
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST ’98. San Francisco, CA
 1998 ACM 0-58113-034-1/98/11... $5.00

203

The Music Notepad

Andrew Forsberg, Mark Dieterich, and Robert Zeleznik
Brown University

Department of Computer Science
Providence, RI 02912

(401) 863-7693;fasf,mkd,bczg@cs.brown.edu

ABSTRACT
We present a system for entering common music notation
based on 2D gestural input. The key feature of the system is
thelook-and-feelof the interface which approximates sketch-
ing music with paper and pencil. A probability-based inter-
preter integrates sequences of gestural input to perform the
most common notation and editing operations. In this paper,
we present the user’s model of the system, the components
of the high-level recognition system, and a discussion of the
evolution of the system including user feedback.

KEYWORDS: user interface, interaction, music notation,
gestural input, gesture recognition, handwriting recognition,
direct displays.

INTRODUCTION
There are a number of situations that revolve around infor-
mally notating music1, such as when a composer wants to
jot down an idea, when a teacher explains theory to students,
or when a musician wants to visualize (i.e., notate) a musical
idea. Despite the many advantages of applying computers to
music notation (e.g., for synthesizing sound, neatly format-
ting and rendering notation), people in fact resort to using
just paper and pencil for many tasks even when computer so-
lutions are available. This paradox derives from the nature of
the interfaces for typical music applications.

Most computerized music notation systems employ standard
windows, icons, menus, and point-and-click (WIMP) user in-
terfaces (UI’s) as well as a transition to keyboard “hotkeys”
for frequently used functions. In some cases, these systems
offer advantages over paper and pencil notation such as rapid
data entry, editing flexibility, automatic formating, synthe-
sized sound, and high-quality printing. However, the user’s
model for computerized systems is very different from the
model of paper and pencil notation. Based on discussions

1See [1] and [13] for further information on musical terms and common
music notation

with a number of musicians and composers we believe a fun-
damentally different music notation interface based on a pen-
based UI will be more desirable and of equal or greater value
than a WIMP-based UI.

The Music Notepad attempts to be an interactive electronic
sheet of music paper. Unlike WIMP UIs, the Music Notepad
is characterized by a portable display surface (a Wacom PL-
300 Display Tablet) that can be directly drawn upon with a
stylus. To support what can be done with pencil and paper
interfaces, the Music Notepad interprets gestures specified
by the user with a stylus to create notation. Moreover, ges-
tures can also be used to perform more powerful editing op-
erations, to professionally format notation, and to synthesize
instrumental sounds based on the notation.

The followingsections present previous work, the user’s model
of the system, the details of our recognition methodology,
and a discussion of the formative design of the system through
user feedback.

PREVIOUS WORK
There are two common approaches to music notation: pa-
per and pencil, and computer-based systems. Paper and pen-
cil has many advantages– notably low cost, simplicity, and
portability. Music can be notated by drawing symbols on
inexpensive paper. Sheets of paper can be copied and dis-
tributed very easily. However, producing high quality pub-
lishable documents by hand requires great skill and editing
operations that are difficult to perform. Other desirable con-
cepts such as automatically performing written notes are not
possible.2

There are two main flavors of computer-based systems: se-
quencer and notation systems. The goal of sequencers is
to enter and perform synthesized music, whereas notation
programs are intended only to produce high-quality printed
scores. Both are successful in addressing some aspects of the
problems of paper and pencil systems such as improved edit-
ing operations (e.g., editing individual or groups of symbols
and transposing), and synthesizing or printing a high-quality
version of the music that has been entered.

2Written music can be performed by one or more skilled performers.
However, there are often significant barriers to becominga skilled performer
such as years of practice and expense.

204

However, the handwriting techniques for creating standard
music notation [13] learned by many musicians bears little
resemblance to the music software UIs. Instead, they tend
to use the well-established WIMP-based UIs. These UIs are
sometimes augmented with a MIDI input device such as a pi-
ano keyboard. The primary advantage of a WIMP interface is
its simplicity and learnability. In addition, many applications
such as Finale [6] or Cakewalk [3] provide mechanisms that
allow users to transition from using the WIMP interface to
using keyboard “shortcuts.” Shortcuts are typically learned
over time by displaying each shortcut key next to the equiv-
alent WIMP interface command. Gradually, users tend to
transition to using only the shortcuts resulting in very fast,
although indirect, user input. The use of MIDI devices for
input to a notation system at first seems appropriate, but is
still not ideal because nearly all input from MIDI devices
requires editing. This problem is rooted in the need to be
skilled performer of a particular MIDI device.

There have been several research systems for music notation.
The Mockingbird system [12] was a pioneer in the use of
a graphical UI and MIDI keyboard. However, because this
system relies heavily on MIDI keyboard input nearly all input
requires skilled performance and editing. The system also
depends on a WIMP interface-style to edit notation.

Buxton [2] developed a system which included a set of ges-
tures for specifying notes and rests (see Figure 1). While
this is an effective set of gestures for very basic note entry,
the system does not provide gestures for other fundamental
notations such as stem direction, accidentals, and beams. Al-
though we have integrated Buxton’s gestures in the Music
Notepad, there are some situations where the gesture scheme
is cumbersome. For example, multiple short notes often ap-
pear in long sequences, but the gesture for creating short
notes is unfortunately relatively complicated.

Figure 1: A set of gestures developed in [2] for creating
notes of various durations. Rests are created by mirroring
these same gestures around the horizontal axis.

A similar gestural component is embedded in an otherwise
conventional WIMP interface in both the NoteWriter and the
NoteAbility systems [14]. These systems provide simple
gestural alphabets that are related to Buxton’s gestures both
in functionality and limitations.

As we prepared the final version of this paper, we learned
about a similar system GSCORE [17]. GSCORE provided
both WIMP based and gestural based methods for music no-

tation. Although both systems share many comparable fea-
tures, the Music Notepad provides unique functionality, such
as allowing the user to retain a “non-finished” look (making
it appear closer to a pen and paper look), extensive support
for editing notations, and score playback.

SYSTEM DESCRIPTION
This section describes the user model of the system followed
by the details of the components used to integrate the various
types of input.

drawn
gestures

interactive playback

sheet manipulation

moving symbols

Figure 2: The stylus has four buttons for controlling all
Notepad operations.

User Model
Music Notepad is intended to appear to the user as an interac-
tive sheet of music paper. Thus the user accesses all function-
ality gesturally with a stylus. There are four classes of gestu-
ral operations that correspond to the four buttons of the stylus
(see Figure 2). Marking gestures, drawn with just the tip of
the stylus, leave ink trails on the display; sequences of these
gestures are interpreted as either handwritten commands or
as operations for creation and deletion of musical notations,
marking menu [9] invocation and selection, as well as region
selection. The lower button of the pen is used to perform di-
rect manipulation operations for changing note pitches and
graphical placement of symbols. The second lowest button
allows the user to slide the “music paper” across the display
screen. Finally, the eraser button of the pen is used for play-
back of the entire score or for interactive playback of regions
of musical notation.

Creating notation symbols The most basic operation in the
Music Notepad is the creation ofnotes. Users can create
notes using the gestures shown in Figure 3. Gestures convey
both spatial and symbolic information. Note creation ges-
tures consisting of only distinct line segments are centered
on the first point of the gesture. Creation gestures involving
drawn noteheads (called “scribbled” noteheads) are placed

205

=>

=>

=>

=>

=>

=>

=>

=>

=>

=>

=>

=>

=>

=>

=>

=>

=>

=>

=>

=>

=>

=>

=>

=>

=>

=>

=>

=>

create new note

create new note with sharp

create new note with flat

create new note with
low volume

create new note with
medium volume

create new note with loud
volume

create new whole note

create new whole note

create new half note

create new quarter note

create new eighth note

create new sixteenth note

create new
thirtysecond note

delete note with squiggle

delete note with lasso

delete note with lasso &
squiggle

delete group of beamed
notes

delete single notes from a
group of beamed notes

delete beam over group
of notes

halve note duration

double note duration

beam all notes, change
note durations, match
beam slope to gesture

halve beamed notes
duration

double beamed note
duration

name of instrument for
staff

writing "oboe" on staff
changes the instrument

create new whole rest

create new half rest

create new quarter rest

create new eighth rest

create new
sixteenth rest

create new
thirtysecond rest

Legend:

drawn by computer

drawn by user

Example Gesture:

dot signifies
start of gesture

piano

piano oboe

=>

=>

=>

Figure 3: A taxonomy of marking gestures and their associated operations.

206

based on the computed center of the notehead. Scribbled
notes default in duration to a quarter note, however, the size
of the drawn notehead also determines the note’s volume.
That is, a small notehead plays softer than a fat notehead. If
a scribbled notehead has a tail that extends above or below
the notehead, then a sharp or flat is associated with that note.
After a new note is created, the synthesizer sounds that note.
If the note is created above other notes, a chord is recognized
and all notes are played back simultaneously.

The duration of an existing note can be modified by drawing
a slash gesture through its stem. A gesture from the left to the
right will half its duration, whereas a gesture from the right
to the left will double its duration.

A quick tap on a notehead will mark that notehead as stac-
cato. The staccato marking of a notehead will disappear if
it is already notated to play staccato and is tapped with the
stylus. This quick tap gesture is similar to the meaning of the
staccato marking. Pressing on a notehead for a longer pe-
riod of time will toggle whether that notehead has a “dotted”
value.

Restscan be created by using the gestures from Figure 1 mir-
rored about the horizontal (to distinguish from the “create-
a-note gestures”.) Rest durations can be doubled or halved
in the same way note durations are modified; by drawing a
short gesture through the rest.

Beamsfor a set of notes can be created by drawing a straight
line above or below a set of notes. This position and angle of
the gesture line determines the distance of the beam from the
noteheads as well as the angle of the beam. In some situa-
tions, a specific set of notes can be accurately beamed by first
lassoing the desired notes and then drawing the line above
or below the set of notes. Once a group of notes has been
“beamed,” drawing a gesture line through the stems of notes
in the group will half or double the duration of those notes,
depending on the direction of the gesture line. Scribbling on
a beam erases a beam and ungroups the notes associated with
it. Users can also adjust the slant of a beam by directly ma-
nipulating either the left or right side of the beam. If the user
grabs the middle of the beam, then the height of the beam is
adjusted.

Accidentalsfor an existing note can be added using a mark-
ing menu. If the user holds the stylus on a notehead for
some short period of time, a radial menu appears showing
the marking menu choices for accidentals. By dragging and
releasing in the direction of a menu item, a sharp, flat, or nat-
ural is associated with the note. The final menu option clears
all accidentals. If the user does not wait for the menu, the op-
eration is still performed as with any other marking gesture.
New notes with accidentals can also be created using a sin-
gle gesture as previously described in the creating notation
section.

Clefsandkey signaturesare created by drawing a dot or lasso

to indicate a location followed by a command or text. Com-
mands are specified through handwriting or speech. For ex-
ample, to change the key signature the user draws a dot at the
desired location and writes “D major”.

Editing The Music Notepad currently supports the most com-
monly used music notation editing operations:deleting, copy-
ing, pasting,andregion selection. One or more objects can
be deleted by scribbling on top of them. Toselect a region,
the user draws a lasso around the region. Multiple regions
can be specified by drawing multiple lassos. Todelete a se-
lected region, the user scribbles inside a lasso. There are also
two single-stroke delete gestures derived from text editing
notation (see Figure 4).

Figure 4: Two single-stroke delete gestures derived from
text editing.

To copy a region, the user holds the stylus just above a las-
soed region, presses the move button on the stylus (which
creates a ghosted copy of the symbols in the lasso), and then
releases the button at the location he or she wishes to place
the copied symbols. To move a region, the user touches
the tablet surface and presses the move button on the stylus,
moves to the new location (dragging a copy of the lassoed
symbols), and then releases the move button to place the las-
soed symbols. This style of pen-based interaction is similar
to Pick-And-Drop [15].

Instrument Assignment To assign a musical instrument to a
staff, the user draws a gesture line from an instrument shown
in the “instrument picker” (see Figure 5) to the staff the in-
strument is to be assigned to. Alternatively, the user can draw
a dot on a staff and then write or speak the name of the de-
sired instrument (see Figure 3).

Visualization Typically, music is printed on roughly 8.5” by
11” paper and two or more sheets are arranged in a row for
viewing. However, our Wacom display tablet has a total dis-
play area of only 8” by 6”. To increase the effective display
area of our tablet, the user can create a division in the “music
paper” on either side of the display tablet in order to display
more of the musical score (see Figure 6). This is based on the
perspective wall metaphor [11]. As a result, the user has in-
creased context for the current working area and also makes
it easier to navigate through the score.

207

Figure 5: An orchestral instrument picker– the user draws
a gesture line from an instrument to a staff to assign instru-
ments.

Figure 6: A Perspective Wall of music.

Audio Feedback In addition to hearing notes or chords when
adding new notes, there are two other types of audio feed-
back in Music Notepad. First, the user can drag the other end
(the eraser side) of the stylus over notes. As the stylus passes
over notes, they are played back. Second, using a different
gesture with the eraser end of the stylus, the entire piece will
be played back.

UI System Components
This section describes the Music Notepad’s UI system com-
ponents. The flow of input through the system is illustrated
in Figure 7. The tokenizer converts user input into feature
vectors, calledtokens, data structures that describe an input’s
spatial and textual content. Each token consists of 25 fea-
tures including, for example, the time to enter the user in-
put, the length of a stroke, the object under the starting point
of a stroke, and the number of self intersections. Tokens
are posted to the accumulator where they are examined by
command recognizers, calledRECOGs. Each RECOG has
a customized procedurefor estimating the probability that
the posted tokens are “what it is looking for” by analyzing

the token’s features, often in the context of the existing no-
tations. For example, a RECOG that erases lassoed objects
returns a probability based on how well the RECOG consid-
ers that one token describes a lasso around the objects and
that the other describes a squiggle within the lasso.3 If a
RECOGs probability is greater than all other RECOG prob-
abilities and it is also greater than some threshold (we used
50% certainty), then the RECOG is executed and the accu-
mulator is cleared. Conceptually, our approach is similar to
the unification-based multi-modal integration from [8].

Token

Token

Token

Microphone

User Input Recognizers

Token

Tokenizer Accumulator

Stylus

Probability (0-100%)
Execute()

Speech
Interpreter

Single Stroke
Interpreter

Interpreter
Handwriting

RECOG

Figure 7: Overview of system components: User input is
transformed to a token data structure that describes the spa-
tial and textual information of input. Command recogniz-
ers (called “RECOG”s) examine the accumulated tokens. If
the top probability of a RECOG exceeds some threshold, its
function is executed.

We employed the concept of anArbitrator for resolving sit-
uations where multiple RECOGs reported high probability
that they were recognized. For example, the RECOGs that
identify the gesture to insert an end-of-measure symbol and
to insert a quarter note (based on gestures in Figure 1) both
look for nearly the same input tokens. We chose to keep in-
dividual RECOGs simple and in the case where there is a
conflict, the RECOGs that reported high recognition proba-
bilities were passed to the Arbitrator which is responsible to
resolve the conflict. The Arbitrator consists of case-specific
code for expected conflicts. For example, in the end-of-measure
and quarter note scenario, the Arbitrator has a resolution han-
dler that has been hand-coded to inquire additional context to
resolve the situation.

There are some important details to the UI system compo-
nents. Stylus input can be directed to one of two tokenizers–
a single stroke interpreter or a handwriting interpreter. By
default, all stylus input is directed to the single stroke in-
terpreter. If the first single stroke gesture drawn is a “dot,”
then the system recognizes this as an out-of-band gesture
and channels all remaining stylus input through a handwrit-
ing recognizer. The “dot” gesture generally acts as a spatial
marker for the subsequent handwritten command.

Our tokenizer interpreters are Rubine’s gesture recognition
system [16] for single strokes (such as those from Figure 1),

3Since probabilities are in essence arbitrary, we had to iteratively refine
different techniques for computing and combining probabilities, with the
result being effective but “ad hoc.”

208

the Calligrapher [4] system for handwriting recognition, and
the In-Cube speech recognition system [7]. Additional sup-
port code translates the interpreted input to our token data
structures which are then posted to the accumulator.

DISCUSSION and USER FEEDBACK
The design of the Music Notepad has undergone a number of
iterations guided by formative evaluations by small groups of
musicians and composers. The following discussion presents
some of the results of our user experiences and a description
of how our designs changed in response to that feedback.

A variety of user gestures
Although all users were instructed with both a demonstra-
tion and a description of the gestures used in the system, we
found wide variation between individual performances of the
same gesture. Figure 8 illustrates some of the varieties of
four common, simple gestures.

Figure 8: Different user styles for drawing the same ges-
ture. Clockwise from top left: Erasing notes by squiggling
on them, selecting notes with a lasso, scribbling to create
noteheads, erasing notes with a single gesture lasso.

In response to the range of gesture styles, we were able to re-
design our gestures and develop more robust gesture recog-
nition algorithms. By analyzing the actual drawn gestures
from a number of users, we identified what types of features
were important in different situations and used this informa-
tion to fine tune the recognition probabilities in specific ges-
ture RECOGs.

Based on informal interviews of users who had tried the Mu-
sic Notepad, we found no negative reactions to learning and
using the gestural style of interaction. In addition, some
users, including musicians, indicated they would prefer us-
ing a completed version of the Music Notepad over existing
alternatives. The PalmPilot reflects similar learnability issues
and has gained widespread acceptance despite its use of the
idiosyncratic grafitti alphabet and the time required to mas-
ter it. Based on these reactions and the similar idiosyncratic
style of gesturing between the two systems, we believe the
Music Notepad would have similar acceptance.

Accurate placement of symbols
Some music notation symbols such as noteheads must be ac-
curately positioned. If the user specifies a position with a sin-
gle mouse sample (e.g., by pointing and clicking), we found

they often misplace the notehead. Since users want staffs to
be drawn at a standard printed size, the spacing between staff
lines is relatively small. Consequently, as predicted by Fitt’s
law, users have increasing difficulty in placing notes accu-
rately as they work faster. Each time a note is misplaced, the
user must perform at least one additional editing operation to
correct the mistake.

In response to our early user experiences with gestures like
those of Buxton (see Figure 1), we developed an alternate
method for entering notes. With this method, users position
a notehead by “scribbling in” a gesture that looks like a note-
head. There are several differences in this method for enter-
ing notes. First, this gesture is more accurate than the point-
and-click approach because the position of the note is speci-
fied by theaverageposition of the multiple samples defining
the scribbled notehead. Second, this gesture maps directly to
how a notehead is drawn on paper. Third, since this gesture
can act as the image for a notehead, we can avoid the distrac-
tion of replacing the drawn gesture with a different image.
Last, this technique can be slower than the point and click
technique and it does not convey the note duration.

Visual Representation
In addition to supporting What-you-see-is-what-you-get (WYSI-
WYG), the Music Notepad also supports What-you-see-is-
what-you-entered (WYSIWYE). The goal of WYSIWYE is
to minimize the time a user spends understanding the ef-
fects of an action. There are two instances of WYSIWYE
in the Music Notepad: sketchy noteheads and delayed auto-
formatting.

Sketchy noteheads When notes are entered by sketching
a notehead, the notehead is representedby exactly the line
the user sketchedinstead of replacing the line with a perfect
notehead.

Delayed auto-formatting In our evaluation of existing mu-
sic software systems, we found thateach one reformats some
subset of the notation every time a new symbol is created.
While automatic reformatting is a useful feature, it can also
be distracting– especially since the look of the document is
often irrelevant during informal music entry. In response to
the reaction of some users, we delay this automatic format-
ting until the user specifically requests it.

A major issue with WYSIWYE is ensuring that gestures are
initially interpreted correctly. If not, this may lead to refor-
matting errors that must be painstakingly located by the user.
Filled and hollow notes, for example, can be difficult to dis-
tinguish even by humans from a sketched notehead. We think
it may be effective to incorporate feedback for marking am-
biguous notes in a similar way to Microsoft Word’s “squiggly
underline” technique for highlighting misspelled words.

Marking Menus and Direct Input
There are many advantages to a direct draw environment,
however, one disadvantage is that the user’s hand can block

209

part of the display. This is a problem when using mark-
ing menus in the traditional manner because candidate menu
items are obstructed by the user’s hand.

We propose two solutions to this problem: first, allow the
user to lift their hand and the stylus tip from the tablet to view
the choices of the radial menu. After viewing the choices,
the user can select an item by touching the item with the sty-
lus tip or cancel the operation with a different gesture. The
second solution is not to display items underneath the user’s
hand. This requires sensing where the user’s hand is and
might be accomplished with a Wacom tablet by using the
data that reports the orientation of the stylus.

Mouse versus Stylus Input
In order to validate the need for a stylus-based gestural in-
terface, we also prototyped our system using a three-button
mouse for input. We found that although some aspects of
the mouse-based interface proved beneficial (e.g., the user’s
hand does not occlude the display), users considered most
gestural interactions to be more difficult. Users had particu-
lar difficulty drawing gestures with the mouse that involved
curved lines, especially handwriting and lassoing. Despite
these difficulties, users found that the character of pencil and
paper sketching was still preserved.

FUTURE WORK
There are many areas of future work for the Music Notepad:

� approaches to learning the gestural interface
� accounting for many different styles of drawn gestures
� more extensive use of natural speech
� apply framework to other 2D applications
� incorporate MIDI keyboard interface, voice input
� greater music functionality in order to perform user studies

supporting multiple voices per staff
visual management of score
better playback that incorporates notation / dynamics

� user studies
comparison with traditional GUI (e.g., paper and pen-

cil and Finale)
� apply to specific area of music: e.g., jazz

CONCLUSIONS
The Music Notepad demonstrates a paper and pencil look-
and-feel to a powerful computer music notation engine. Thus
users can informally jot down music as well as edit, profes-
sionally format, and synthesize the music. Although the sys-
tem is still incomplete, it has benefited from multiple stages
of formative evaluation and development. Musicians and
composers provided feedback that was used to redesign our
gesture recognition algorithms and to improveaccess to the
available functionality.

ACKNOWLEDGMENTS
This work is supported in part by the NSF Graphics and Visu-
alization Center, Advanced Networks and Services, Alias/Wavefront,
Autodesk, Microsoft, Sun Microsystems, and TACO.

REFERENCES
1. Ammer, C., “The Harper Collins Music Dictionary,”

New York: Harper Peremial, 1991.

2. Buxton, W., Sniderman, R., Reeves, W., Patel, S., and
Baecker R., “The Evolution of the SSSP Score Editing
Tools,” Computer Music Journal, Issue No. 12, 3:(4),
pp. 14-25, 1979.

3. Cakewalk Pro Audio, Cakewalk, Inc.,
http://www.cakewalk.com/.

4. Calligrapher, ParaGraph International, Inc.,
http://www.paragraph.com/.

5. “Common Music Notation,” A free western music no-
tation package written in Common Lisp, The Stanford
University Center for Computer Research in Music and
Acoustics (CCRMA), http://ccrma-www.stanford.edu/.

6. Finale, Coda Music Technology,
http://www.codamusic.com/.

7. The In-Cube User Guide, available from Command
Corporation, Inc., Atlanta, GA, 1997.

8. Johnston, M., Cohen, P. R., McGee D., Oviatt, S. L.,
Pittman, J. A., Smith I., “Unification-based Multimodal
Integration”, 35th Annual Meeting of the Assoc. for
Computational Linguistics and 8th Conference of the
European Chapter of the Assoc. for Computational Lin-
guistics, Madrid, Spain, July 7-12, 1997.

9. Kurtenbach, G. and Buxton, W. “User learning and
performance with marking menus,”In Proceedings of
ACM CHI ’94 Conference on Human Factors in Com-
puting Systems, pp. 258-264, 1994.

10. MacKenzie, S., Sellen, A., and Buxton, W., “A com-
parison of input devices in elemental pointing and drag-
ging tasks,”ACM SGICHI - Human Factors in Comput-
ing Systems, pp. 161-166, 1991.

11. Mackinlay, J. D., Robertson, G. G., Card, S. K., “The
Perspective Wall: Detail and Context Smoothly Inte-
grated,” In Proceedings of ACM CHI’91 Conference
on Human Factors in Computing Systems, pp. 173-179,
1991.

12. Maxwell, J. T. and Ornstein, S. M., “Mockingbird: A
Composer’s Amanuensis,” Available as technical report
from Xerox Corporation, January 1983.

13. McGrain, M., “Music Notation,” Berklee Press Publi-
cations, Milwaukee, 1986.

14. Personal conversation with Keith Hamel, Opus1 Music
Software, http://debussy.music.ubc.ca/ opus1/.

210

15. Rekimoto, J., “Pick-And-Drop: A Direct Manipula-
tion Technique for Multiple Computer Environment,”
In Proceedings of UIST ’97, pp. 31-39, October, 1997.

16. Rubine, D., “Specifying Gestures by Example”In Pro-
ceedings of ACM SIGGRAPH ’91, pp. 329-337, July,
1991.

17. Rubine, D.,The Automatic Recognition of Gestures,
PhD Thesis, School of Computer Science, Carnegie
Mellon University, December,1991.

18. M.T. Vo and C. Wood, “Building an Application
Framework for Speech and Pen Input Integration
in Multimodal Learning Interfaces,” In Proceedings
ICASSP’96, Atlanta, GA, May 1996.

