

Introduction To Displays

- Display: device which presents perceptual information
- Goal: display devices which accurately represent perceptions in simulated world
- Displays do not have to be just visual
 - auditory
 - haptic, tactile
 - olfactory

Spring 2012

CAP6121 - 3D User Interfaces for Games and Virtual Reality

@ losenh .L LaViola .l

Lecture Outline

- Audio Displays
 - 3D sound localization depth cues
 - 3D sound generation
 - sound configurations
 - audio and 3DUIs
- Haptic/Tactile Displays
 - haptic cues
 - display characteristics
 - display types
 - haptics and 3DUIs
- Olfactory Displays

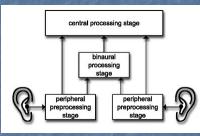
Spring 2012

CAP6121 - 3D User Interfaces for Games and Virtual Reality

Audio Displays

- Present sound to the user
- Spatialized 3D sound
 - sound surrounds user
 - take advantage of localization
- Localization psychoacoustic process of determining location and direction from which a sound emanates
- Many applications

http://www.loonygames.com/content/2.4/feat/


Spring 201

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr.

3D Sound Localization – Binaural Cues

- Comparison of sound waves received by each ear
- Interaural time difference time between arrival of sound at each ear
- Interaural intensity difference – difference in sound intensity at each ear
- Cue does have problems
 - ambiguous situations
 - when two or more sources where ITD and IID are the same

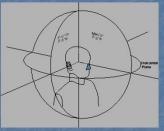
http://www.jeroenbreebaart.com/research_binaural.htm

Spring 2012

CAP6121 - 3D User Interfaces for Games and Virtual Reality

3D Sound Localization – Spectral and Dynamic Cues

- Dynamic head movement or sound source
 - moving source is fairly weak cue
- Utilize spectral content
 - interaction of sound wave with outer ear
 - occur at relatively high frequencies (above 6KHz)


Spring 2012

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

3D Sound Localization – Head Related Transfer Functions

- Spatial filters that describe how sound waves interact with listener's body
 - listener specific
 - lack reverberation info
- Build in echo free chamber with head model

http://www.tonmeister.ca/main/textbook/node320.html

Spring 2012

CAP6121 - 3D User Interfaces for Games and Virtual Reality

3D Sound Localization – Reverberation

- Many factors affect a sound source
 - objects
 - atmospheric properties
- Sound hits listener directly and indirectly
- Aids in perception of distance, not direction

Spring 2012

CAP6121 – 3D User Interfaces for Games and Virtual Realit

@ Joseph J. LaViola J

3D Sound Localization - Others

- Intensity (i.e., loudness)
 - simple cue
 - common in 3D audio displays
- Vision and Environment
 - sounds in FOV make spatial percepts

Spring 2012

CAP6121 - 3D User Interfaces for Games and Virtual Reality

3D Sound Generation

- 3D sound sampling and synthesis
 - take samples from real environment
 - binaural audio recording
 - generate HRTFs for each ear
- Auralization
 - rendering a sound field
 - good for reverberation effects
 - wave-based modeling
 - ray-based modeling

Spring 2012

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola J

Sound System Configurations

- Headphones (stereophonic)
 - High level of channel separation
 - avoid crosstalk
 - isolate listener from external sounds
 - problems with inside the head localization
- External Speakers
 - place speakers around the room
 - no need to wear anything
 - problems with crosstalk
 - Two approaches –transaural audio and amplitude panning

Spring 2012

CAP6121 - 3D User Interfaces for Games and Virtual Reality

Audio in 3DUIs

- Localization
 - wayfinding aids
- Sonfication
 - turning information into sounds
- Ambient Effects
 - adding realism
- Sensory Substitution
 - sound for touch
- Annotation and Help

Spring 2012

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola J.

Haptic Displays

- Provide user with sense of touch
 - simulate interaction between virtual objects and user
 - force (joint/muscle)
 - tactile (skin-based)

www.novint.com

Spring 2012

CAP6121 - 3D User Interfaces for Games and Virtual Reality

Haptic Cues – Tactile Cues

- Taction perceived by variety of cutaneous receptors under skin surface
 - surface texture
 - temperature
 - pressure
 - pain
- Found in varying concentrations on the body

Spring 2012

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Haptic Cues – Kinesthetic Cues

- Perceived by receptors in muscles, joints and tendons
 - help to determine movement, position and torque of different body parts
 - relationship between user and object via muscular tension
- Both active (movement self-induced) and passive (movement by external force)

Spring 2012

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Haptic Display Characteristics

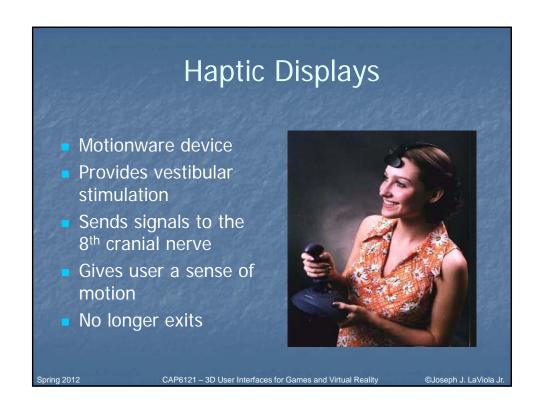
- Presentation capability what types of output
- Resolution
 - Spatial minimum proximity of stimuli
 - Temporal refresh rate
- Ergonomics
 - Don't want to break anyone

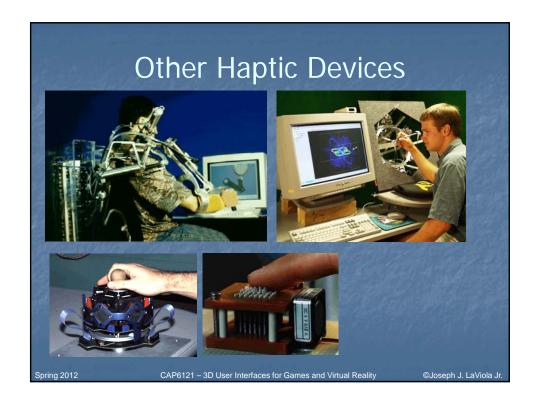
Spring 2012

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Ji

Haptic and Tactile Displays


- "For every action there is an equal and opposite reaction"
 - Sir Isaac Newton
- Main forms of feedback
 - ground referenced
 - body referenced
 - tactile
 - combination
 - passive physical props



Spring 2012

CAP6121 - 3D User Interfaces for Games and Virtual Reality

Olfactory Output Least developed area maybe for good reason! Has practical applications fire fighting surgical training Number of practical problems Spring 2012 CAP6121 - 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.

Next Class Input devices Readings JDUI Book – Chapter 3, pages 59-86 Spring 2012 CAP6121 – 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.