visualized. A separate viewer window can

be opened for any primitive, object, or field of an object that is currently active

on the workbench or in the debugger tab by simply dragging and dropping an icon

from the debugger or workbench to the jGRASP desktop. Thus, these viewers are

effortless with respect to the amount of work required of the student to create and

use them.

All objects have a basic view, which is the same as the view shown in the

workbench and debug tabs. This view shows all the values associated with the

object in a collapsible hierarchy. Depending on their data type, some objects will

have additional views. Figures 2a and 2b show object viewers for an array of integers

(int) and an instance of java.util.TreeMap. Each is shown in a presentation view

which is intended to be similar to a textbook depiction or to what an instructor

might draw on the board. jGRASP provides presentation viewers for arrays, strings,

and classes from the Java Collections Framework.

5 Animated Verifying Viewers

Viewers fall into two categories: non-verifying and verifying. The non-verifying

viewers assume that the structure of the object being viewed is correct, and generally

use method calls to elaborate the structure. When a structure gets beyond a certain

size, the non-verifying viewers will examine only the part of the structure that is on-

screen. Because of this, they can be used to examine large structures without slowing

the debugging process excessively. The non-verifying viewers would generally be

used to examine the contents of a structure in the context of an algorithm that

uses it, rather than to examine the workings of the data structure itself. Viewers

for “built-in” data structures (e.g., arrays, JCF classes) are all non-verifying. Non-

verifying viewers are discussed in further detail in [3].

The purpose of the verifying viewers is to aid in the understanding of the data

D. Hendrix et al. / Electronic Notes in Theoretical Computer Science 178 (2007) 101–109104



(a)

(b)

Fig. 2. (a) Viewer for an array of ints. (b) Viewer for an instance of java.util.TreeMap.

structures themselves, and to assist in finding errors while students are developing

their own implementation of a data structure. To further this intended use, any

local variables of the structure’s node type are also displayed, along with any nodes

to which they are linked. Links between these local variable nodes or structure

fragments and the main structure are displayed. This allows mechanisms of the data

structure such as finding, adding, moving, and removing elements to be examined

in detail by stepping through the code.

As an additional aid to understanding the mechanisms of the data structure,

the verifying viewers animate structural changes. In order to do this, they store a

representation of the entire data structure at each update (viewer updates happen

at a breakpoint or after a step in the debugger). At each update, the value from

D. Hendrix et al. / Electronic Notes in Theoretical Computer Science 178 (2007) 101–109 105



the previous update (which may or may not be the same as the current value)

is examined for changes. If any nodes in the structure have moved, the viewer

enters into animation mode. In this mode, an “animation update” occurs at regular

intervals. During animation, the previous structure value and previous local variable

nodes and structure fragments (which may or may not be present any longer) are

displayed. Node locations are interpolated so that they move smoothly from their

old locations to the new ones, within and between the main structure and local

variable nodes and structure fragments. At the end of animation, the new structure

value and new local variable nodes and structure fragments are displayed.

Animated verifying viewers for data structures are currently created by extend-

ing the base viewer classes provided with the jGRASP. When placed in a viewer

directory, these viewers are available to any program executing in debug or work-

bench mode. A user can simply drag and drop the object reference anywhere on

the screen. The viewer will be automatically updated as the user steps through the

code. If multiple viewers are implemented for the same class, the user simply makes

a selection from a drop down list in the viewer window. We are currently working

towards a viewer mechanism which will attempt to identify the type of structure, if

any, defined by a user’s class, and then map the internal fields of the class onto an

appropriate category of viewer class (e.g., linked list). This will drastically reduce

the need to manually extend the base viewer classes. When the user opens a viewer,

the goal is for jGRASP to determine the inherent data structure of the object and

display the most appropriate view.

Figure 3 shows three frames from an animation sequence generated by a verifying

viewer. The viewer was opened on an instance of a binary search tree class used

in the CS2 textbook. These frames depict the insertion of a new element (35)

into an existing binary search tree. Using this viewer, students are able to watch

the pointer (current) walk down the tree nodes to find the proper insertion point,

and then watch as the new node “slides” into place as the left child of 40. All

this is done as they are stepping through the code, thus making an immediate

connection between the abstract behavior demonstrated in class and the concrete

implementation embodied in the code.

6 Evaluation

We are currently conducting controlled experiments to test the following hypotheses:

(i) Students are able to code more accurately (with fewer bugs) using the jGRASP

data structure viewers.

(ii) Students are able to find and correct ”non-syntactical” bugs faster using

jGRASP viewers.

Two experiments focusing on linked lists have already been performed and sta-

tistically significant results were obtained [6]. Data analysis from these experiments

show that animated verifying viewers increase both accuracy and speed for students

during development and debugging of their linked list code. Two follow-on experi-

D. Hendrix et al. / Electronic Notes in Theoretical Computer Science 178 (2007) 101–109106



Fig. 3. Snapshots from an animated verifying viewer for a “textbook” binary search tree.

D. Hendrix et al. / Electronic Notes in Theoretical Computer Science 178 (2007) 101–109 107



ments have just now been performed, but the data analysis is not complete. These

experiments focused on binary search trees rather than linked lists.

6.1 Tree Experiment 1

The hypothesis being tested was that students will be more productive during devel-

opment (will code faster and with greater accuracy) using the jGRASP data struc-

ture viewers. Students were asked to implement one operation for linked binary

search trees. The class LinkedBinaryTree.java from the class textbook was used in

this experiment. Students were provided a detailed description of the programming

assignment and the grading policy. Students were required to work independently

and were timed (although there was no time limit to complete the assignment). The

independent variable was the visualization medium (coding using jGRASP viewers

vs. without viewers). The dependent variables were: time taken to complete the

assignment, and the accuracy of the assignment.

The control group implemented the method levelOrder() using the jGRASP vi-

sual debugger without the viewers. The driver program provided to this group

contained a toString() method so that they could print out the contents of the

list without writing additional code. The treatment group implemented the same

method using the jGRASP visual debugger with the object viewers. Since our al-

gorithm for levelOrder() traversal required three different data structures, we pro-

vided the students with three viewers (for LinkedBinaryTree, LinkedQueue and

ArrayUnorderedList). The driver program given to this group did not contain the

toString() method, so the subjects had to use the viewers in order to see the con-

tents of the data structures. The machines in the lab were set up with permissions

such that only the treatment group had access to the viewers.

6.2 Tree Experiment 2

Our hypothesis was that students are able to detect and correct logical bugs in

less time when using jGRASP viewers. A Java program that implemented a linked

binary search tree was provided. The program contained a total of 5 logical errors,

one in each of the following five methods addElement(), removeElement(), find(),

preorder(), and postOrder(). Students were asked to find and correct all the logical

errors. The independent variable was the visualization medium (finding errors using

jGRASP viewers vs. without viewers). The dependent variables were: number of

bugs found, number of bugs accurately corrected, and number of new bugs intro-

duced in the program while performing the experiment. Both the groups were first

required to identify and document errors. Next, similar to experiment 1, the con-

trol group corrected the detected errors using the jGRASP visual debugger without

the viewers and the treatment group corrected the errors using the jGRASP visual

debugger with the object viewers.

While the data analysis for these two experiments is not yet complete, anec-

dotal evidence from students suggests that the positive results from the linked list

experiments will be replicated in the binary search tree experiments.

D. Hendrix et al. / Electronic Notes in Theoretical Computer Science 178 (2007) 101–109108



7 Conclusion

jGRASP object viewers automatically generate dynamic, state-based visualizations

of objects and primitive variables in Java. Multiple synchronized visualizations of

an object, including complex data structures, are immediately available to users

within the IDE. Multiple instructors have used these viewers in CS1 and CS 2 and

have reported positive anecdotal evidence of their usefulness. Formal, repeatable

experiments with linked lists have indicated statistically significant positive results

on student performance. Follow-on experiments with binary search trees have just

been completed, and anecdotal evidence and student feedback suggest that they

will yield similar positive results.

References

[1] Felder, R. and L. Silverman, Learning and teaching styles in engineering education, Engineering
Education 78 (1988), pp. 674–681.

[2] Hamer, J., A lightweight visualizer for java, in: Proceedings of Third Progam Visualization Workshop,
2004, pp. 55–61.

[3] Hendrix, D., J. Cross and L. Barowski, An extensible framework for providing dynamic data structure
visualizations in a lightweight ide, in: Proceedings of the 35th SIGCSE Technical Symposium on
Computer Science Education, 2004, pp. 387–391.

[4] Jain, J., N. Billor, D. Hendrix and J. Cross, Survey to investigate data structure understanding,
in: Proceedings of the International Conference on Statistics, Combinatorics, Mathematics and
Applications, Auburn, Alabama USA, 2005.

[5] Jain, J., J. Cross, and D. Hendrix, Qualitative assessment of systems facilitating visualization of data
structures, in: Proceedings of 2005 ACM Southeast Conference, Kennesaw, Georgia USA, 2005.

[6] Jain, J., J. Cross, D. Hendrix and L. Barowski, Experimental evaluation of animated-verifying object
viewers for java, in: SoftViz 2006 (submitted), 2006.

[7] Kannusmaki, O., A. Moreno, N. Myller and E. Sutinen, What a novice wants: students using program
visualization in distance programming course, in: Proceedings of Third Progam Visualization Workshop,
2004, pp. 126–133.

[8] Naps, T., Jhave: supporting algorithm visualization, IEEE Computer Graphics and Applications
Sep/Oct (2005), pp. 49–55.

[9] Shaffer, C., L. Heath and J. Yang, Using the swan data structure visualization system for computer
science education, in: Proceedings of SIGCSE 1996, 1996, pp. 140–144.

[10] Zeller, A., Visual debugging with ddd, Dr. Dobb’s Journal July (2001).

D. Hendrix et al. / Electronic Notes in Theoretical Computer Science 178 (2007) 101–109 109


	Introduction
	Related Work
	Motivation
	jGRASP Object Viewers
	Animated Verifying Viewers
	Evaluation
	Tree Experiment 1
	Tree Experiment 2

	Conclusion
	References

