
Fluid Inking: Augmenting the Medium of Free-Form Inking with Gestures
Robert Zeleznik Timothy Miller

Computer Science Department
Box 1910

Brown University
Providence, RI 02912

{bcz,tsm}@cs.brown.edu

ABSTRACT

We present Fluid Inking, a generally applicable approach to aug-
menting the fluid medium of free-form inking with gestural com-
mands. Our approach is characterized by four design criteria, in-
cluding: 1) pen-based hardware impartiality: all interactions can
be performed with a button-free stylus, the minimal input hardware
requirement for inking, and the least common denominator device
for pen-based systems ranging from PDAs to whiteboards; 2) per-
formability: gestures use short sequences of simple and familiar
inking interactions that require minimal targeting; 3) extensibility:
gestures are a regular pattern of optional shortcuts for commands in
an arbitrarily scalable menu system; and 4) discoverability: gesture
shortcuts (analogous to modifier keys) are displayed in the interac-
tive menu and are suggested with dynamic feedback during inking.
This paper presents the Fluid Inking techniques in the unified con-
text of a prototype notetaking application and emphasizes how post-
fix terminal punctuation and prefix flicks can disambiguate gestures
from regular inking. We also discuss how user feedback influenced
the Fluid Inking design.

CR Categories: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Graphical user interfaces; H.5.2 [Information In-
terfaces and Presentation]: User Interfaces—Input devices and
strategies; H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Interaction styles;

Keywords: gestures, button-free, terminal punctuation, inking,
tablet computing

1 INTRODUCTION

Our motivation to design Fluid Inking developed from our sens-
ing an unnecessarily large gap between interacting with the fluid
medium of paper-and-pencil and with the user interfaces of current
general-purpose inking applications, including those that incorpo-
rate gestures. Although we could not completely identify the factors
that contribute to this distance, we intuitively felt that expansion of
the free-form inking input domain to include special-purpose hard-
ware buttons played an important role. Thus, a pervasive theme of
our research was to make all functionality available through inter-
actions that technically already exist in free-form inking. The chal-
lenge then was to implicitly distinguish interactions intended to be
commands from those intended to be free-form ink. By definition
this problem is not computable without knowing the mental state
of the user; however, by making assumptions about the likelihood
of certain interaction sequences, we believed that it was possible to
make a system that was, in practice, effective.

Figure 1: The blue strokes in the top row each correspond to two-
stroke gestures (delete, select, and paste), assuming the tap comes
last. Despite superficial similarity to those on top, none of the strokes
in the second row triggered gestures. The smiley face, however,
might trigger a gesture if drawn in an unusual order (e.g., mouth,
head, eyes or face, hair, eyes).

To guide our design, we developed four criteria that we felt were
minimally necessary to create a generally applicable approach to
augmenting free-form inking with gestural interaction. These crite-
ria include: pen-based hardware impartiality, performability, exten-
sibility, and discoverability. Since the two prevailing and previously
unintegrated gestural interface approaches—memorizing a catalog
of “invented” gesture symbols, and automatizing marking menu
interactions—are each successful with regard to some of these re-
quirements, our solution is a hybrid.

Despite the success some people have using special hardware
buttons to indicate gestural commands, we were motivated to de-
velop gestural techniques that did not require anything other than
what inking requires, a button-free stylus. In addition to not restrict-
ing any pen-based device platforms (PDAs, tablets, whiteboards),
this button-free approach also supports individuals who simply do
not like using stylus or external buttons due to finger strain, awk-
wardness, or disruption. However, in the spirit of generality, Fluid
Inking techniques can also be invoked with buttons, either as a mat-
ter of preference, or to avoid any potential recognition errors or
inking conflicts.

To simplify recall and performance of a potentially (but not nec-
essarily) large gesture set, we use multi-stroke gestures comprised
of regular sequences of simple, familiar strokes. Multi-stroke se-
quences avoid the performance problems that arise when chunking
entire actions into single physical phrases [22]. Thus, our design
uses two simple patterns for disambiguating gestures from regular
inking: the use of prefix flicks [17] (fast straight lines), or postfix
terminal punctuation (fast taps, or short pauses). In addition, we
developed techniques that extend the functionality of buttons and
widgets with very simple linear gestures.

Given that conventional keyboard shortcuts are not uniformly
chosen over menu and toolbar interactions, our analogous gesture
shortcuts must also be considered an optional, albeit accelerated,
secondary interface to functionality. We use a menu system as an
extensible primary interface where gestures are visually denoted in
order to be discoverable in the same way as conventional modifier-
key shortcuts (i.e., there is no upfront requirement to learn the full
gesture set); however, we also provide visual feedback of potential

gestures while inking both to make novices aware of the existence
of gestures, and to provide feedback during multi-stroke gesture se-
quences.

The body of this paper details Fluid Inking’s contributions in
three areas, including:

• Pen-based menu interaction: accelerated button-free invoca-
tion; gestural shortcuts; and tear-offs.

• Gesturing while inking: mnemonic flicks, terminal punctua-
tion, and speculative feedback.

• Gestures and widgets: abbreviated gestures; direct manipula-
tion; widgets from gestures; pushbutton gestures.

2 RELATED WORK

The MathPad2 system [13] demonstrated the rudimentary notion
of tap-punctuated gestures. This work broadly extends the concept
through gesture regularization, pause punctuation, dynamic feed-
back and menu discovery.

FlowMenus [6], marking menus [10], and Scriboli [7] are related
gesture techniques that share a common notion of a radial menu.
Each of these systems is compatible with Fluid Inking and could be
used as a backbone for discovering our gesture set. In each case,
we perceive the value of our gestures as being alternative and po-
tentially simpler and more natural “shortcuts” for menu operations.
In addition, we note that to our knowledge none of these designs
have considered interaction using only a button-free stylus.

Moran, et al. [16] presented a suite of gesture-based interac-
tion techniques targeting collaborative electronic whiteboard inter-
action, many of which are closely related in spirit to ours. Yet,
because of their openness principle, which does not tolerate restric-
tions on the kinds of ink marks that can be drawn (i.e., by pre-
defining certain types of ink marks as gestures), they made only an
abortive attempt at using a postfix indicator (terminal punctuation)
to avoid the mode switch between inking and gesturing [19]. They
encountered difficulties when trying to distinguish their double-tap
punctuation from regular “choppy” handwriting and abandoned the
technique, in favor of pen modes which, as they report, come at
the “cost of users having to be vigilant.” Their experience notwith-
standing, we designed a full gesture set using different punctuation
that, in practice, is generally unaffected by violations of the open-
ness principle. We also address problems they noted with the learn-
ability of a large gesture set with our hybrid FlowMenu design.

A number of systems have explored the notion of modeless ges-
tural user interfaces for interpreting objects in the middle of free
form input. These interfaces do not require punctuation because
their domain-specific drawing restrictions allow gestures to co-exist
with inking. For example, Alvarado, et al [1] presented a system
for creating and understanding mechanical sketches, and Gross, et
al [5], described contextual recognition of gesture symbols from
within free-hand drawings.

The Fly Pentop Computer [14], released as a product in the Fall
of 2005, was developed in parallel with our work, and despite its
lack of an active display screen, incorporates the notion of a Fly-
Con — a gesture similar to our technique for creating widgets from
gestures. Both techniques use a mnemonic and an encircling lasso;
however, our designs differ with regard to punctuation — the Fly-
Con requires either a double-tap or a pause, whereas ours requires
an additional mimetic or mnemonic gesture symbol for the button
action, followed by a single tap. The difference in our designs can
be attributed largely to our increased gesture set scope — that is, we
require the additional gesture symbol because we want to support
more than a single action on an encircled mnemonic. Similarly,
we avoid the use of double taps in a general gesture context, be-
cause their potential presence would necessarily introduce a delay

in recognizing single taps. We also found that single taps were, in
general, sufficient for robust recognition. Other than the similarity
of the FlyCon to our technique for making widgets from gestures,
our approaches are quite different.

Many other systems combine gestural interpretation with free-
form annotation, such as Landay’s SILK [12] and Mynatt’s Flat-
land [18]; however, they typically use explicit prior actions (e.g.,
button press) to disambiguate gestures from notes. An important
exception is the class of systems that use multi-modal input to dis-
tinguish gestures from each other and potentially from free-form
ink. In particular, speech and gesture hybrids, such as the seminal
work done in QuickSet [4], enable fluid transitions from inking to
command performance, but require both suitable hardware and a
suitable environment for speech recognition.

Saund and Lank [20], however, present a technique for avoiding
prior selection of mode during inking, that is related both to our ter-
minal punctuation gestures and to the general notion of suggestive
interfaces developed by Igarashi [8]. However, their technique only
avoids prior mode selection for the sub-task of forming a selection.
Also, the “select” button may interfere with subsequent drawing
and can require fine-grained targeting.

Mankoff, et al. [15] consider general techniques for resolving
ambiguity in recognition-based interfaces. However, our desire for
modeless drawing and gesturing guarantees that theoretically all
gestures will be ambiguous with possible notations. Thus, an ex-
plicit mediation-based resolution system would not be appropriate
because it would necessarily disturb interaction flow. Instead, our
work focuses on the complementary problem of how to design ges-
tures that will not, in practice, require ambiguity resolution.

Buxton [3] noted the value of making a gesture match the mental
model of its action to unify a command and arguments in a single
“chunk” that avoids errors of syntax. Although this has been one
of many important criteria in our design, we believe strict adher-
ence to his notion that single word or phrase concepts should map
one-to-one to single stroke gestures can result in gestures that are
physically awkward or abstract. This unistroke phrasing also does
not allow for general use of mnemonics since many symbols (e.g.,
“x” or “t”) naturally consist of multiple strokes. Finally, Zhao and
Balakrishnan [22] found relative advantages for multi-stroke ges-
tures when comparing multiple lines to a single zig-zag for marking
menus.

The GEdit system [9] did not explore the integration of free-form
inking with gestures, but did present a gesture set with several par-
allels to our work. Its gesture set uses a marking menu, which by
definition provides gestural shortcuts for accessing menu function-
ality, although none of the system’s non-marking menu gestures
were presented as menu shortcuts. GEdit also used stylus pause
inflections to distinguish between interactive and non-interactive
copy and drag operations, but did not use it in our sense of punc-
tuation to distinguish ink from gesture, nor did it explore pressure-
based and other timing optimizations. Although GEdit focused on
unistroke gestures, it did have a single multi-stroke exception in
the specific instance of distinguishing a group selection from its ac-
tion, and one example of using a letter gesture to indicate an action
mnemonically. Our work expands upon both of these concepts.

3 OVERVIEW

Given the scope of Fluid Inking it is useful to conceptualize the sys-
tem in terms of analogies to conventional WIMP interfaces. Thus
we will describe what we believe are three familiar components:
a menu system, shortcuts, and widgets. First, the menu system is
intended to be the starting point for users of the system. That is,
a novice would use the menu to discover all functionality — in
our case, we chose to use a FlowMenu [6] but believe that none of
our design decisions would exclude a conventional menu or tool-

Figure 2: Menu items indicate gestural shortcuts inside ()’s. stands
for a flick, ◦ stands for tap or pause, and for pause (not seen). A
torn-off Paste menu item is also shown.

bar design. Second, embedded within this menu system are visual
indications of gestural shortcuts that are analogs to conventional
modifier-key shortcuts. Similar to control- and alt-key variations,
our gesture shortcuts come in two varieties: prefix flicks and post-
fix punctuation. Third, we provide a set of widgets, closely related
to conventional widgets, but enhanced to support gestural interac-
tions. That is, in addition to responding to clicks, these buttons
also interpret simple gestures such as sliding off an Undo button to
indicate how many actions to undo or redo.

4 PEN-BASED MENU INTERACTION

To introduce new users to Fluid Inking functionality, we need to
instruct them about the existence and invocation of the main Flow-
Menu. If we had chosen a more conventional menu, this would not
be necessary, but we felt a local menuing system was particularly
appropriate for pen-based interaction. In theory, since all gestures
are conceptually shortcuts for menu actions, they can be discovered
through the menu system. However, in our current implementation,
the cryptic indications of gesture shortcuts that we provide within
the menu require additional explication. We believe that a more so-
phisticated display, such as Kurtenbach’s [11] graphical animation
of gestures could make the system fully standalone.

4.1 Accelerated Button-free Invocation

FlowMenus [6] were originally designed to be invoked with a hard-
ware button press. Thus we adapted them by borrowing from com-
mon PDA-based press-and-hold interactions. In our implementa-
tion, we display a FlowMenu if the user presses the stylus on the
display surface and holds still (stays within a 5x5 pixel box). The
maximum duration of this pause is 500ms, consistent with the min-
imal acceptable timings found by Hinckley, et al. [7]. However, we
also found that shorter timeouts were possible as a function of the
pressure applied. Thus if the pressure exceeds a threshold (180 out
of 255), the timeout reduces to 250ms — which, in informal test-
ing, did not cause any additional false activations, but made menu
invocation more responsive.

4.2 Gestural Shortcuts

Gestural shortcuts provide direct access to menu items and sub-
menus. We display gesture shortcuts similarly to the way modifier-
key shortcuts are shown in traditional menus (Figure 2). However,
instead of “ctrl-” and “alt-” abbreviations, we use / and ◦ to indicate

Figure 3: A potential flick, a mnemonic flick, and a non-flick. The
‘cents’ sign is not a flick because the ‘c’ was drawn before the line,
and the line was drawn from top to bottom and too slowly.

flicks (Figure 3) or terminal punctuation (Figure 1). Just as with
control and alt, variant forms of punctuation not only can increase
the space of potential shortcuts, but also can provide a semantic dis-
tinction within that space. In our implementation, we use flicks fol-
lowed by a mnemonic word or letter to perform meta-functions like
displaying a widget (e.g., flick-U brings up an Undo/Redo widget),
and we use terminal punctuation, preceded by a multi- or single-
stroke drawing, for actions that directly operate on a spatial selec-
tion (Figure 1). These shortcuts are discussed in greater detail in
Section 5.

4.3 Tear-off Shortcuts

We allow menu items to be torn off (i.e., copied) as persistent but-
tons in order to provide immediate access, to facilitate repetitive ac-
tions, to avoid hand occlusion and tension when inspecting a menu,
and to reduce memorization requirements for shortcuts. While nav-
igating a menu, users can tear off a menu item by “wiggling” the
pen back and forth over the menu item (Figure 2).1 When a tear-off
event occurs, the menu item becomes a button and is dragged with
continued stylus movement.

5 MULTI-STROKE GESTURE SHORTCUTS

Gesture shortcuts are an alternate way to invoke functions. The
FlowMenu is not used for invoking these shortcuts, but can be used
to discover them. These multi-stroke shortcuts do not require an
initial pause or button press since they be disambiguated from reg-
ular ink because of the design of their stroke sequences. That is, ink
strokes only become gesture tokens if they are part of an incoming
stroke sequence that matches a complete gesture definition. Once
matched, the strokes are deleted and the gesture’s function is fired.
Although in theory these definitions are ambiguous with general
inking, in typical practice gestures are distinct because of punc-
tuation, stroke ordering, and stroke dynamics (Figures 1 and 3).
When conflicts occur, undo can be used to recover from an acci-
dental recognition, and either undo or delete for failed recognition.
Alternatively, if external or stylus buttons are available, users can
optionally require that one be pressed during or to terminate the
gesture sequence.

Besides being generally distinguishable from ink, our punctu-
ated gesture sequences are notable for using only a small set of
broadly-defined and familiar tokens. In fact, different tokens can
even have overlapping geometrical definitions and still be distin-
guished by their context in a gesture sequence (e.g., the letter ‘O’
and lasso tokens.) This contrasts with unistroke gesture catalogs
where every gesture stroke must be geometrically distinct from all
others and perhaps from regular inking as well.

1A “wiggle” is detected when more than 6 cusps (sharp direction turns)
occur within a 50x50-pixel bounding box in less than half a second. The
cusps also must form a tight zig-zag, with each cusp more than 50% farther
from its neighbors than they are from each other.

Gesture Class Context Gesture Terminal Example
Mnemonic flick flick () letter saves the file
Punctuated:

self-contained lasso (), scribble (), or crop () tap or pause deletes ink under it
mnemonic lasso () letter or scribble () tap or pause copies ink contained in the lasso
mimetic lasso () stroke hook () tap or pause applies NE menu option to lasso contents

Table 1: Overview of gesture classification sequences.

Based on the structure of gesture sequences, we distinguish two
classifications of shortcuts (Table 1): mnemonic flicks have a prefix
flick, and terminal punctuation gestures have a postfix tap or pause.

5.1 Mnemonic Flicks

We adapted Moyle, et al.’s use of flicks [17] to work in a free-form
inking context. Naive application of flicking did not work because
of frequent ambiguities, such as trying to distinguish a flick from a
quickly drawn ‘1’. However, flicks can be disambiguated from reg-
ular inking when used as part of a multi-stroke gesture. Mnemonic
flicks are an extensible, easy-to-learn, gesture mechanism analo-
gous to modifier-keys. A mnemonic flick consists of a line drawn
quickly from bottom-left to upper-right, followed by an overlap-
ping mnemonic character (Figure 3). The directional restriction
is not strictly necessary but, in our testing, provided better disam-
biguation from general inking and was simpler than overloading
flick direction with functional meaning. Representative examples
of mnemonic flicks are flick-S to show a save dialog, flick-U to dis-
play an Undo widget, and flick-e to change the stylus mode to an
interactive eraser. Note that the spatial location required by the first
two functions is set to the start of the flick.

5.2 Terminal Punctuation

The structure of terminally punctuated gestures is straightforward
— with one or two strokes, indicate a spatial context and a ges-
ture function, and with terminal punctuation inside the preceding
strokes2 invoke the gesture. Despite its simplicity, this structure
affords considerable design latitude.

We have explored three different forms of terminal punctuation:
pausing, tapping, and clicking a special hardware button (e.g., con-
trol key). We define pause punctuation to be holding the stylus still
(within 6 pixels) at the end of a gesture stroke for between 200ms
and 500ms depending on stylus pressure and gesture context. We
define tap punctuation as a fast tapping motion of the stylus against
the display. Although we believe that individual users should train
the pause and tap recognizers for optimal results, we have found
that writer-independent recognition algorithms work reasonably as
long as the concept is understood (i.e., tapping is a fast “tap”, not
a deliberate “press” and release or a “dot”). Our tap recognizer
considers a number of features including among others the stroke’s
bounding box, arc length, and temporal duration. These features
enable recognition based on correlations between tap timing and
geometry; for instance, as user’s move the stylus faster, they are
more likely to input taps with the qualitative appearance of lines
instead of points. Last, since there inevitably can be situations
where tap and pause interpretation fails (including when depicting
the Fluid Inking gesture set itself), we treat clicking the control key
as tap punctuation at the last known stylus location, and pressing-
and-holding the key as pause punctuation.

2For ease of learning, this rule is stated generally; however, it is only en-
forced for some gestures. In fact, advanced users may enable an option that
further parameterizes some gesture functionality based on the tap location
within or outside the previous strokes.

Figure 4: Left-to-right: A crop stroke is drawn indicating a paste ac-
tion. The paste rectangle’s lower-left corner is aligned with the crop
stroke’s corner. The pasted selection is copied by drawing a ’C’ over
it.

In addition to merely punctuating the end of a gesture, terminal
punctuation can also parameterize gesture functionality. For exam-
ple, we use taps and pauses to distinguish between one-shot and
interactive command variants. The notion here is not that pausing,
for instance, is ideally suited to invoking an interactive command
variant, but rather that it simplifies the gesture set design and makes
it easier for the user to recall both batch and interactive alternatives.
In fact, depending on application work flow, it might be more ap-
propriate to map tap and pause parameterizations differently, for
instance if performing multiple interactive actions in a row were
the expected case. Nonetheless, we believe that our mapping for
tap and pause punctuation is effective when considered from the
perspective of gesture recall. When performance is their criteria,
we expect users would avoid the pause alternative by learning a
specialized widget or gesture alternative.

Terminally punctuated gestures come in two forms: self-
contained gestures indicate both an operand and an action in a sin-
gle stroke, while compound mnemonic and mimetic gestures sepa-
rate operand and action specification into two or more strokes (Ta-
ble 1).

5.2.1 Self-contained gestures.

Examples of self-contained gestures are the paste, select and delete
gestures. The paste gesture is indicated by drawing a crop mark
(e.g.,) that specifies where to place the corresponding bounding
box corner of the clipboard contents3 and then tapping or pausing
within the crop’s convex hull (see Figure 4). The requirement for
tapping inside the crop marks is always enforced to avoid conflicts
with general inking; for instance, when writing the number “7.0”.
Pause punctuation engages a variant of paste by presenting a menu
of paste buffers.

The select gesture is indicated by drawing a lasso4 around a
group of objects. Tap punctuation is not required to be within the
lasso. Pause punctuation selects the strokes and then raises an in-
teractive FlowMenu.

3The crop mark may be drawn in any of the four cardinal orientations
(, , ,); conceptually, the user is drawing one corner of the bounding
box of the things to be pasted, and it is this corner of that bounding box
which is aligned with the corner of the crop stroke.

4Any curve traveling at least 25% of its arc length away from its start
and then returning within 25% of its arc length from its start.

Figure 5: Tapping inside the scribble deletes the contained ticks. Tap-
ping outside deletes the axis as well.

Figure 6: Mnemonic copy gesture.

The delete gesture is described to the user as first scribbling5

back and forth over strokes. Tap punctuation is not required to be
within the scribble. Pause punctuation invokes an interactive eraser
mode that terminates when the stylus is lifted. Figure 5 shows an
enhanced variant of this gesture.

5.2.2 Mnemonic Punctuated Gestures.

Mnemonic punctuated gestures specify actions on lasso selections
mnemonically. A representative example of a mnemonic gesture is
Copy. After drawing a lasso around a selection of strokes, they can
be copied to the clipboard by writing an overlapping mnemonic
‘C’, followed by punctuation (Figure 6.) Tap punctuation copies
the strokes. Pause punctuation duplicates them—that is, copies,
pastes and initiates a transient interactive drag mode until the stylus
lifts. Unlike modifier-key mnemonics, the ambiguity of whether
‘C’ stands for cut or copy can be avoided with longer mnemonics,
like ‘Cut’ and ‘Copy’. We make both short, ‘C’ and ‘X’, and long,
‘Copy’ and ‘Cut’, mnemonics available. Selections do not always
have to be of strokes or objects; for instance, canvas regions can
be selected for magnification. To enlarge a specific region, draw a
lasso around it that may or may not contain strokes, then draw a ‘Z’
inside. Tapping zooms so that the region fills the window, while
pausing additionally initiates a transient interactive zoom mode.

It is important to note that pause punctuation variants, when con-
sidered in isolation, may not be as efficient as having dedicated
gestures, such as a ‘D’ mnemonic for initiating an interactive du-
plicate without a pause. However, when viewed from the perspec-
tive of a large gesture set, we believe that the deficiencies of pause
punctuation are balanced against their overall advantages in terms
of simplicity and regularizing the learning and recall of command
variants.

5.2.3 Mimetic Punctuated Gestures.

Mimetic punctuated gestures are actions on selections that imitate
some other interaction. Our system supports mimetic interactions,
reminiscent of marking menus, that mimic interacting with a Flow-
Menu. The benefit of the mimetic gesture is that, since the Flow-
Menu never actually appears, the normal timeout for raising the
FlowMenu is not required. That is, the user just draws a lasso, a
mimetic stroke hook (i.e., the same straight line doubling back on
itself that would be drawn to invoke an item from a visible Flow-
Menu), followed by punctuation. For example, a stroke hook up

5[21] provides a detailed description of scribble recognition

Figure 7: Cut gestures using a mnemonic ‘X’, and a mimetic Flow-
Menu interaction (Cut is in the NE octant).

to the right indicates ‘cut’, since ‘cut’ lies in the northeast Flow-
Menu octant. See Figure 7. We also support mimetic interactions
for moving strokes.

5.3 Speculative Feedback

Although we expect that many users will discover gesture shortcuts
by navigating through FlowMenus, we wanted a suggestion mech-
anism that could adventitiously direct novices to potential gestures.
We resolved on two mechanisms, a verbose technique targeting true
novices, and a subdued approach for general use.

5.3.1 Verbose feedback

As strokes are drawn on the screen, a verbose feedback mechanism
highlights partially drawn gestures. For example, a lasso drawn
around strokes will be shaded semi-transparently (Figure 6) to in-
dicate tapping will complete a selection gesture. Text prompts are
also displayed to describe other potential gestures starting with a
lasso.

This active feedback is particularly appropriate for our gesture
set since our gestures consist of common inking actions. Thus it is
highly likely that users will become accidentally aware of possible
gestures merely by drawing. On the other hand, verbose active as-
sistance cannot be used in general since the frequent highlighting is
disruptive during regular inking.

5.3.2 Subdued feedback.

Subdued feedback indicates the types of gesture tokens that have
been recognized with stroke color changes. For example, a cor-
rectly recognized flick will turn red and a scribble that can delete
something turns blue. These stroke colorations persist as long as
the stroke can possibly be used to complete a gesture; as soon as
the stroke cannot be part of a gesture sequence its color is restored.

6 GESTURING AND WIDGETS

Since gesturing while inking requires prefix or postfix punctuation,
widget interactions, at the cost of spatial modes, provide a useful,
complementary alternative. We identified three opportunities for in-
corporating widget-based gestures into Fluid Inking including: ab-
breviated gestures, direct manipulation, and pushbutton gestures.
In addition, not only do we allow menu items to be torn-off, but we
also allow drawn gestures to be converted into buttons.

6.1 Abbreviated Gestures.

To simplify multiple actions on an ink stroke(s), we support abbre-
viated gestures on active selections. An active selection is created
by lassoing a stroke(s) and tapping. This selection is a spatial con-
text in which only gestures can be drawn and not ink. Thus, all
gestures previously requiring a lasso and terminal punctuation can
now be abbreviated to omit the lasso and punctuation. Pause punc-
tuation, however, is still needed to distinguish an interactive ac-
tion, although the pause timeout is shortened from 500ms to 200ms,
making pause interactions more attractive since they feel more like

Figure 8: Drawing through a TranScaler widget from outside scales
the selection about the corner opposite the handle. Drawing from
within moves the selection.

a stop than a pause. If gestures are forgotten, the self-contained
technique for bringing up a menu, press-and-hold, can be used with
the shortened 200ms timeout.

We note that, ignoring punctuation, some gestures may be sub-
sets of other gestures. In these cases, gesture abbreviations cause
conflicts which, in our current implementation, gesture set design-
ers must avoid. We considered using timeouts to allow the longer
gesture sequences to be entered, but we were not satisfied with the
delay this imposes on recognition of shorter sequences.

6.2 Direct Manipulation.

To move ink, we initially provided only a tap-based non-interactive
mimetic gesture and its pause-based interactive counterpart. Nei-
ther proved sufficient since mimetic movement did not afford pre-
cision and pausing was disruptive for some users. We designed the
TranScaler widget to address these shortcomings and to add scal-
ing.

When a self-contained select (or paste) gesture is made, an inter-
action widget is instantiated at the tap (or pause) location. Similar
to Apitz, et al. [2], this widget leverages crossings, however, we
use them to make an additional scaling mode available on an oth-
erwise traditional (i.e., press and drag) move handle. To scale, the
stylus must start outside the widget and cross into it along an ap-
proximately straight line. When a crossing is detected, the selection
interactively scales about the corner opposite the widget (or a pre-
viously chosen point) (Figure 8). The widget is 30 pixels square,
which is large enough to support quick targeting with a pen. How-
ever, we noticed that users wanting to quickly move an object would
perform the lasso and tap gesture followed immediately by a drag
stroke. They would then often miss the TranScaler widget target
even though it was located right where their stylus had been at the
end of the tap. This problem arose because they coarticulated the
beginning of their drag motion with the end of their tap stroke as the
stylus was lifting off the display. By the time the stylus contacted
the display again for the drag, it had already moved some distance
making it difficult to reflexively target the widget. We addressed
this “recognition” error by doubling the pick area of the widget for
the first 150ms after the selection tap.

A second potential conflict with the TranScaler occurs when an
intended gesture accidentally starts on the TranScaler or passes
through it along an initial straight line, causing inadvertent drags
and scales. These conflicts can be avoided by initially tapping away
from the selection or by removing the TranScaler by scribbling over
it.

6.3 Widgets from Gestures

To complement the ability to tear-off a menu item, we also provide
a mechanism for a gesture to be directly converted into a widget
that resembles Landay’s techniques [12] for sketching interfaces.

We extend Landay’s work by facilitating end-users in creating, us-
ing, and deleting mini-interfaces on the fly while in a free-form ink-
ing context. In addition to possibly being more direct than tearing
off menu items, creating widgets from gestures naturally indicates
the size, and location of the widget. Widgets can be created for
any gesture by inserting, before the gesture’s terminal punctuation,
a lasso around the gesture and writing ‘B’ (or choosing “Button”
from the menu.) For example, a delete button would be created by
first drawing a delete gesture scribble, then lassoing it, writing ‘B’,
and tapping.

6.4 Pushbutton Gestures.

All buttons in Fluid Inking are FluidButtons which, in addition to
being selectable and deletable like ink strokes, support additional
gestural behavior. For example, instead of using a pause to bring up
a FlowMenu, the FlowMenu’s behavior can be mapped to a Fluid-
Button to provide instant access, or a paste button can be dragged-
and-dropped. In addition, we support two classes of slide-off be-
haviors: drag selection, and parameter refinement. A slide-off be-
havior is triggered when the stylus presses down on a button and
travels more than 10 pixels horizontally from the contact point. Ver-
tical displacements are ignored so that button presses can be can-
celled by releasing above or below the button.

6.4.1 Drag Selection

Drag selection behaviors are used for buttons that have an essen-
tially unparameterized action, such as cut, delete, etc. In these
cases, sliding-off triggers a selection mechanism that backtracks
through time adding previous strokes to the selection set as the sty-
lus continues to slide. For example, sliding-off a “cut” button ini-
tially selects the last stroke drawn, then the stroke before it, etc;
when the stylus lifts all selected strokes are cut.

6.4.2 Parameter Refinement

Parameter refinement behaviors are used for buttons that specify
scalar parameters. Clicking on the button typically sets the default
value for the parameter, generally the last value set. Sliding-off
the button creates a virtual slider for adjusting the scalar value.
In our prototype, we use a parameter refinement FluidButton for
Undo/Redo; sliding to the left performs an undo action every 10
pixels, and sliding to the right triggers redo actions. For color set-
ting buttons, sliding off the button adds or subtracts the color from
the selected strokes.

7 DISCUSSION

The focus of this paper has been on techniques that can be per-
formed with the most general hardware, a button-free stylus. This
focus was motivated largely by earlier reactions to a series of de-
signs we prototyped for specialized hardware. In particular, we
watched people using gestural interfaces while eating or holding
a cell phone—both impractical with any of our bimanual tech-
niques. We also observed many users, including gesture experts,
struggle with stylus-button techniques especially if they had to ad-
just their natural pen grip. On the other hand, we noticed many
users fare well with specialized hardware. Our informal observa-
tions revealed one salient trend—that the distribution of individual
preference seemed somewhat balanced. Some people like buttons
for good reasons, and others do not for just as good reasons. Con-
sequently, we provide a balanced gesture design that can be used
without any hardware buttons at the cost of potential recognition
errors, or with hardware buttons at the cost of generality and awk-
wardness for some users.

During development, we performed a range of informal usability
evaluations intended to identify performability concerns. Our initial
concerns with the concept of terminal punctuation, in terms of per-
formance, ambiguities with free-form inking, and recall were not
substantiated. Although novice users would frequently forget to tap
to terminate a gesture, this problem disappeared rather quickly as it
became a habit. In fact, people reported that they would perform,
for example, the scribble and tap delete gesture in other applica-
tions, not realizing that those other applications did not incorporate
our Fluid Inking gesture set. We also noted that, after only a brief
initial training period, users did not appear to encounter any sig-
nificant tap recognition problems6. However, we did encounter two
significant issues related to pauses and abstract gestures. In an early
prototype, we observed that, although pausing to raise a FlowMenu
was well accepted, some users found it disruptive for initiating di-
rect manipulation. Our solution, to provide techniques that acti-
vate widgets in place of pausing, appears not necessarily to offer
a performance gain, but does seem to be more intuitive and more
generally preferred. We have, however, observed that some novice
users occasionally trigger the resize widget when trying to perform
a gesture on an active selection. This problem likely dissipates over
time as strategies are developed for initially placing or avoiding the
widget, although a more detailed evaluation is warranted. We also
noted a striking difficulty, in an early prototype, that users encoun-
tered when performing and recalling the abstract gesture of a side-
ways, backward U that was mapped to the Undo function. When
we switched to using flick-U to activate a FluidButton, we noticed
an almost complete elimination of errors.

We implemented a simple Tablet PC note-taking application to
test the extensibility of Fluid Inking. Though far from comprehen-
sive, this application has about 16 nameable function groups in-
cluding: cut, copy, paste, delete, move, resize, save, open, lookup,
infinite undo/redo, erase by stroke, zoom, duplicate, set color, and
tear-off. Interestingly, when all variants are counted, the number of
gestures in the interface is well more than double that of the func-
tions, not counting the facility to create tear-off buttons for all op-
erations. Even though we have not exhausted the possibilities, we
make no pretense that Fluid Inking’s simple shortcuts are arbitrar-
ily scalable, nor do we imagine that each user will even exercise all
of the shortcuts we have currently developed. Rather, we expect a
user would command only a useful subset of these gestures, and this
subset would vary by person analogous to how usage of modifier-
key shortcuts varies by individual. However, if allowed to assign
their own mnemonic shortcuts (as in many desktop applications),
users may be able to optimize their gestural interaction.

Our prototype application places a strong emphasis on the regu-
larity and discoverability of gesture shortcuts in response to the dif-
ficulty users had learning the nuances of an earlier prototype when
given only a cheat sheet. Specifically, early users had difficulties
caused by forgetting or jumbling some gesture sequences. In re-
sponse, we embedded a regular, albeit crude, shortcut notation (the
symbols , ◦, and _, respectively denote flicks, terminal punctu-
ation, and pauses) into FlowMenus that we believe should largely
address their problems. Similarly, we suspect that our verbose dy-
namic feedback, even in its early stage of development, helps to il-
lustrate and reinforce the gesture set. We also note that the alternate
subdued feedback was originally intended only for novices because
we felt trained users would find it distracting; however, this feed-
back is left on because it provides useful feedback and is apparently
less disruptive than we anticipated.

6A very few individual users did have occasional problems getting the
system to recognize their taps, but we expect making the tap definition
trained per-user should greatly reduce this issue.

8 CONCLUSION

The Fluid Inking approach augments the medium of free-form ink-
ing with gesture commands by recognizing punctuated sequences
of largely familiar inking interactions. By having the same hard-
ware requirements as free-form inking, Fluid Inking techniques are
applicable to all pen-based devices ranging from PDAs, to Tablet
PCs, to electronic whiteboards. Additionally, to make a broad scope
of gesture functionality easier to conceptualize, Fluid Inking tech-
niques were designed to be analogous to conventional GUI interac-
tions. In essence, Fluid Inking’s prefix flick and postfix punctua-
tion enable fluid intermingling of free-form inking with pen-based
alternatives and enhancements to the concepts of menus, modifier
key shortcuts, and interactive widgets. Based on user feedback, we
regularized our gesture set and now provide both dynamic and pas-
sive feedback mechanisms to facilitate gesture discovery and to im-
prove gesture memorability. In addition, we believe that our gesture
set may be preferred over others because it uses simple, familiar
mnemonics and allows for multiple interaction styles ranging from
pure gesturing, to marking menus, to tearing off enhanced Fluid-
Buttons.

ACKNOWLEDGEMENTS

This work was supported in part by the National Science Founda-
tion, Microsoft, and the Joint Advanced Distributed Learning Co-
Laboratory. Thanks to Ken Hinckley for providing helpful discus-
sions.

REFERENCES

[1] Christine Alvarado and Randall Davis. Resolving ambiguities to cre-
ate a natural computer-based sketching environment. In Proceedings
of IJCAI, pages 1365–1371, 2001.

[2] George Apitz and François Guimbretière. CrossY: A crossing-based
drawing application. In Symposium on User Interface Software and
Technology, pages 3–12. ACM, 2004.

[3] William Buxton. Chunking and phrasing and the design of human-
computer dialogues. In Proceedings of the IFIP World Computer
Congress, pages 475–480, Dublin, Ireland, 1986.

[4] P. R. Cohen, M. Johnston, D. R. McGee, S. L. Oviatt, J. Pittman,
I. Smith, L. Chen, and J. Clow. QuickSet: Multimodal interaction
for distributed applications. In Proceedings of the Fifth International
Multimedia Conference (Multimedia ’97), pages 31–40. ACM, 1997.

[5] Mark D. Gross and Ellen Yi-Luen Do. Drawing on the back of an
envelope: a framework for interacting with application programs by
freehand drawing. Computers & Graphics, 24(6):835–849, December
2000.

[6] François Guimbretière and Terry Winograd. FlowMenu: combining
command, text, and data entry. In Symposium on User Interface Soft-
ware and Technology, pages 213–216. ACM, 2000.

[7] Ken Hinckley, Patrick Baudisch, Gonzalo Ramos, and Francois Guim-
bretiere. Design and analysis of delimiters for selection-action pen
gesture phrases in Scriboli. In Conference on Human Factors in Com-
puting Systems, 2005.

[8] Takeo Igarashi and John F. Hughes. A suggestive interface for 3D
drawing. In Symposium on User Interface Software and Technology,
pages 137–181. ACM, 2001.

[9] Gordon Kurtenbach and William Buxton. Issues in combining mark-
ing and direct manipulation techniques. In Symposium on User Inter-
face Software and Technology, pages 137–144. ACM, 1991.

[10] Gordon Kurtenbach and William Buxton. User learning and perfor-
mance with marking menus. In Conference on Human Factors in
Computing Systems, pages 258–264. ACM SIGCHI, 1994.

[11] Gordon Kurtenbach, Thomas P. Moran, and William Buxton. Contex-
tual animation of gestural commands. In Wayne A. Davis and Barry
Joe, editors, Graphics Interface ’94, pages 83–90, 1996.

[12] James A. Landay. SILK: sketching interfaces like krazy. In Confer-
ence on Human Factors in Computing Systems, pages 398–399. ACM,
1996.

[13] Joseph J. LaViola, Jr. and Robert C. Zeleznik. MathPad2: a system
for the creation and exploration of mathematical sketches. In Pro-
ceedings of the 2004 SIGGRAPH Conference, pages 432–440. ACM
SIGGRAPH, 2004.

[14] LeapFrog Enterprises, Inc. The Fly Pentop Computer User Guide.
Part of the Fly Pentop Computer, 2005.

[15] Jennifer Mankoff, Scott E. Hudson, and Gregory D. Abowd. Inter-
action techniques for ambiguity resolution in recognition-based in-
terfaces. In Symposium on User Interface Software and Technology,
pages 11–20. ACM, 2000.

[16] Thomas P. Moran, Patrick Chiu, and William van Melle. Pen-based
interaction techniques for organizing material on an electronic white-
board. In Symposium on User Interface Software and Technology,
pages 45–54. ACM, 1997.

[17] Michael Moyle and Andy Cockburn. The design and evaluation of a
flick gesture for ‘back’ and ‘forward’ in web browsers. In The Fourth
Australian User Interface Conference, pages 39–46, 2003.

[18] Elizabeth D. Mynatt, Takeo Igarashi, W. Keith Edwards, and Anthony
LaMarca. Flatland: New dimensions in office computing. In Confer-
ence on Human Factors in Computing Systems, pages 346–353. ACM,
1999.

[19] E. Pedersen, K. Mccall, T. Moran, and F. Halasz. Tivoli: An electronic
whiteboard for informal workgroup meetings. In Conference on Hu-
man Factors in Computing Systems, pages 391–398. ACM, 1993.

[20] Eric Saund and Edward Lank. Stylus input and editing without prior
selection of mode. In Symposium on User Interface Software and
Technology, pages 213–216. ACM, 2003.

[21] Robert Zeleznik, Timothy Miller, Loring Holden, and Joseph J. LaVi-
ola, Jr. Fluid inking: Using punctuation to allow modless combination
of marking and gesturing. Technical Report CS-04-11, Brown Uni-
versity Computer Science Department, box 1910, Brown University,
Providence, RI 02912, USA, July 2004. Available at ftp://ftp.
cs.brown.edu/pub/techreports/04/cs04-11.ps.Z.

[22] Shengdong Zhao and Ravin Balakrishnan. Simple vs. compound mark
hierarchical marking menus. In Symposium on User Interface Soft-
ware and Technology, pages 33–42. ACM, 2004.

