

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008

2008 Paper No. 8255 Page 1 of 9

Interactions and Training with Unmanned Systems
 and the Nintendo Wiimote

Paul Varcholik, Daniel Barber, Denise Nicholson

Institute of Simulation & Training
University of Central Florida

Orlando, Florida
pvarchol@ist.ucf.edu, dbarber@ist.ucf.edu, dnichols@ist.ucf.edu

ABSTRACT

As unmanned systems continue to evolve and their presence becomes more prolific, new methods are needed for
training people to interact with these systems. Likewise, new interfaces must be developed to take advantage of the
increasing capabilities of these platforms. However, the complexity of such interfaces must not grow in parallel with
advancements in unmanned systems technology.

A common form of human communication is through the use of arm and hand gestures. Applying gesture-based
communication methods to human-to-robot communication may increase the interface capabilities, resulting in less
complex, natural and intuitive interfaces. In the context of military operations, hand and arm gestures (such as those
listed in the Army Field Manual on Visual Signals, FM 21-60) may be used to communicate tactical information
and instructions to robotic team members. We believe that a gesture-based interface provides a natural method for
controlling unmanned systems and reduces training time and training costs for military personnel by reusing
standard gestures.

The research presented explores these hypotheses through interactions with unmanned systems using computer-
mediated gesture recognition. The methodology employs the Nintendo Wii Remote Controller (Wiimote) to retrieve
and classify one- and two-handed gestures that are mapped to an unmanned system command set. To ensure
interoperability across multiple types of unmanned systems, our technology uses the Joint Architecture for
Unmanned Systems (JAUS); an emerging standard that provides a hardware and software independent
communication framework.

In this paper, a system is presented that uses inexpensive, commercial off-the-shelf (COTS) technology for gesture
input to control multiple types of unmanned systems. A detailed discussion of the technology is provided with a
focus on operator usability and training. Finally, to explore the efficacy of the interface, a usability study is
presented where participants perform a series of tasks to control an unmanned system using arm and hand gestures.

ABOUT THE AUTHORS

Paul Varcholik is a doctoral candidate in the Modeling & Simulation program at the University of Central Florida.
Paul has been a software engineer since 1994, and was most recently a lead software engineer at Electronic Arts
where he worked on video game titles including Madden NFL Football, NASCAR, and Superman Returns. He is a
graduate research assistant at the Institute for Simulation and Training for the Applied Cognition and Training in
Immersive Virtual Environments (ACTIVE) lab. He also teaches classes, on video game development, at Seminole
Community College and the Florida Interactive Entertainment Academy in Orlando, Florida.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008

2008 Paper No. 8255 Page 2 of 9

Daniel Barber is a research associate for the Applied Cognition and Training in Immersive Virtual Environments
(ACTIVE) lab at the Institute for Simulation and Training (IST) at the University of Central Florida. Daniel’s
research focus in robotics and intelligent systems includes machine learning, human-agent collaboration, control
systems, path-planning, computer vision, communications, and environment modeling. He has several years
experience working in the Robotics Laboratory at UCF designing autonomous ground vehicles. Current efforts
within the ACTIVE lab include an open source implementation of the Joint Architecture for Unmanned Systems
(JAUS) called JAUS++, and the development of unmanned system simulators for Live Virtual and Constructive
(LVC) robotic environments for training.

Denise Nicholson’s research focus on human systems modeling, simulation and training includes virtual reality,
human–agent collaboration, and adaptive human systems technologies for Department of Defense applications. She
joined the University of Central Florida in 2005 with over 18 years of government service ranging from bench-level
research at the Air Force Research Lab to leadership as the Deputy Director for Science and Technology at the U.S.
Navy's NAVAIR Training Systems Division.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008

2008 Paper No. 8255 Page 3 of 9

Interactions and Training with Unmanned Systems
 and the Nintendo Wiimote

Paul Varcholik, Daniel Barber, Denise Nicholson PhD

Institute of Simulation & Training
University of Central Florida

Orlando, Florida
pvarchol@ist.ucf.edu, dbarber@ist.ucf.edu, dnichols@ist.ucf.edu

INTRODUCTION

Military forces are being increasingly supplemented by
unmanned systems of various types, including: UAVs
(Unmanned Aerial Vehicles), UUVs (Unmanned
Underwater Vehicles), USVs (Unmanned Surface
Vehicles) and UGVs (Unmanned Ground Vehicles).
Though these vehicles provide different capabilities
and levels of autonomy, they all have the common
requirement of some form of human interaction.

The need for consistent computer control between
disparate unmanned systems has led to the development
of communication protocols such as STANAG 4586
and JAUS (Joint Architecture for Unmanned Systems).
However, no such standard exists for communicating
between humans and unmanned systems. Indeed, a
variety of interfaces have been developed for command
and control, and these have largely been specific to
their paired robotic platforms. Moreover, as technology
in unmanned systems continues to advance, these
human-robot interfaces have grown in complexity. We
propose that this trend has an upper bound where the
complexity of the interface is such that it is inefficient
or prohibitively expensive to teach a person to operate
an unmanned system. Additionally, we believe that the
pace of advancement in human-robot interaction is
lagging behind that of unmanned systems technology,
and that this limits the speed at which unmanned
systems can evolve.

Following the example of standard communication
protocols for control of unmanned systems, this paper
explores a common mechanism for human-robot
interaction. More specifically, we investigate the
application of intuitive forms of human-to-human
communication for human-robot interaction. The focus
of this investigation is on hand and arm gestures
mapped to a set of robotic commands. The goal of this
effort is to improve operator usability while reducing
training cost across a variety of unmanned systems.

RELATED WORK

Unmanned System Interoperability

Designing a human-machine interface for mobile robot
control is a complex task. Interfaces must be able to
account for different levels of autonomy in unmanned
systems, offer real-time feedback, and allow operators
to accomplish mission tasks in an efficient manner. As
more capabilities are added and different types of
unmanned systems are combined, these interfaces must
adapt. However, these changes can result in operator
control units that are difficult to learn and use.

Multiple implementations of robotic control interfaces
have been designed and evaluated (Trouvain, 2002),
(Chen, 2008), (Space and Naval Warfare Systems
Center, 2008), (Barber, 2008). The Tactical Control
Unit developed by Army Research Laboratory’s
Robotics Collaborative Technology Alliance (RCTA),
is an example of an operator control station for
teleoperation and autonomous navigation of multiple
unmanned systems. Although it is an extremely capable
application, it does require significant training time
before an operator is capable of performing mission
relevant tasking. Additionally, some of these interfaces
will only work with specific types or models of
unmanned systems due to non-standard communication
protocols. The Multi-robot Operator Control Unit
(MOCU) developed by the Space and Naval Warfare
Systems Center (2008), attempts to reconcile this issue
with a design that can incorporate multiple robotic
message protocols – a design which is in line with the
efforts presented here.

In the recently published Unmanned Systems Roadmap:
2007-2032 (DoD, 2007), the US Department of
Defense (DoD) details the future of robotic military
equipment and how to proceed in the development and
procurement of unmanned systems. This document
identifies critical DoD needs, with one being a focus on
the increase in standardization and interoperability of
unmanned systems to better facilitate the broad range of

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008

2008 Paper No. 8255 Page 4 of 9

DoD users, and improved methods for training
operators. One of the standards promoted by this
roadmap is the Joint Architecture for Unmanned
Systems (JAUS).

JAUS is an international standard developed by the
JAUS Working Group (2008) and maintained by the
Society of Automotive Engineers (SAE) Aerospace
council, providing a high level interface domain for
unmanned vehicles. It is a component-based message
passing architecture which specifies standard fields and
formats for communication among unmanned systems.
JAUS has the benefit of being independent of any
hardware or software system, and is applicable to all
unmanned system types (air, ground, surface,
underwater) making it ideal for inclusion within
human-robot interaction applications that must work
across multiple platforms.

Human-Robot Interaction

Over the past few decades many different methods for
human-robot interaction have been explored – that go
beyond traditional keyboard/mouse/joystick style
control – looking for more natural and intuitive forms
of communication. These explorations have included
efforts in spoken, visual, tactile, and gestural
communication, and hybrids of each approach.
Waldherr (2000) presented a human-robot interaction
system that utilizes gestures detected through vision
processing. Our gestural control system differs from
Waldherr’s work, first in that we recognize gestures
through a 3D input device rather than vision, but also in
that our recognition system is hosted on an
intermediary computing platform, and not on the robot
itself. While this offloads the gesture recognition tasks
from the unmanned system (which likely has limited
computing resources) it introduces the problem of
identifying which robot you are communicating with.
We work around this issue by allowing communication
with only one robot at a time, and by requiring the user
to specify which robot he/she is communicating with
through a graphical user interface (GUI). Arguably, this
issue exists for any unmanned system that self-hosts the
recognition system. For instance, if two or more robots
are facing a user, how might that user indicate which
unmanned system to issue commands to? Moreover, if
the communication is solely dependent on a visual
connection, how do we communicate to a robot that’s
turned away from us or where the visual connection is
otherwise occluded?

Rogalla (2002) presented work on controlling robots
through gesture and speech recognition. Speech can

augment or disambiguate the information being
conveyed to the unmanned system. Speech systems can
be a very effective form of human-robot
communication, but breakdown in noisy environments,
and likewise suffer from uniquely isolating the intended
communication recipient. Though our research was not
focused on the task of discovering available unmanned
vehicles, and isolating communication, this is an
interesting topic of research, and one which we believe
can be successfully addressed through a hybrid of
human-robot interaction techniques.

Guo (2008) presented work controlling a robotic dog
(the Sony AIBO) using the Nintendo Wiimote. In this
work, the authors use the Wiimote’s accelerometer
values to move and steer the robot and to place the
robot’s arms in various poses. This work showed that
the Wiimote interface outperformed a traditional HRI
keyboard control scheme.

The remaining sections of this paper present our efforts
in combining the advancements in human-robot
interaction with the communications standards that
enable unmanned system interoperability.

METHODOLOGY

Robotic Platform

To take advantage of the capabilities exposed through
JAUS, an unmanned ground vehicle called Gamblore
(Figure 1) was used within the efforts described in this
paper. Designed for the Intelligent Ground Vehicle
Competition sponsored by the Association for
Unmanned Vehicle Systems International, Gamblore
provides a differential drive platform with sensors
needed for autonomous operations including: LIDAR,
GPS, Digital Compass, Speedometer, and Cameras. An
802.11g access point allows other computers to connect
to the vehicle wirelessly.

The software design approach used for Gamblore pulls
directly from the component services described by the
JAUS Reference Architecture, breaking down the
system into a series of modules, each providing a
specific capability for other JAUS compliant
components to use. A C++ implementation, called
JAUS++, developed within the ACTIVE Laboratory
(2008) was used as the basis for creating JAUS
compliant components for Gamblore which include:
Primitive Driver, Global Pose Sensor, Velocity State
Sensor, Visual Sensor, Global Vector Driver, and
Global Waypoint Navigator. The primary services used

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008

2008 Paper No. 8255 Page 5 of 9

within the usability study described later in this
document, were the Primitive Driver, Global Pose,
Velocity State, and Visual Sensors. These services give
the operator open-loop control of the drive system,
position, attitude, velocity, and camera data.

Figure 1. Gamblore – Unmanned Ground Vehicle

Vehicle Control Software

We communicate to the JAUS++ library through a
software system designed for generic human-robot
interaction. The graphical user interface (GUI) for this
software is presented in Figure 2. Importantly, this
GUI, and the underlying JAUS communication
mechanism, was not developed for the robot
(Gamblore) used in the usability experiment. In fact,
this software was developed entirely against a
simulated set of JAUS services and was not connected
to a physical robot prior to the usability study. The
importance of this fact is that the software system is
capable of querying and controlling any JAUS-
equipped unmanned vehicle that provides services
including: control, global pose, speed, and streaming
video. Moreover, these services are independently
accessible, allowing communication to a vehicle that
may contain only some, or all, of the supported
services. The status of the service (connected or
disconnected) is displayed in the area marked Services
in the bottom-center portion of the GUI. As a service is
connected or disconnected the corresponding status
indicator changes from green to red.

When the user has line of sight to the vehicle, reference
to the GUI might be infrequent – and indeed this was
observed during our usability study; however, when

teleoperating the vehicle, the instrumentation exposed
by the GUI is a necessity.

Figure 2. Graphics User Interface for Unmanned
Vehicle Control

Control Input Device

For driving the vehicle, we needed an intuitive input
device; one which required little training, or naturally
mirrored existing control paradigms. We chose the
accelerometer-based Nintendo Wii Remote Controller
(Wiimote) represented in Figure 3, an inexpensive,
commercial-off-the-shelf (COTS) input device which
allows for a variety of input schemes. The Wiimote
communicates wirelessly using the BlueTooth
communication protocol and open-source libraries
allow access to the Wiimote from a PC.

Figure 3. The Nintendo Wiimote

For this effort we implemented the following control
systems:

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008

2008 Paper No. 8255 Page 6 of 9

• Traditional Joystick Control
• Accelerometer/Motion Steering-Wheel Style

Control
• Hand and Arm Gestural Control

For joystick style control, the user holds the Wiimote
horizontally in both hands, with the directional pad (D-
pad) facing the user and to the left. To move the
unmanned vehicle forward, the user presses the
upwards-pointing D-pad button; and likewise for
turning the vehicle left, right, and moving in reverse.
With this control scheme, the inputs are digital in
nature – meaning that the user doesn’t have precise
control of the values of the thrust or steering values –
when the user presses the up button the vehicle moves
at set (though configurable) value. The user can thrust
and steer simultaneously, by depressing the D-pad
buttons along the diagonal. For example, pressing
upper left to move the vehicle forward while turning to
the left. This control style is representative of
traditional vehicle control through joysticks.

To employ the accelerometer (motion-control) control
scheme, the user again holds the Wiimote horizontally
in both hands, in the fashion of a steering wheel. While
depressing the button labeled 2 (rightmost button) the
user tilts the Wiimote to the left and right to steer the
vehicle in the respective direction. To move the vehicle
forward or backwards, the user rotates the controller
away or towards himself. Thrust is mapped to the z-axis
of the Wiimote, while steering is mapped to the x-axis.
These are decimal values, ranging from -4.0 to 4.0 and
are visualized in the progress-bars located in the lower
right-hand section of the GUI. With this input system,
the user has fine-grained control over the movement of
the vehicle. Tilting or rotating the Wiimote slightly will
produce small steering or thrust values, and vice-versa.
This control style is analogous to driving with a
steering wheel. In fact, the Wiimote has a miniature
steering wheel accessory to complete the analogy.

The final input scheme, hand and arm gestural control,
utilizes a recognition system to classify a Wiimote
motion as a pre-trained gesture. The recognition system
uses a machine learning algorithm that transforms the
raw stream of XYZ accelerometer values into features
used to uniquely identify a gesture. Recently developed
by members of the Institute for Simulation & Training
at the University of Central Florida, the recognition
system uses a linear classifier and 29 features based on
work by Rubine (1991) on 2D pen-based hand
markings. The gestures classified are 3-Dimensional

and thus the feature set has been extended over
Rubine’s original 2D set. Recent studies (awaiting
publication) have shown that this recognition system
maintains a 95% classification accuracy with training
sets as low as 20 samples per gesture. For our efforts,
we chose a very small gesture set – Move Forward,
Stop, Turn Left, and Turn Right – and trained the
recognition system with 20 example gestures for each.
The gestures, depicted graphically in Figure 4, are
performed by holding the Wiimote vertically (the
normal Wiimote position) in the right hand, and
pressing and releasing the trigger button (the B-button)
to indicate the beginning and end of a gesture. The
gesture recognition system is constantly monitoring the
state of the Wiimote, and watching for newly
performed gestures. When the B-button is released, the
recognizer transforms the stream of XYZ accelerometer
data into feature space, and attempts to classify the
gesture as one that has been previously trained. On a
successful classification, the gesture is relayed to the
unmanned system as a command. In our scenario, we
map the Move Forward, Stop, Turn Left, and Turn
Right gestures into corresponding vehicles movements.
Similar to the joystick style control, these movements
are performed at a fixed velocity. But unlike the
joystick control system, which requires that the user
continuously press a button to provide movement, the
gestural control system maintains the command
provided by the most recent gesture until a new
gesture/command is recognized.

Notably, this recognition system functions on dynamic
gestures only – and not on static poses. This is opposite
of many vision-based systems which can detect a still
hand/arm position, but have difficulty analyzing
movement in real-time. This limitation of the Wiimote
gesture recognition system is due to the lack of position
information provided by the raw accelerometer data.
It’s not possible to distinguish between static poses
with the 3-axis accelerometer values alone.

Figure 4. Selected Gestures and Representations of

their Movements

All of the three control styles are immediately
accessible – meaning that mode switching is somewhat

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008

2008 Paper No. 8255 Page 7 of 9

of a hidden task. Using the D-pad indicates that you’re
using the joystick style control, while pressing and
releasing the B-button indicates that you’re using
gestural control. The accelerometer/motion control
system requires the most overt mode switching, which
is depressing the 2-button. Releasing the 2-button, or
not depressing any of the D-pad arrow buttons, stops
the vehicle, because no active movement commands are
being passed to the vehicle. Likewise, using the D-pad,
or the Wiimote’s motion control, will immediately
revoke any active gestural commands.

Feedback on the current thrust and steering commands
is displayed in the lower left-hand corner of the GUI.
This feedback is augmented for the gestural control
system, where sound files are played to indicate which
command was recognized.

Usability Study

An informal usability study was conducted, to explore
the efficacy of using gestures for controlling unmanned
vehicles. Participants were required to navigate
Gamblore through an outdoor obstacle course using
each of the three control schemes. After a brief
orientation period, the user performed three laps of the
course, exercising a different control style with each
lap. The only empirical performance metric used was
the time required to complete each lap. At the
completion of the obstacle course, the participant was
asked to complete a qualitative questionnaire. The
questionnaire asked the following questions using a
five-level Likert scale:

1. Instructions on how to perform gestures were
clear

2. Gestures were easy to learn
3. Gestures were easy to remember/recall
4. Gestures were easy to perform
5. The Gestures performed did not cause my

hands and/or wrists to become fatigued
6. The Wiimote was easy to use
7. The system recognized the gestures accurately
8. Controlling the vehicle through gestures was

easy
9. Controlling the vehicle through the Wiimote’s

motion tracking was easy
10. Controlling the vehicle through the Wiimote’s

directional pad was easy

The participants were also asked to rank their preferred
control style and to provide any comments on their
experience.

DISCUSSION

Control Software and Hardware Performance

Though relatively new, the JAUS++ library proved to
be quite robust and communicating to the library from
the graphical user interface software was very easily
accomplished. As mentioned previously, because JAUS
works independently of the hardware system, we were
able to develop the control software system completely
separate from a live vehicle. The transition from a
simulated vehicle to Gamblore was seamless and
required only adjusting the upper- and lower-limits for
speed and steering values.

Notably, JAUS provides for automatic discovery of
available components, and this would allow for a user
to easily switch between multiple unmanned systems.
However, for the purposes of this effort, we did not
expose the functionality through the GUI.

The full hardware/software system was capable of
driving the vehicle through the obstacle course using all
control styles. The GUI tracked the vehicles position,
speed, and attitude, and provided streaming video from
Gamblore’s cameras. Videos of a number of test runs
are available at http://www.bespokesoftware.org/.

We encountered an issue related to wireless
communication to the vehicle’s 802.11g access point.
Wi-Fi interference would occasionally disrupt our
connection, placing the vehicle in a standby state and
preventing the transmission of new user commands.
Losing a Wi-Fi connection never resulted in any danger
to human participants or the vehicle due to a backup RF
communication system that could override the higher-
level computer control. The takeaway from this
problem is the need for a reliable wireless connection
between the robot and the controlling computer
platform.

Additionally, the decision to use drive control that was
open-loop via the Primitive Driver service resulted in
vehicle drift. Small differences in motor speed and
terrain caused Gamblore to drift to the right when
driving distances greater than 4-5 feet. Also, if the
vehicle went off of the designated course, and into
heavy grass, it did not always have enough power to
drive out. We had intentionally limited the upper bound
for speed and steering to less than half of the total
available power. We chose this because of the small
scale of the course being traversed and hesitance to
allow inexperience users to operate at full speed. We

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008

2008 Paper No. 8255 Page 8 of 9

believe that these issues affected performance and
perception of control styles during the usability
experiment. Specifically, these problems were difficult
to overcome in a gesture-based control system where
users are not continuously sending new input as in the
case of accelerometer or joystick style control. The
issues related to open-loop control and drift can be
resolved in future studies by switching to a closed-loop
driver service such as the Local Vector Driver or
Global Vector Driver components described within the
JAUS Reference Architecture.

Usability Study Results

Results from the usability study showed an average of
84, 104, and 123 seconds for a lap around the course
using accelerometers, D-pad, and gestural control
systems respectively. Across all participants the
preferred control styles were (from most preferred to
least preferred): accelerometer control, D-pad/joystick
control, and then gestural control. For the remaining
qualitative questions, the average responses indicated a
general acceptance of all three styles of operation, but
that there was difficulty in gesture recognition with a
few participants.

These results lead to a number of possible conclusions.
First, the task performed – driving a vehicle through an
obstacle course – is a fairly low-level task, requiring
almost continuous intervention from the user. The robot
was not functioning in even a semi-autonomous mode,
and was under full control of the human operator.
Moreover, the task required the lower-level commands
of: go forward, stop, turn left or turn right; as opposed
to a higher set of commands such as “follow me” or
“go to this destination”. With such a low-level task, it’s
not surprising that the study participants would prefer a
control scheme that provided the highest control
fidelity, as with the accelerometer control system.
Recall, that with this input scheme, as opposed to D-
pad or gestural control, users could control movement
speeds incrementally, as a function of tilt and rotation
provided along the X and Z Wiimote axes.
Additionally, the accelerometer control system required
constant input from the Wiimote for the vehicle to
move; with the gestural command scheme, once a
gestural command was provided, the robot would
continue with that command until another was given.
As previously mentioned, vehicle drift required
constant course corrections from the user; which paired
well with the continuous input coming from the
accelerometer and D-pad control systems. However, the
gestural control system works better when performing
commands less frequently. In this study, participants

had to perform gestures one after the other to correct
course errors – and if the user had difficulty performing
a gesture, this would hinder performance.

Notably, the gesture recognition system was trained
with a fairly low number of examples, and those came
from only two individuals (neither who participated in
the study). The implication, is that, for the users who
had difficulty performing the gestures, the recognition
accuracy could have been improved had those users
contributed training examples to the machine learning
algorithm.

Continuing, if gestural control had been paired with a
Vector Driver component, which maintains a speed and
heading (automatically correcting for vehicle drift), we
believe performance and preference for the gestural
input scheme would have improved.

Implications to Training

As mentioned previously, all participants were
provided a brief orientation session before navigating
the vehicle through the obstacle course. It was observed
that participants were able to learn all three control
schemes within only a few minutes. This includes the
set of four gestures needed for gestural control.
Notably, none of the participants had ever driven
Gamblore before and were unfamiliar with its driving
style. Additionally the average times and performance
were comparable to that of the authors/developers of
the system. A possible conclusion that can be made
from these observations is that the ease of use and
intuitive nature provided by the Wiimote input device
had an impact on how quickly users could learn the
task. Moreover, gestural communication did not present
a learning cost greater than that of joystick or
accelerometer style control. A formal study is required
to validate this conclusion.

Additionally, the system presented in this paper allows
an identical input control scheme to be used across
multiple unmanned systems including those of different
types. This results in a reduction of training time and
cost through the reuse of the human-robot control
system. Indeed, a user need only learn the nuances and
domain of the platform being controlled rather than a
wholly new control interface.

CONCLUSION

In this paper, we presented a system that uses
commercial-off-the-shelf (COTS) technology for
gesture input to allow control of multiple types of

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008

2008 Paper No. 8255 Page 9 of 9

unmanned systems. The Nintendo Wiimote provided an
input device for implementing three control schemes
including: traditional joystick control, accelerometer-
based control, and gestural control. A machine learning
algorithm was employed to classify dynamic gestures
composed of Wiimote XYZ accelerometer values. A
graphical user interface incorporated the Wiimote and
displayed vehicle telemetry and control feedback. This
software system interacted with an unmanned vehicle,
called Gamblore, using JAUS. JAUS is a high level
domain interface used for communication with
unmanned systems that is independent of hardware or
software implementation. This combination of tools
resulted in a system capable of operating any type of
unmanned vehicle.

An informal usability study was conducted to compare
the performance and preference of the three control
schemes implemented with the Wiimote. This study
showed higher performance and user preference for
accelerometer based control of the unmanned vehicle
over the gestural and traditional joystick styles.
However, we suspect this has more to do with the task
performed within the study rather than a rejection of
gesture based control. Indeed, users were able to
successfully complete the obstacle course with
relatively small differences in performance across the
control schemes. This study implies that training time
and cost can be reduced using an intuitive control
scheme and even more so through software reuse
enabled by interoperability standards such as JAUS.

Future work should expand on the idea of using
gestural command for high-level tasks. This might
include the creation of a gestural vocabulary for
human-robot interactions in a military domain. Such a
vocabulary can leverage existing arm and hand gestures
already in use by military personnel. Applications of
high-level tasks where gestural communication could
apply are traffic control points, UAV takeoff and
landing, and mixed-initiative (Barber, 2008) teams. We
believe this work will establish an intuitive control
mechanism for interactions with multiple types of
unmanned systems.

ACKNOWLEDGEMENTS

The authors of this paper would like to acknowledge
the efforts Larry Davis and Kamran Siddiqui in support
of this project.

This work is supported, in part by the Office of Naval
Research and also by the US Army Research

Laboratory under Cooperative Agreement W911NF-
06-2-0041. The views and conclusions contained in this
document are those of the authors and should not be
interpreted as representing the official policies, either
expressed or implied, of the ARL or the US
Government. The US Government is authorized to
reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation
hereon.

REFERENCES

US Department of Defense (2007). Unmanned Systems

Roadmap: 2007-2032. Retrieved February 5, 2008
from http://www.acq.osd.mil/usd/Unmanned
System Roadmap.2007-2032.pdf

JAUS Working Group (2008). Joint Architecture for
Unmanned Systems Reference Architecture
(Version 3.3). Retrieved April 22, 2008, from
http://www.jauswg.org

ACTIVE Laboratory (2008). JAUS++. Retrieved June
20, 2008 from
http://sourceforge.net/projects/active-ist/

Rubine, D. (1991). Specifying gestures by example.
Computer Graphics, 25(4), 329-337.

Trouvain, B. & Wolf, H.L. (2002). Evaluation of Multi-
Robot Control and Monitoring. Proceedings of the
2002 IEEE Int. Workshop on Robot and Human
Interactive Communication, pages 111-116.

Space and Naval Warfare Systems Center (2008).
Multi-robot Operator Control Unit. Retrived May
2, 2008, from http://www.nosc.mil/robots
/resources/mocu/mocu.html

Chen, Jessie Y.C. & Barnes, Michael J. (2008).
Robotics Operator Performance in a Military
Multi-Tasking Environment. Proceeding of the 3rd
ACM/IEEE International Conference on Human
Robot Interaction, pages 279-286.

Barber, D., Leontyev, S., Sun, B., Davis, L., Nicholson,
D., & Chen, J Y.C. (2008). The Mixed-Initiative
Experimental Testbed for Human Robot
Interactions. The 2008 International Symposium on
Collaborative Technologies and Systems (CTS
2008), pages 483-489.

Guo, Chen & Sharlin, Ehud. (2008). Exploring the Use
of Tangible User Interfaces for Human-Robot
Interaction: A Comparative Study. Proceeding of
the twenty-sixth annual SIGCHI conference on
Human factors in computing systems (CHI ‘08),
pages 121-130.

