

Universal 3D Interaction Tasks

- Navigation
 - Travel motor component
 - Wayfinding cognitive component
- Selection
- Manipulation
- System control
- Symbolic input

Spring 2011

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Why Selection and Manipulation?

- Major method of interaction with physical environments
- Major method of interaction with virtual environments
- Affects the quality of entire 3D interface
- Design of 3D manipulation techniques is difficult

Spring 2011

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Lecture Outline

- What is 3D selection and manipulation?
- Relationship between IT and input device
- Manipulation technique classification
- Techniques
 - selection
 - manipulation
 - hybrid
- Isomorphism vs. Non-isomorphism

Spring 2011

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Selection & Manipulation

- Selection: specifying one or more objects from a set
- Manipulation: modifying object properties (position, orientation, scale, shape, color, texture, behavior, etc.)

Spring 2011

CAP6121 - 3D User Interfaces for Games and Virtual Reality

Goals of Selection

- Indicate action on object
- Query object
- Make object active
- Travel to object location
- Set up manipulation

Spring 2011

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Selection Performance

- Variables affecting user performance
 - object distance from user
 - object size
 - density of objects in area
 - occluders

Spring 2011

CAP6121 - 3D User Interfaces for Games and Virtual Reality

Canonical Parameters

- Selection
 - distance and direction to target
 - target size
 - density of objects around the target
 - number of targets to be selected
 - target occlusion.
- Positioning
 - distance/direction to initial position
 - distance/direction to target position
 - translation distance
 - required precision of positioning
- Rotation
 - distance to target
 - initial orientation
 - final orientation
 - amount of rotation

Spring 201

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

3D Interaction Techniques and the Input Device

- Number of control dimensions
- Control Integration
- Force vs. Position control
- Device placement
- Form Factor

Attached to Hand

Rolled with fingers

Spring 2011

CAP6121 - 3D User Interfaces for Games and Virtual Reality

Direction Manipulation – Go-Go Arm-extension technique Like simple v. hand, touch objects to select them Non-linear mapping between physical and virtual hand position Local and distant regions $r_v = F(r_t) = \begin{cases} r_t & \text{if } r_t \leq D \\ r_t + \alpha(r_t - D)^2 & \text{otherwise} \end{cases}$ where r_r elength of $\vec{\mathbf{R}}_v$ $r_v = \text{length of } \vec{\mathbf{R}}_v$ $D, \alpha \text{ are constants}$ Spring 2011 CAP6121 – 3D User Interfaces for Games and Virtual Reality Quoseph J. LaViola Jr.

HOMER Implementation (cont.)

- Each frame:
 - Copy hand tracker matrix to v. hand matrix (to set orientation)
 - Get physical hand position h_{curr} and distance: $d_{h-curr} = dist(h_{curr}, t)$
 - V. hand distance $d_{vh} = d_{h-curr} \times \left(\frac{d_o}{d_h}\right)$
 - Normalize torso-hand vector $th_{curr} = \frac{h_{curr} t}{\|h_{curr} t\|}$
 - V. hand position $vh = t + d_{vh} * (th_{curr})$

Spring 201

CAP6121 - 3D User Interfaces for Games and Virtual Reality

Scaled-World Grab Implementation

- At selection:
 - Get world CS distance from eye to hand deh
 - Get world CS distance from eye to object d_{eq}
 - Scale user (entire user subtree) uniformly by d_{eq}/d_{eh}
 - Ensure that eye remains in same position
 - Attach selected object to v. hand (w/out moving object)
- At release:
 - Re-attach object to world (w/out moving object)
 - Scale user uniformly by d_{eh} / d_{eo}
 - Ensure that eye remains in same position

Spring 2011

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Hybrids – Voodoo Dolls

- Two handed technique
- Builds upon image plane and WIM techniques
- Creates copies of objects (dolls) for manipulation
- Non-dominant hand stationary frame of reference
- Dominant hand defines position and orientation

Spring 2011

CAP6121 - 3D User Interfaces for Games and Virtual Reality

Isomorphic vs. Non-Isomorphic Philosophies

- Human-Machine interaction
 - input device
 - display device
 - transfer function (control to display mapping)
- Isomorphic one-to-one mapping
- Non-isomorphic scaled linear/non-linear mapping

Spring 2011

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Non-Isomorphic 3D Spatial Rotation

- Important advantages
 - manual control constrained by human anatomy
 - more effective use of limited tracking range (i.e vision-based tracking)
 - additional tools for fine tuning interaction techniques
- Questions
 - faster?
 - more accurate?

Spring 2011

CAP6121 - 3D User Interfaces for Games and Virtual Reality

Rotational Space

- Rotations in 3D space are a little tricky
 - do not follow laws of Euclidian geometry
- Space of rotations is not a vector space
- Represented as a closed and curved surface
 - 4D sphere or manifold
- Quaternions provide a tool for describing this surface

Spring 2011

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Quaternions

- Four-dimensional vector $(\boldsymbol{\nu}, \boldsymbol{w})$ where $\boldsymbol{\nu}$ is a 3D vector and \boldsymbol{w} is a real number
- A quaternion of unit length can be used to represent a single rotation about a unit axis \hat{u}

and angle θ as

$$q = (\sin(\frac{\theta}{2}\hat{u}), \cos(\frac{\theta}{2})) = e^{\frac{\theta}{2}\hat{u}}$$

Spring 2011

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Linear 0th Order 3D Rotation

Let q_c be the orientation of the input device and q_d be the displayed orientation then

(1)
$$q_c = (\sin(\frac{\theta_c}{2}\hat{u}_c), \cos(\frac{\theta_c}{2})) = e^{\frac{\theta_c}{2}\hat{u}_c}$$

(2)
$$q_d = (\sin(\frac{k\theta_c}{2}\hat{u}_c), \cos(\frac{k\theta_c}{2})) = e^{\frac{k\theta_c}{2}\hat{u}_c} = q_c^k$$

- Final equations w.r.t. identity or reference orientation q_o are
 - (3) $q_q = q_c^k$ (4) $q_d = (q_c q_o^{-1})^k q_o$, k = CD gain coefficient

Spring 2011

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Non-Linear 0th Order 3D Rotation

Consider

(3)
$$q_d = q_c^k$$
 (4) $q_d = (q_c q_o^{-1})^k q_o$

Let *k* be a non-linear function as in $\omega = 2 \arccos(q_c \cdot q_a)$ or $\omega = 2 \arccos(w)$

$$k = F(\omega) = \begin{cases} 1 & \text{if } \omega < \omega_o \\ f(\omega) = 1 + c(\omega - \omega_o)^2 & \text{otherwise} \end{cases}$$

where c is a coefficient and ω_o is the theshold angle

Spring 2011

CAP6121 - 3D User Interfaces for Games and Virtual Reality

Design Considerations

 Absolute mapping – taken on *i-th* cycle of the simulation loop

$$q_{d_i} = q_{c_i}^k$$

Relative mapping – taken between the *i-th* and *i-1th* cycle of the simulation loop

$$q_{d_i} = (q_{c_i} q_{c_{i-1}}^{-1})^k q_{d_{i-1}}$$

Spring 2011

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola J.

Absolute Non-Isomorphic Mapping

- Generally do not preserve directional compliance
- Strictly preserves nulling compliance

Spring 2011

CAP6121 - 3D User Interfaces for Games and Virtual Reality

Relative Non-Isomorphic Mapping

- Always maintain directional compliance
- Do not generally preserve nulling compliance

Spring 2011

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jı

Amplified Non-Linear Rotation for VE Navigation (1)

- Users expect the virtual world to exist in any direction
 - 3-walled Cave does not allow this
 - adapt expected UI to work in restricted environment
- Amplified rotation allows users to see a full 360 degrees in a 3-walled display
- A number of approaches were tested
 - important to take cybersickness into account

Spring 2011

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Amplified Non-Linear Rotation for VE Navigation (2)

- Apply a non-linear mapping function to the user's waist orientation θ and his or her distance d from the back of the Cave
- Calculate the rotation factor using a scaled 2D Gaussian function

$$\phi = f(\theta, d) = \frac{1}{\sqrt{2\pi\sigma_1}} e^{-\frac{(|\theta| - \pi(1 - d/L))^2}{2\sigma_2^2}}$$

• The new viewing angle is $\theta_{new} = \theta(1-\phi)$

Spring 201

CAP6121 - 3D User Interfaces for Games and Virtual Reality

Non-Linear Translation for VE Navigation (1)

- Users lean about the waist to move small to medium distances
 - users can lean and look in different directions
- Users can also lean to translate a floorbased interactive world in miniature (WIM)
 - Step WIM must be active
 - user's gaze must be 25 degrees below horizontal

Spring 2011

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Non-Linear Translation for VE Navigation (2)

- Leaning vector \vec{L}_R is the projection of the vector between the waist and the head onto the floor
 - gives direction and raw magnitude components
- Navigation speed is dependent on the user's physical location
 - Leaning sensitivity increases close to a boundary
- Linear function $L_T = a \cdot D_{\min} + b$
- Mapped velocity $v = ||\vec{L}_R|| L_T$

Spring 201

CAP6121 - 3D User Interfaces for Games and Virtual Reality

Non-Linear Translation for VE Navigation (3)

- Navigation speed is also dependent on the user's head orientation with respect to the vertical axis
 - especially useful when translating the floor-based WIM
- Mapping is done with a scaled exponential function

 $F = \alpha \cdot e^{-\beta \left| \vec{H} \cdot \vec{V}_{up} \right|}$

• Final leaning velocity is $v_{final} = F \cdot v$

Spring 2011

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Next Class

- Navigation Travel
- Readings
 - 3DUI Book Chapter 5

Spring 2011

CAP6121 - 3D User Interfaces for Games and Virtual Reality