3D User Interfaces for Games
and Virtual Reality

Lecture #4: XNA & Bespoke 3DUI
Spring 2010
Joseph J. LaViola Jr.

Special thanks to Paul Varcholik for developing Bespoke 3DUI and these slides.

Spring 2010 CAP6121- 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

Introductions

Paul Varcholik:
Technology Blog:

Spring 2010 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

Software

Visual Studio 2008 (Standard or
Professional)

or

Visual C# Express 2008

Windows Vista Service Pack 1; Windows
XP Service Pack 3; Windows 7

XNA Game Studio 3.1

Spring 2009 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

Online Resources

XNA Developer Center

XNA Team Blog

XNA Creators Club

Spring 2009 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

What is XNA?

Graphics and Game Development Framework
Announced: Aug 2006
1.0: Dec 2006

1.0 Refresh: April 2007
2.0: Dec 2007

3.0: Oct 2008

3.1: June 2009

2D and 3D

Managed DirectX
Windows and Xbox 360
Content Pipeline

XNA’s Not Acronymed

Spring 2009 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

Why Use XNA?

Extremely Comprehensive

Free

Easy to Use (though game programming is, in
general, quite challenging)

Development and Real-time Debugging on a
Retail Xbox 360

Casual Games
Game Prototyping
Access to the .NET Framework Class Libraries

Spring 2009 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

Microsoft.Xna

.Framework

.Graphics

.Content

.Input

.Audio
Microsoft.Xna.Framework Classes/Structs
= Game

ContentManager

GraphicsDeviceManager

GameComponent

DrawableGameComponent

Spring 2009 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

XNA (cont.)

Microsoft.Xna.Framework Classes/Structs
= Vector2
= Vector3
= Point
= Matrix
BoundingBox
BoundingSphere
Texture2D
SpriteFont

Spring 2009 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

XNA (cont.)

Game Class

= Initialize()

= LoadContent()

= UnloadContent()

= Update()

= Draw()

Components

= Separate out a generic/reusable class library

Spring 2009 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

Bespoke 3D Ul Framework

Organization:

= Source Code
Framework

Samples
= StereoscopicRendering
= TrackIRTestbed
= WiimoteTestbed

= Executables
= Documentation

Spring 2009 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

Bespoke 3D Ul Framework

Namespaces:
= Bespoke.Common
General Utilities (not game/XNA specific)
= Bespoke.Games.Framework
XNA utility libraries
= Bespoke.Games.Framework.Content
Custom XNA Content Processors

Spring 2009 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

Bespoke 3D Ul Framework

Namespaces:
= Bespoke.Games.TrackIR
Specific API for TrackIR tracking device
m Bespoke.Games.Framework.Windows
Generic tools for graphics device, scenegraph
= Bespoke.GestureClassifier.Framework
API for gesture recognition routines

Spring 2009 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

Bespoke.Commom

Assert (static)
CommandLineParser

Library (static)

LogManager

Node<T> / NodeCollection <T>
Progressindicator

XmlHelper

Spring 2009 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

Bespoke.Common

.Data
.LinearAlgebra
.TrackIR — Requires OptiTrack software

.Video — Uses DirectShow.NET (wrapper
for unmanaged DirectShow)

.Wiimote — Brian Peek’s Wiimote Library
from Coding4Fun.com

Spring 2009 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

Bespoke.Games.Framework.Content

TerrainContentimporter
TerrainContentProcessor
TerrainDataWriter

These classes provide a content pipeline
for using a heightmap for terrain. This is
used in conjunction with the
TerrainComponent.

Spring 2009 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

Bespoke.Games.Framework

Actor/ActorList CameraComponent
DynamicActor ChaseCameraComponent
DynamicActorGroup StereoscopicChaseCameraComp
FontManager onent

FpsComponent Sprite

GridComponent SpriteManager

PostProcessor SkyBoxComponent

ScreenCapture SoundManager
TerrainComponent

Spring 2009 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

Bespoke.Games.Framework

ScreenManager .Input

GameScreen
MenuScreen
ScreenlnputManager

Ul
UlManager
UlControl
Button
XML Configuration

KeyboardComponent
MouseComponent
GamepadComponent

= TracklRComponent

WiimoteComponent

Spring 2009 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

How To:

Render a 2D Texture
Draw Text
View the Game’s Framerate

Collect Input
= Keyboard
= Mouse

= Gamepad

Spring 2009 CAP6121 — 3D User Interfaces

Initialize a 3D camera
Draw a Reference Grid
Render a 3D Model
Play Sound

Render a SkyBox
Render Terrain

for Games and Virtual Reality ©Joseph J. LaViola Jr.

How To:
Render a 2D Texture

Include the texture in the Content project. Supported formats:

= bmp, .dds, .dib, .hdr, .jpg, .pfm, .png, .ppm, and .tga

Spring 2009

Initialize the SpriteManager class within the LoadContent() or
Initialize() method:

SpriteManager.Initialize(this);

Create data member to store texture:
private Texture2D mTexture;

Load the texture in the LoadContent() method:
mTexture = Content.Load<Texture2D>(@"Content\Textures\Skybox\back");

Render the texture in the Draw() method:
SpriteManager.DrawTexture2D(mTexture, Vector2.Zero, Color.White);
CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

How To:
Draw Text

Initialize the SpriteManager class as required before any
calls can be made to the SpriteManager.

Add a call to SpriteManager.DrawString in the Draw()
method:

SpriteManager.DrawString(“"Hello World", 40.0f, 40.0f, Color.White);

Variety of overloads to the DrawString method:

Spring 2009

Change the font
The blend color
Rotation
Sorting

CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

10

How To:
View the Game’s Framerate

Add the following statements to the Game-derived
constructor, LoadContent(), or Initialize() method:

FpsComponent fps = new FpsComponent(this);

fps.Location = FpsComponent.ScreenLocation.TitleBar;
Components.Add(fps);

FpsComponent display locations:
Titlebar
UpperLeft
UpperRight
LowerLeft
LowerRight

Spring 2009 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

How To:
Collect Keyboard Input

Add a using statement for the Bespoke.Games.Framework.Input
namespace;

(Optional) Create a data member to store the keyboard component:
private KeyboardComponent mKeyboardComponent;

Add the following statements to the Game-derived constructor,
LoadConent(), or Initialize() method:

mKeyboardComponent = new KeyboardComponent(this);
Components.Add(mKeyboardComponent);

Add keyboard queries to the Update() method:
if (mKeyboardComponent.WasKeyPressedThisFrame(Keys.Escape))

{
Exit();
}

Spring 2009 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

11

Spring 2009

Spring 2009

How To:
Initialize a 3D Camera

Add the following statements to the Game-derived
constructor, LoadContent(), or Initialize() method:

mCamera = new CameraComponent(this);

Services.AddService(typeof(ICamera), mCamera);
Components.Add(mCamera);

mCamera.KeyboardComponent = mKeyboardComponent;
mCamera.GamePadComponent = mGamePadComponent;
mCamera.Position = new Vector3(0.0f, 20.0f, 200.0f);
mCamera.Orientation = Vector3.Up;
mCamera.Direction = Vector3.Forward;
mCamera.LookAtOffset = Vector3.Forward;
mCamera.NearPlaneDistance = 1.0f;
mCamera.FarPlaneDistance = 100000.0f;
mCamera.FieldOfView = MathHelper.PiOver4;
mCamera.AspectRatio = (float)GraphicsDevice.PresentationParameters.BackBufferWidth /
GraphicsDevice.PresentationParameters.BackBufferHeight;

mCamera.UpdateProjectionMatrix();

CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

How To:
Draw a Reference Grid

Initialize a camera

Add the following statements to the Game-derived
constructor, LoadContent(), or Initialize() method:

GridComponent grid = new GridComponent(this);
Components.Add(grid);

You can modify the size (number of cells), scale (spacing
between each line) and the color of the grid

CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

12

Spring 2009

Spring 2009

How To:
Render a 3D Model

Include the model in your Content project (this is typically a sub-
project within your Game project)
= Supported Formats:
.fbx (Autodesk)
.x (DirectX Surface)
= Be certain that associated textures reside in the proper locations.

Add the following statements to the Game-derived LoadContent(),
or Initialize() method:
Model tankModel = Content.Load<Model>(@"Content\Models\Tank");

Actor tankActor = new DynamicActor(this, "Tank", Vector3.Zero, Vector3.Up, 0.05f, 1.0f,
tankModel, mCamera);

tankActor.Initialize();
Add tankActor.Update() and tankActor.Draw() calls to the corresponding
Game-derived Update() and Draw() methods.

CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

How To:
Play Sound

Build your sound project using XACT.
Include your sound project (.xap) into your Content project.

Initialize the SoundManager static class in the LoadContent() or Initialize()
method:

SoundManager. Initialize(@"Content\Audio\SoundProject.xgs", @"Content\Audio\Wave
Bank.xwb", @"Content\Audio\Sound Bank.xsb");

Play sounds with SoundManager.Play():

Call SoundManager.Update() within the main Update() loop.

CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

13

Spring 2009

Spring 2009

How To:
Render a Skybox

Create your skybox textures () and import them into your Content
project (front, back, left, right, top)

Create a SkyBoxComponent data member.
private SkyBoxComponent mSkyBox;

Add the following code to your Initialize() or LoadContent() method:
Texture2D front = Content.Load<Texture2D>(@"Content\Textures\SkyBox\front");
Texture2D back = Content.Load<Texture2D>(@"Content\Textures\SkyBox\back");
Texture2D left = Content.Load<Texture2D>(@"Content\Textures\SkyBox\left");
Texture2D right = Content.Load<Texture2D>(@"Content\Textures\SkyBox\righ
Texture2D top = Content.Load<Texture2D>(@"Content\Textures\SkyBox\top");

mSkyBox = new SkyBoxComponent(this, "SkyBox", front, back, left, right, top, 1000.0f,
mCamera);

mSkyBox. Initialize();

Call mSkyBox.Draw() from the main draw loop. Call this as the first object to be
rendered.

CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

How To:
Render Terrain

Reference Bespoke.Games.Framework.Content.dll from your Content
project.

Import the heightmap (.raw) into your Content project and choose the
Bespoke Software — Terrain Content Importer/Processor

Properties

TerrainHeightMap.raw File Properties

Asset Name TerrainHeightMap

Build Action Compile

Content Importer Bespoke Software - Terrain Content Importer
Centent Processor Bespoke Software - Terrain Content Processor
Copy to Output Directory Do not copy

File Name TerrainHeightMap.raw

Full Path C:\Development\UCF\3D User Interfaces\Source

Import the associated texture into your Content project.

CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

14

How To:
Render Terrain (cont.)

Create a TerrainComponent data member.

private TerrainComponent mTerrain;

Add the following code to your Initialize() or LoadContent()
method:

TerrainData terrainData = Content.Load<TerrainData>(@"Content\Other\TerrainHeightMap");
Texture2D terrainTexture = Content.Load<Texture2D>(@"Content\Textures\Terrain");

mTerrain = new TerrainComponent(this, terrainData, terrainTexture, 513, 513, 4.0f, 6000.0f,
Color.White, -1000.0f, mCamera);

mTerrain.Initialize();

Call mTerrain.Draw() from the main draw loop.

Spring 2009 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

How To:
Collect Wiimote Input

From

Getting Connected
This will likely be the biggest sticking point. The Wiimote will not pair and communicate successfully with every
Bluetooth device and stack on the planet. There's little | can do to help get you connected if the following steps
do not work. Either it's going to work, or it isn't. Cross your fingers...
Start up your Bluetooth software and have it search for a device.
Hold down the 1 and 2 buttons on the Wiimote. You should see the LEDs at the bottom start flashing. Do
not let go of these buttons until this procedure is complete.
The device should show up in the list of devices found as Nintendo RVL-CNT-01. If it's not there, start
over and try again.
Click Next to move your way through the wizard. If at any point you are asked to enter a security code or
PIN, leave the number blank or click Skip. Do not enter a number.
You may be asked which service to use from the Wiimote. Select the keyboard/mouse/HID service if
prompted (you should only see one service available).
6. Finish the wizard.
That's it. The LEDs at the bottom should continue to flash and you should see the device listed in your list of
connected Bluetooth devices. If you run the test application included with the source code and you see the
numbers change, you are all set. If you don't see them change or you get an error, try the above again. If it
continues to not function, you are likely stuck with an incompatible device or stack.

Spring 2009 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

15

How To:
Collect Wiimote Input (cont.)

(Optional) Create a data member to store the Wiimote component:
private WiimoteComponent mWiimoteComponent;

Add the following statements to the Game-derived constructor,
LoadConent(), or Initialize() method:
mWiimoteComponent = new WiimoteComponent(this);
Components.Add(mWiimoteComponent);

Add Wiimote queries to the Update() method:
if (mWiimoteComponent.CurrentState.ButtonState.B)

{
rotationAmount.X = mWiimoteComponent.Y;
rotationAmount.Y = -mWiimoteComponent.Z;

Spring 2009 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

Controls:
CameraComponent

Keyboard

= WASD (forward, turn left, backward, turn
right)

= Up Arrow (turn up), Down Arrow (turn down)

GamePad

m Left Thumbstick (turn up, down, left, right)

= Right Trigger (forward)

m Left Trigger (reverse)

Spring 2009 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

16

Controls:
StereoScopicChaseCameraComponent

Keyboard
PageUp/PageDown (increase/descrease IPD)
End (toggle stereoscopic rendering)

Spring 2009 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

WorldWriter

Spring 2008 CAP6121 — 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

17

Next Class

3DUI Hardware

= visual system

= visual displays

Start Chapter 3 of 3DUI book

Spring 2008 CAP6121 — 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr.

18

