3D User Interface Techniques for Selection and Manipulation

Lecture \#8: Selection and Manipulation
Spring 2011
J oseph J. LaViola Jr.

Interaction Workflow

Universal 3D Interaction Tasks

Navigation

- Travel - motor component
- Wayfinding - cognitive component
- Selection
- Manipulation
- System control
- Symbolic input

Why Selection and Manipulation?

Major method of interaction with physical environments

- Major method of interaction with virtual environments
- Affects the quality of entire 3D interface
- Design of 3D manipulation techniques is difficult

Lecture Outline

What is 3D selection and manipulation?

- Relationship between IT and input device
- Manipulation technique classification
- Techniques
- selection
- manipulation
- hybrid
- Isomorphism vs. Non-isomorphism

Selection \& Manipulation

Selection: specifying one or more objects from a set

- Manipulation: modifying object properties (position, orientation, scale, shape, color, texture, behavior, etc.)

Goals of Selection

I Indicate action on object

- Query object
- Make object active
- Travel to object location
- Set up manipulation

Selection Performance

Variables affecting user performance

- object distance from user
- object size
- density of objects in area
- occluders

Canonical Parameters

- Selection
- distance and direction to target
- target size
- density of objects around the target
- number of targets to be selected
- target occlusion.
- Positioning
- distance/direction to initial position
- distance/direction to target position
- translation distance
- required precision of positioning
- Rotation
- distance to target
- initial orientation
- final orientation
- amount of rotation

3D Interaction Techniques and the Input Device

Number of control dimensions

- Control Integration
- Force vs. Position control
- Device placement
- Form Factor

Attached to Hand

Rolled with fingers

Technique Classification by Metaphor

VE manipulation techniques

| Exocentric metaphor |
| :--- | :--- |
| World-In-Miniature |
| Scaled-world grab |

Egocentric metaphor

- Virtual Hand metaphor
"Classical" virtual hand Go-Go
Indirect, stretch Go-Go
-Virtual Pointer metaphor
Ray-casting
Aperture
Flashlight
Image plane

Technique Classification by Components

3D Selection and Manipulation Techniques

Pointing

- ray-casting
- two-handed pointing
- flashlight \& aperture
- image plane

Direct manipulation

- simple virtual hand
- Go-Go
- WIM

Hybrids

- Homer
- Scaled-World Grab
- Voodoo Dolls

Pointing - Ray-Casting

- User points at objects with virtual ray
- Ray defines and visualizes pointing direction

$$
\begin{aligned}
& \mathbf{p}(\alpha)=\mathbf{h}+\alpha \cdot \overrightarrow{\mathbf{p}} \\
& \text { where } 0<\alpha<\infty \\
& \mathbf{h}=3 \mathrm{D} \text { position of virtual hand } \\
& \overrightarrow{\mathbf{p}}=\text { ray attached to } \mathbf{h}
\end{aligned}
$$

Pointing - Two-Handed Pointing

Ray casting with 2 hands
More control

- distance between hands controls length
- twisting curves pointer

$$
\begin{aligned}
& \mathbf{p}(\alpha)=\mathbf{h}_{1}+\alpha \cdot\left(\mathbf{h}_{\mathbf{r}}-\mathbf{h}_{\mathbf{1}}\right) \\
& \text { where } 0<\alpha<\infty \\
& \mathbf{h}_{\mathbf{1}}=3 \mathrm{D} \text { position of left hand } \\
& \mathbf{h}_{\mathbf{r}}=3 \mathrm{D} \text { position of right hand }
\end{aligned}
$$

Pointing - Flashlight and Aperture

Flashlight - soft selection technique

- does not need precision
- conic volume constant

- Aperture - extension to Flashlight
- adjustable volume
$\mathbf{p}(\alpha)=\mathbf{e}+\alpha \cdot(\mathbf{h}-\mathbf{e})$
where $0<\alpha<\infty$

$\mathbf{h}=3 \mathrm{D}$ position of hand
e $=3 \mathrm{D}$ coordinates of viewport

Pointing - Image Plane Family

- Requires only 2 DOF
- selection based on 2D projections
- virtual image plane in front of user

Framing

Lifting Palms

Sticky Finger

Direct Manipulation - Virtual Hand

- Select and manipulate directly with hands
Hand represented as 3D cursor
- Intersection between cursor and object indicates selection

$$
\begin{aligned}
& \mathbf{p}_{\mathrm{v}}=\alpha \cdot \mathbf{p}_{\mathrm{r}}, \mathbf{R}_{\mathrm{v}}=\mathbf{R}_{\mathrm{r}} \\
& \mathbf{p}_{\mathrm{r}}, \mathbf{R}_{\mathrm{r}}=\text { position and orientation of real hand } \\
& \mathbf{p}_{\mathrm{v}}, \mathbf{R}_{\mathrm{v}}=\text { position and orientation of hand in VE } \\
& \alpha=\text { a scaling factor }
\end{aligned}
$$

Direction Manipulation - Go-Go

- Arm-extension technique
- Like simple v. hand, touch objects to select them
Non-linear mapping between physical and virtual hand position
- Local and distant regions
$r_{v}=F\left(r_{\mathrm{r}}\right)=\left\{\begin{array}{cc}r_{\mathrm{r}} & \text { if } r_{\mathrm{r}} \leq D \\ r_{\mathrm{r}}+\alpha\left(r_{\mathrm{r}}-D\right)^{2} & \text { otherwise }\end{array}\right.$
where $r_{r}=$ length of $\overrightarrow{\mathbf{R}}_{\mathrm{r}}$
$r_{v}=$ length of $\overrightarrow{\mathbf{R}}_{v}$

$$
D, \alpha \text { are constants }
$$

Direct Manipulation - WIM

- "Dollhouse" world held in user's hand
Miniature objects can be manipulated directly
- Moving miniature objects affects full-scale objects
- Can also be used for navigation

Hybrids - HOMER

Hand-Centered
Object
Manipulation
Extending
Ray-Casting

- Select: ray-casting

- Manipulate: hand

HOMER Implementation

- Requires torso position t
- Upon selection, detach virtual hand from tracker, move v . hand to object position in world CS, and attach object to v. hand (w/out moving object)
Get physical hand position h and distance $d_{h}=\operatorname{dist}(h, t)$
- Get object position 0 and distance $d_{0}=\operatorname{dist}(0$, t)

HOMER Implementation (cont.)

Each frame:

- Copy hand tracker matrix to v. hand matrix (to set orientation)
- Get physical hand position $h_{\text {curr }}$ and distance:
$d_{h \text {-curr }}=\operatorname{dist}\left(h_{\text {curr, }}, t\right)$
- V. hand distance $d_{v h}=d_{h-\text { curr }} \times\left(\frac{d_{o}}{d_{h}}\right)$
- Normalize torso-hand vector $t h_{\text {curr }}=\frac{h_{\text {curr }}-t}{\left\|h_{\text {curr }}-t\right\|}$
- V. hand position $v h=t+d_{v h}^{*}\left(\right.$ th $\left._{\text {curr }}\right)$

Hybrids - Scaled-World Grab Technique

Often used w/ occlusion

- At selection, scale user up (or world down) so that v . hand is actually touching selected object
- User doesn't notice a change in the image until he moves

Scaled-World Grab Implementation
 \square At selection:
 - Get world CS distance from eye to hand $d_{e h}$
 - Get world CS distance from eye to object $d_{e o}$
 - Scale user (entire user subtree) uniformly by $d_{e o} / d_{e h}$
 - Ensure that eye remains in same position
 - Attach selected object to v. hand (w/out moving object)
 At release:
 - Re-attach object to world (w/out moving object)
 - Scale user uniformly by $d_{e h} / d_{e o}$
 - Ensure that eye remains in same position

Hybrids - Voodoo Dolls

- Two handed technique

Builds upon image plane and WIM techniques

- Creates copies of objects (dolls) for manipulation
- Non-dominant hand stationary frame of reference

- Dominant hand - defines position and orientation

Isomorphic vs. Non-Isomorphic Philosophies

Human-Machine interaction

- input device
- display device
- transfer function (control to display mapping)
- Isomorphic - one-to-one mapping
- Non-isomorphic - scaled linear/non-linear mapping

Non-I somorphic 3D Spatial Rotation

Important advantages

- manual control constrained by human anatomy
- more effective use of limited tracking range (i.e vision-based tracking)
- additional tools for fine tuning interaction techniques

Questions

- faster?
more accurate?

Rotational Space

- Rotations in 3D space are a little tricky
- do not follow laws of Euclidian geometry
- Space of rotations is not a vector space
- Represented as a closed and curved surface
- 4D sphere or manifold

Quaternions provide a tool for describing this surface

Quaternions

Four-dimensional vector ($\mathbf{v}, \boldsymbol{w}$) where v is a 3D vector and w is a real number

- A quaternion of unit length can be used to represent a single rotation about a unit axis \hat{u}

$$
\begin{aligned}
& \text { and angle } \theta \text { as } \\
& \qquad q=\left(\sin \left(\frac{\theta}{2} \hat{u}\right), \cos \left(\frac{\theta}{2}\right)\right)=e^{\frac{\theta}{2} \hat{u}}
\end{aligned}
$$

Linear $0^{\text {th }}$ Order 3D Rotation

Let q_{c} be the orientation of the input device and q_{d} be the displayed orientation then
(1) $q_{c}=\left(\sin \left(\frac{\theta_{c}}{2} \hat{u}_{c}\right), \cos \left(\frac{\theta_{c}}{2}\right)\right)=e^{\frac{\theta_{\varepsilon_{0}}}{2}}$
(2) $q_{d}=\left(\sin \left(\frac{k \theta_{c}}{2} \hat{u}_{c}\right), \cos \left(\frac{k \theta_{c}}{2}\right)\right)=e^{\frac{k e_{c_{u_{c}}}}{2}}=q_{c}^{k}$

Final equations w.r.t. identity or reference orientation q_{0} are
(3) $q_{q}=q_{c}^{k}$
(4) $q_{d}=\left(q_{c} q_{o}^{-1}\right)^{k} q_{o}, k=\mathrm{CD}$ gain coefficient

Non-Linear 0th Order 3D Rotation

Consider
(3) $q_{d}=q_{c}^{k}$
(4) $q_{d}=\left(q_{c} q_{o}^{-1}\right)^{k} q_{o}$

- Let k be a non-linear function as in $\omega=2 \arccos \left(q_{c} \cdot q_{o}\right)$ or $\omega=2 \arccos (w)$
$k=F(\omega)=\left\{\begin{array}{cl}1 & \text { if } \omega<\omega_{o} \\ f(\omega)=1+c\left(\omega-\omega_{o}\right)^{2} & \text { otherwise }\end{array}\right.$ where c is a coefficient and ω_{o} is the theshold angle

Design Considerations

- Absolute mapping - taken on i-th cycle of the simulation loop

$$
q_{d_{i}}=q_{c_{i}}^{k}
$$

- Relative mapping - taken between the i-th and i-1th cycle of the simulation loop

$$
q_{d_{i}}=\left(q_{c_{i}} q_{c_{i-1}}^{-1}\right)^{k} q_{d_{i-1}}
$$

Absolute Non-I somorphic Mapping

Generally do not preserve directional compliance
Strictly preserves nulling compliance

Relative Non-I somorphic Mapping

Always maintain directional compliance
Do not generally preserve nulling compliance

Amplified Non-Linear Rotation for VE Navigation (1)

Users expect the virtual world to exist in any direction

- 3-walled Cave does not allow this
- adapt expected UI to work in restricted environment

Amplified rotation allows users to see a full 360 degrees in a 3-walled display

- A number of approaches were tested
- important to take cybersickness into account

Amplified Non-Linear Rotation for VE Navigation (2)

- Apply a non-linear mapping function to the user's waist orientation θ and his or her distance d from the back of the Cave
- Calculate the rotation factor using a scaled 2D Gaussian function

$$
\phi=f(\theta, d)=\frac{1}{\sqrt{2 \pi} \sigma_{1}} e^{-\frac{(|\theta|-\pi(1-d / L))^{2}}{2 \sigma_{2}^{2}}}
$$

- The new viewing angle is $\theta_{\text {new }}=\theta(1-\phi)$

Amplified Non-Linear Rotation for VE Navigation (3)

$$
\begin{aligned}
& \sigma_{1}=0.57 \\
& \sigma_{2}=0.85 \\
& L=30 \\
& \mu=\pi
\end{aligned}
$$

Non-Linear Translation for VE Navigation (1)

Users lean about the waist to move small to medium distances

- users can lean and look in different directions
- Users can also lean to translate a floorbased interactive world in miniature (WIM)
- Step WIM must be active
- user's gaze must be 25 degrees below horizontal

Non-Linear Translation for VE Navigation (2)

Leaning vector \vec{L}_{R} is the projection of the vector between the waist and the head onto the floor

- gives direction and raw magnitude components
- Navigation speed is dependent on the user's physical location
- Leaning sensitivity increases close to a boundary
- Linear function $-L_{T}=a \cdot D_{\min }+b$
- Mapped velocity - $v=\left\|\vec{L}_{R}\right\|-L_{T}$

Non-Linear Translation for VE Navigation (3)

Navigation speed is also dependent on the user's head orientation with respect to the vertical axis

- especially useful when translating the floor-based WIM
- Mapping is done with a scaled exponential function

$$
F=\alpha \cdot e^{-\beta\left|\vec{H} \cdot \vec{V}_{u p}\right|}
$$

Final leaning velocity is V final $=F \cdot v$

Next Class

Navigation - Travel

- Readings
- 3DUI Book - Chapter 5

