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ABSTRACT 
 
As unmanned systems continue to evolve and their presence becomes more prolific, new methods are needed for 
training people to interact with these systems. Likewise, new interfaces must be developed to take advantage of the 
increasing capabilities of these platforms. However, the complexity of such interfaces must not grow in parallel with 
advancements in unmanned systems technology. 
 
A common form of human communication is through the use of arm and hand gestures. Applying gesture-based 
communication methods to human-to-robot communication may increase the interface capabilities, resulting in less 
complex, natural and intuitive interfaces. In the context of military operations, hand and arm gestures (such as those 
listed in the Army Field Manual on Visual Signals, FM 21-60) may be used to communicate tactical information 
and instructions to robotic team members. We believe that a gesture-based interface provides a natural method for 
controlling unmanned systems and reduces training time and training costs for military personnel by reusing 
standard gestures. 
 
The research presented explores these hypotheses through interactions with unmanned systems using computer-
mediated gesture recognition. The methodology employs the Nintendo Wii Remote Controller (Wiimote) to retrieve 
and classify one- and two-handed gestures that are mapped to an unmanned system command set. To ensure 
interoperability across multiple types of unmanned systems, our technology uses the Joint Architecture for 
Unmanned Systems (JAUS); an emerging standard that provides a hardware and software independent 
communication framework.  
 
In this paper, a system is presented that uses inexpensive, commercial off-the-shelf (COTS) technology for gesture 
input to control multiple types of unmanned systems. A detailed discussion of the technology is provided with a 
focus on operator usability and training. Finally, to explore the efficacy of the interface, a usability study is 
presented where participants perform a series of tasks to control an unmanned system using arm and hand gestures. 
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INTRODUCTION 
 
Military forces are being increasingly supplemented by 
unmanned systems of various types, including: UAVs 
(Unmanned Aerial Vehicles), UUVs (Unmanned 
Underwater Vehicles), USVs (Unmanned Surface 
Vehicles) and UGVs (Unmanned Ground Vehicles). 
Though these vehicles provide different capabilities 
and levels of autonomy, they all have the common 
requirement of some form of human interaction. 
 
The need for consistent computer control between 
disparate unmanned systems has led to the development 
of communication protocols such as STANAG 4586 
and JAUS (Joint Architecture for Unmanned Systems). 
However, no such standard exists for communicating 
between humans and unmanned systems. Indeed, a 
variety of interfaces have been developed for command 
and control, and these have largely been specific to 
their paired robotic platforms. Moreover, as technology 
in unmanned systems continues to advance, these 
human-robot interfaces have grown in complexity. We 
propose that this trend has an upper bound where the 
complexity of the interface is such that it is inefficient 
or prohibitively expensive to teach a person to operate 
an unmanned system. Additionally, we believe that the 
pace of advancement in human-robot interaction is 
lagging behind that of unmanned systems technology, 
and that this limits the speed at which unmanned 
systems can evolve. 
 
Following the example of standard communication 
protocols for control of unmanned systems, this paper 
explores a common mechanism for human-robot 
interaction. More specifically, we investigate the 
application of intuitive forms of human-to-human 
communication for human-robot interaction. The focus 
of this investigation is on hand and arm gestures 
mapped to a set of robotic commands. The goal of this 
effort is to improve operator usability while reducing 
training cost across a variety of unmanned systems. 

RELATED WORK 
 

Unmanned System Interoperability 
 
Designing a human-machine interface for mobile robot 
control is a complex task. Interfaces must be able to 
account for different levels of autonomy in unmanned 
systems, offer real-time feedback, and allow operators 
to accomplish mission tasks in an efficient manner. As 
more capabilities are added and different types of 
unmanned systems are combined, these interfaces must 
adapt. However, these changes can result in operator 
control units that are difficult to learn and use. 
 
Multiple implementations of robotic control interfaces 
have been designed and evaluated (Trouvain, 2002), 
(Chen, 2008), (Space and Naval Warfare Systems 
Center, 2008), (Barber, 2008). The Tactical Control 
Unit developed by Army Research Laboratory’s 
Robotics Collaborative Technology Alliance (RCTA), 
is an example of an operator control station for 
teleoperation and autonomous navigation of multiple 
unmanned systems. Although it is an extremely capable 
application, it does require significant training time 
before an operator is capable of performing mission 
relevant tasking. Additionally, some of these interfaces 
will only work with specific types or models of 
unmanned systems due to non-standard communication 
protocols. The Multi-robot Operator Control Unit 
(MOCU) developed by the Space and Naval Warfare 
Systems Center (2008), attempts to reconcile this issue 
with a design that can incorporate multiple robotic 
message protocols – a design which is in line with the 
efforts presented here. 
 
In the recently published Unmanned Systems Roadmap: 
2007-2032 (DoD, 2007), the US Department of 
Defense (DoD) details the future of robotic military 
equipment and how to proceed in the development and 
procurement of unmanned systems. This document 
identifies critical DoD needs, with one being a focus on 
the increase in standardization and interoperability of 
unmanned systems to better facilitate the broad range of 
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DoD users, and improved methods for training 
operators. One of the standards promoted by this 
roadmap is the Joint Architecture for Unmanned 
Systems (JAUS). 
 
JAUS is an international standard developed by the 
JAUS Working Group (2008) and maintained by the 
Society of Automotive Engineers (SAE) Aerospace 
council, providing a high level interface domain for 
unmanned vehicles. It is a component-based message 
passing architecture which specifies standard fields and 
formats for communication among unmanned systems. 
JAUS has the benefit of being independent of any 
hardware or software system, and is applicable to all 
unmanned system types (air, ground, surface, 
underwater) making it ideal for inclusion within 
human-robot interaction applications that must work 
across multiple platforms. 
 
Human-Robot Interaction 
 
Over the past few decades many different methods for 
human-robot interaction have been explored – that go 
beyond traditional keyboard/mouse/joystick style 
control – looking for more natural and intuitive forms 
of communication. These explorations have included 
efforts in spoken, visual, tactile, and gestural 
communication, and hybrids of each approach. 
Waldherr (2000) presented a human-robot interaction 
system that utilizes gestures detected through vision 
processing. Our gestural control system differs from 
Waldherr’s work, first in that we recognize gestures 
through a 3D input device rather than vision, but also in 
that our recognition system is hosted on an 
intermediary computing platform, and not on the robot 
itself. While this offloads the gesture recognition tasks 
from the unmanned system (which likely has limited 
computing resources) it introduces the problem of 
identifying which robot you are communicating with. 
We work around this issue by allowing communication 
with only one robot at a time, and by requiring the user 
to specify which robot he/she is communicating with 
through a graphical user interface (GUI). Arguably, this 
issue exists for any unmanned system that self-hosts the 
recognition system. For instance, if two or more robots 
are facing a user, how might that user indicate which 
unmanned system to issue commands to? Moreover, if 
the communication is solely dependent on a visual 
connection, how do we communicate to a robot that’s 
turned away from us or where the visual connection is 
otherwise occluded? 
 
Rogalla (2002) presented work on controlling robots 
through gesture and speech recognition. Speech can 

augment or disambiguate the information being 
conveyed to the unmanned system. Speech systems can 
be a very effective form of human-robot 
communication, but breakdown in noisy environments, 
and likewise suffer from uniquely isolating the intended 
communication recipient. Though our research was not 
focused on the task of discovering available unmanned 
vehicles, and isolating communication, this is an 
interesting topic of research, and one which we believe 
can be successfully addressed through a hybrid of 
human-robot interaction techniques. 
 
Guo (2008) presented work controlling a robotic dog 
(the Sony AIBO) using the Nintendo Wiimote. In this 
work, the authors use the Wiimote’s accelerometer 
values to move and steer the robot and to place the 
robot’s arms in various poses. This work showed that 
the Wiimote interface outperformed a traditional HRI 
keyboard control scheme. 
 
The remaining sections of this paper present our efforts 
in combining the advancements in human-robot 
interaction with the communications standards that 
enable unmanned system interoperability.  
 
 

METHODOLOGY 
 
Robotic Platform 
 
To take advantage of the capabilities exposed through 
JAUS, an unmanned ground vehicle called Gamblore 
(Figure 1) was used within the efforts described in this 
paper. Designed for the Intelligent Ground Vehicle 
Competition sponsored by the Association for 
Unmanned Vehicle Systems International, Gamblore 
provides a differential drive platform with sensors 
needed for autonomous operations including: LIDAR, 
GPS, Digital Compass, Speedometer, and Cameras. An 
802.11g access point allows other computers to connect 
to the vehicle wirelessly. 
 
The software design approach used for Gamblore pulls 
directly from the component services described by the 
JAUS Reference Architecture, breaking down the 
system into a series of modules, each providing a 
specific capability for other JAUS compliant 
components to use. A C++ implementation, called 
JAUS++, developed within the ACTIVE Laboratory 
(2008) was used as the basis for creating JAUS 
compliant components for Gamblore which include: 
Primitive Driver, Global Pose Sensor, Velocity State 
Sensor, Visual Sensor, Global Vector Driver, and 
Global Waypoint Navigator. The primary services used 
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within the usability study described later in this 
document, were the Primitive Driver, Global Pose, 
Velocity State, and Visual Sensors. These services give 
the operator open-loop control of the drive system, 
position, attitude, velocity, and camera data. 
 

 
 
Figure 1.  Gamblore – Unmanned Ground Vehicle 

 
 
Vehicle Control Software 
 
We communicate to the JAUS++ library through a 
software system designed for generic human-robot 
interaction. The graphical user interface (GUI) for this 
software is presented in Figure 2. Importantly, this 
GUI, and the underlying JAUS communication 
mechanism, was not developed for the robot 
(Gamblore) used in the usability experiment. In fact, 
this software was developed entirely against a 
simulated set of JAUS services and was not connected 
to a physical robot prior to the usability study. The 
importance of this fact is that the software system is 
capable of querying and controlling any JAUS-
equipped unmanned vehicle that provides services 
including: control, global pose, speed, and streaming 
video. Moreover, these services are independently 
accessible, allowing communication to a vehicle that 
may contain only some, or all, of the supported 
services. The status of the service (connected or 
disconnected) is displayed in the area marked Services 
in the bottom-center portion of the GUI. As a service is 
connected or disconnected the corresponding status 
indicator changes from green to red. 
 
When the user has line of sight to the vehicle, reference 
to the GUI might be infrequent – and indeed this was 
observed during our usability study; however, when 

teleoperating the vehicle, the instrumentation exposed 
by the GUI is a necessity. 

 

 
 

Figure 2.  Graphics User Interface for Unmanned 
Vehicle Control 

 
Control Input Device 
 
For driving the vehicle, we needed an intuitive input 
device; one which required little training, or naturally 
mirrored existing control paradigms. We chose the 
accelerometer-based Nintendo Wii Remote Controller 
(Wiimote) represented in Figure 3, an inexpensive, 
commercial-off-the-shelf (COTS) input device which 
allows for a variety of input schemes. The Wiimote 
communicates wirelessly using the BlueTooth 
communication protocol and open-source libraries 
allow access to the Wiimote from a PC.  
 

 
 

Figure 3.  The Nintendo Wiimote 
 
For this effort we implemented the following control 
systems: 
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• Traditional Joystick Control 
• Accelerometer/Motion Steering-Wheel Style 

Control 
• Hand and Arm Gestural Control 

 
For joystick style control, the user holds the Wiimote 
horizontally in both hands, with the directional pad (D-
pad) facing the user and to the left. To move the 
unmanned vehicle forward, the user presses the 
upwards-pointing D-pad button; and likewise for 
turning the vehicle left, right, and moving in reverse. 
With this control scheme, the inputs are digital in 
nature – meaning that the user doesn’t have precise 
control of the values of the thrust or steering values – 
when the user presses the up button the vehicle moves 
at set (though configurable) value. The user can thrust 
and steer simultaneously, by depressing the D-pad 
buttons along the diagonal. For example, pressing 
upper left to move the vehicle forward while turning to 
the left. This control style is representative of 
traditional vehicle control through joysticks. 
 
To employ the accelerometer (motion-control) control 
scheme, the user again holds the Wiimote horizontally 
in both hands, in the fashion of a steering wheel. While 
depressing the button labeled 2 (rightmost button) the 
user tilts the Wiimote to the left and right to steer the 
vehicle in the respective direction. To move the vehicle 
forward or backwards, the user rotates the controller 
away or towards himself. Thrust is mapped to the z-axis 
of the Wiimote, while steering is mapped to the x-axis. 
These are decimal values, ranging from -4.0 to 4.0 and 
are visualized in the progress-bars located in the lower 
right-hand section of the GUI. With this input system, 
the user has fine-grained control over the movement of 
the vehicle. Tilting or rotating the Wiimote slightly will 
produce small steering or thrust values, and vice-versa. 
This control style is analogous to driving with a 
steering wheel. In fact, the Wiimote has a miniature 
steering wheel accessory to complete the analogy. 
 
The final input scheme, hand and arm gestural control, 
utilizes a recognition system to classify a Wiimote 
motion as a pre-trained gesture. The recognition system 
uses a machine learning algorithm that transforms the 
raw stream of XYZ accelerometer values into features 
used to uniquely identify a gesture. Recently developed 
by members of the Institute for Simulation & Training 
at the University of Central Florida, the recognition 
system uses a linear classifier and 29 features based on 
work by Rubine (1991) on 2D pen-based hand 
markings. The gestures classified are 3-Dimensional 

and thus the feature set has been extended over 
Rubine’s original 2D set. Recent studies (awaiting 
publication) have shown that this recognition system 
maintains a 95% classification accuracy with training 
sets as low as 20 samples per gesture. For our efforts, 
we chose a very small gesture set – Move Forward, 
Stop, Turn Left, and Turn Right – and trained the 
recognition system with 20 example gestures for each. 
The gestures, depicted graphically in Figure 4, are 
performed by holding the Wiimote vertically (the 
normal Wiimote position) in the right hand, and 
pressing and releasing the trigger button (the B-button) 
to indicate the beginning and end of a gesture. The 
gesture recognition system is constantly monitoring the 
state of the Wiimote, and watching for newly 
performed gestures. When the B-button is released, the 
recognizer transforms the stream of XYZ accelerometer 
data into feature space, and attempts to classify the 
gesture as one that has been previously trained. On a 
successful classification, the gesture is relayed to the 
unmanned system as a command. In our scenario, we 
map the Move Forward, Stop, Turn Left, and Turn 
Right gestures into corresponding vehicles movements. 
Similar to the joystick style control, these movements 
are performed at a fixed velocity. But unlike the 
joystick control system, which requires that the user 
continuously press a button to provide movement, the 
gestural control system maintains the command 
provided by the most recent gesture until a new 
gesture/command is recognized. 
 
Notably, this recognition system functions on dynamic 
gestures only – and not on static poses. This is opposite 
of many vision-based systems which can detect a still 
hand/arm position, but have difficulty analyzing 
movement in real-time. This limitation of the Wiimote 
gesture recognition system is due to the lack of position 
information provided by the raw accelerometer data. 
It’s not possible to distinguish between static poses 
with the 3-axis accelerometer values alone. 
 

 
 
Figure 4.  Selected Gestures and Representations of 

their Movements 
 
All of the three control styles are immediately 
accessible – meaning that mode switching is somewhat 
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of a hidden task. Using the D-pad indicates that you’re 
using the joystick style control, while pressing and 
releasing the B-button indicates that you’re using 
gestural control. The accelerometer/motion control 
system requires the most overt mode switching, which 
is depressing the 2-button. Releasing the 2-button, or 
not depressing any of the D-pad arrow buttons, stops 
the vehicle, because no active movement commands are 
being passed to the vehicle. Likewise, using the D-pad, 
or the Wiimote’s motion control, will immediately 
revoke any active gestural commands. 
 
Feedback on the current thrust and steering commands 
is displayed in the lower left-hand corner of the GUI. 
This feedback is augmented for the gestural control 
system, where sound files are played to indicate which 
command was recognized. 
  
Usability Study 
 
An informal usability study was conducted, to explore 
the efficacy of using gestures for controlling unmanned 
vehicles. Participants were required to navigate 
Gamblore through an outdoor obstacle course using 
each of the three control schemes. After a brief 
orientation period, the user performed three laps of the 
course, exercising a different control style with each 
lap. The only empirical performance metric used was 
the time required to complete each lap. At the 
completion of the obstacle course, the participant was 
asked to complete a qualitative questionnaire. The 
questionnaire asked the following questions using a 
five-level Likert scale: 
 

1. Instructions on how to perform gestures were 
clear 

2. Gestures were easy to learn 
3. Gestures were easy to remember/recall 
4. Gestures were easy to perform 
5. The Gestures performed did not cause my 

hands and/or wrists to become fatigued 
6. The Wiimote was easy to use 
7. The system recognized the gestures accurately 
8. Controlling the vehicle through gestures was 

easy 
9. Controlling the vehicle through the Wiimote’s 

motion tracking was easy 
10. Controlling the vehicle through the Wiimote’s 

directional pad was easy 
 
The participants were also asked to rank their preferred 
control style and to provide any comments on their 
experience. 
 

 
DISCUSSION 

 
Control Software and Hardware Performance 
 
Though relatively new, the JAUS++ library proved to 
be quite robust and communicating to the library from 
the graphical user interface software was very easily 
accomplished. As mentioned previously, because JAUS 
works independently of the hardware system, we were 
able to develop the control software system completely 
separate from a live vehicle. The transition from a 
simulated vehicle to Gamblore was seamless and 
required only adjusting the upper- and lower-limits for 
speed and steering values. 
 
Notably, JAUS provides for automatic discovery of 
available components, and this would allow for a user 
to easily switch between multiple unmanned systems. 
However, for the purposes of this effort, we did not 
expose the functionality through the GUI. 
 
The full hardware/software system was capable of 
driving the vehicle through the obstacle course using all 
control styles. The GUI tracked the vehicles position, 
speed, and attitude, and provided streaming video from 
Gamblore’s cameras. Videos of a number of test runs 
are available at http://www.bespokesoftware.org/. 
 
We encountered an issue related to wireless 
communication to the vehicle’s 802.11g access point. 
Wi-Fi interference would occasionally disrupt our 
connection, placing the vehicle in a standby state and 
preventing the transmission of new user commands. 
Losing a Wi-Fi connection never resulted in any danger 
to human participants or the vehicle due to a backup RF 
communication system that could override the higher-
level computer control. The takeaway from this 
problem is the need for a reliable wireless connection 
between the robot and the controlling computer 
platform. 
 
Additionally, the decision to use drive control that was 
open-loop via the Primitive Driver service resulted in 
vehicle drift. Small differences in motor speed and 
terrain caused Gamblore to drift to the right when 
driving distances greater than 4-5 feet. Also, if the 
vehicle went off of the designated course, and into 
heavy grass, it did not always have enough power to 
drive out. We had intentionally limited the upper bound 
for speed and steering to less than half of the total 
available power. We chose this because of the small 
scale of the course being traversed and hesitance to 
allow inexperience users to operate at full speed. We 
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believe that these issues affected performance and 
perception of control styles during the usability 
experiment. Specifically, these problems were difficult 
to overcome in a gesture-based control system where 
users are not continuously sending new input as in the 
case of accelerometer or joystick style control. The 
issues related to open-loop control and drift can be 
resolved in future studies by switching to a closed-loop 
driver service such as the Local Vector Driver or 
Global Vector Driver components described within the 
JAUS Reference Architecture. 
 
Usability Study Results 
 
Results from the usability study showed an average of 
84, 104, and 123 seconds for a lap around the course 
using accelerometers, D-pad, and gestural control 
systems respectively. Across all participants the 
preferred control styles were (from most preferred to 
least preferred): accelerometer control, D-pad/joystick 
control, and then gestural control. For the remaining 
qualitative questions, the average responses indicated a 
general acceptance of all three styles of operation, but 
that there was difficulty in gesture recognition with a 
few participants. 
 
These results lead to a number of possible conclusions. 
First, the task performed – driving a vehicle through an 
obstacle course – is a fairly low-level task, requiring 
almost continuous intervention from the user. The robot 
was not functioning in even a semi-autonomous mode, 
and was under full control of the human operator. 
Moreover, the task required the lower-level commands 
of: go forward, stop, turn left or turn right; as opposed 
to a higher set of commands such as “follow me” or 
“go to this destination”. With such a low-level task, it’s 
not surprising that the study participants would prefer a 
control scheme that provided the highest control 
fidelity, as with the accelerometer control system. 
Recall, that with this input scheme, as opposed to D-
pad or gestural control, users could control movement 
speeds incrementally, as a function of tilt and rotation 
provided along the X and Z Wiimote axes. 
Additionally, the accelerometer control system required 
constant input from the Wiimote for the vehicle to 
move; with the gestural command scheme, once a 
gestural command was provided, the robot would 
continue with that command until another was given. 
As previously mentioned, vehicle drift required 
constant course corrections from the user; which paired 
well with the continuous input coming from the 
accelerometer and D-pad control systems. However, the 
gestural control system works better when performing 
commands less frequently. In this study, participants 

had to perform gestures one after the other to correct 
course errors – and if the user had difficulty performing 
a gesture, this would hinder performance. 
 
Notably, the gesture recognition system was trained 
with a fairly low number of examples, and those came 
from only two individuals (neither who participated in 
the study). The implication, is that, for the users who 
had difficulty performing the gestures, the recognition 
accuracy could have been improved had those users 
contributed training examples to the machine learning 
algorithm. 
 
Continuing, if gestural control had been paired with a 
Vector Driver component, which maintains a speed and 
heading (automatically correcting for vehicle drift), we 
believe performance and preference for the gestural 
input scheme would have improved. 
 
Implications to Training 
 
As mentioned previously, all participants were 
provided a brief orientation session before navigating 
the vehicle through the obstacle course. It was observed 
that participants were able to learn all three control 
schemes within only a few minutes. This includes the 
set of four gestures needed for gestural control. 
Notably, none of the participants had ever driven 
Gamblore before and were unfamiliar with its driving 
style. Additionally the average times and performance 
were comparable to that of the authors/developers of 
the system. A possible conclusion that can be made 
from these observations is that the ease of use and 
intuitive nature provided by the Wiimote input device 
had an impact on how quickly users could learn the 
task. Moreover, gestural communication did not present 
a learning cost greater than that of joystick or 
accelerometer style control. A formal study is required 
to validate this conclusion. 
 
Additionally, the system presented in this paper allows 
an identical input control scheme to be used across 
multiple unmanned systems including those of different 
types. This results in a reduction of training time and 
cost through the reuse of the human-robot control 
system. Indeed, a user need only learn the nuances and 
domain of the platform being controlled rather than a 
wholly new control interface. 
 

CONCLUSION 
 
In this paper, we presented a system that uses 
commercial-off-the-shelf (COTS) technology for 
gesture input to allow control of multiple types of 
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unmanned systems. The Nintendo Wiimote provided an 
input device for implementing three control schemes 
including: traditional joystick control, accelerometer-
based control, and gestural control. A machine learning 
algorithm was employed to classify dynamic gestures 
composed of Wiimote XYZ accelerometer values. A 
graphical user interface incorporated the Wiimote and 
displayed vehicle telemetry and control feedback. This 
software system interacted with an unmanned vehicle, 
called Gamblore, using JAUS. JAUS is a high level 
domain interface used for communication with 
unmanned systems that is independent of hardware or 
software implementation. This combination of tools 
resulted in a system capable of operating any type of 
unmanned vehicle. 
 
An informal usability study was conducted to compare 
the performance and preference of the three control 
schemes implemented with the Wiimote. This study 
showed higher performance and user preference for 
accelerometer based control of the unmanned vehicle 
over the gestural and traditional joystick styles. 
However, we suspect this has more to do with the task 
performed within the study rather than a rejection of 
gesture based control. Indeed, users were able to 
successfully complete the obstacle course with 
relatively small differences in performance across the 
control schemes. This study implies that training time 
and cost can be reduced using an intuitive control 
scheme and even more so through software reuse 
enabled by interoperability standards such as JAUS.  
 
Future work should expand on the idea of using 
gestural command for high-level tasks. This might 
include the creation of a gestural vocabulary for 
human-robot interactions in a military domain. Such a 
vocabulary can leverage existing arm and hand gestures 
already in use by military personnel. Applications of 
high-level tasks where gestural communication could 
apply are traffic control points, UAV takeoff and 
landing, and mixed-initiative (Barber, 2008) teams. We 
believe this work will establish an intuitive control 
mechanism for interactions with multiple types of 
unmanned systems. 
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