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Abstract—In this paper, we present three techniques for 6DOF natural feature tracking in real time on mobile phones. We achieve
interactive frame rates of up to 30 Hz for natural feature tracking from textured planar targets on current generation phones. We use an
approach based on heavily modified state-of-the-art feature descriptors, namely SIFT and Ferns plus a template-matching-based
tracker. While SIFT is known to be a strong, but computationally expensive feature descriptor, Ferns classification is fast, but requires
large amounts of memory. This renders both original designs unsuitable for mobile phones. We give detailed descriptions on how we
modified both approaches to make them suitable for mobile phones. The template-based tracker further increases the performance
and robustness of the SIFT- and Ferns-based approaches. We present evaluations on robustness and performance and discuss their
appropriateness for Augmented Reality applications.

Index Terms—Information interfaces and presentation, multimedia information systems, artificial, augmented, and virtual realities,

image processing and computer vision, scene analysis, tracking.
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1 INTRODUCTION

TRACKING from natural features is a complex problem and
usually demands high computational power. It is there-

fore difficult to use natural feature tracking in mobile
applications of Augmented Reality (AR), which must run
with limited computational resources, such as on Tablet PCs.

Mobile phones are very inexpensive, attractive targets
for AR, but have even more limited performance than the
aforementioned Tablet PCs. Phones are embedded systems
with severe limitations in both the computational facilities
(low throughput, no floating-point support) and memory
bandwidth (limited storage, slow memory, tiny caches).
Therefore, natural feature tracking on phones has largely
been considered infeasible and has not been successfully
demonstrated till date.

In this paper, we present the first fully self-contained
natural feature tracking system capable of tracking full
6 degrees of freedom (6DOF) at real-time frame rates
(30 Hz) from natural features using solely the built-in
camera of the phone.

To exploit the nature of typical AR applications, our
tracking techniques use only textured planar targets, which
are known beforehand and can be used to create a training

data set. Otherwise, the system is completely general and
can perform initialization as well as incremental tracking
fully automatically.

We have achieved this by examining two leading
approaches in feature descriptors, namely SIFT and Ferns.
In their original published form, both approaches are
unsuitable for low-end embedded platforms such as
phones. Some aspects of these techniques are computation-
ally infeasible on current generation phones and must be
replaced by different approaches, while other aspects can be
simplified to run at the desired level of speed, quality, and
resource consumption.

We call the resulting tracking techniques PhonySIFT and
PhonyFerns in this paper to distinguish them from their
original variants. They show interesting aspects of conver-
gence, where aspects of SIFT, Ferns, and other approaches
are combined into a very efficient tracking system. Our
template-based tracker, which we call PatchTracker, has
orthogonal strengths and weaknesses compared to our other
two approaches. We therefore combined the approaches
into a hybrid tracking system that is more robust and faster.

The resulting tracker is 1-2 orders of magnitude faster
than naı̈ve approaches toward natural feature tracking, and
therefore, also very suitable for more capable computer
platforms such as PCs. We back up our claims by a detailed
evaluation of the trackers’ properties and limitations that
should be instructive for developers of computer-vision-
based tracking systems, irrespective of the target platform.

2 RELATED WORK

To the best of our knowledge, our own previous work [20]
represents the only published real-time 6DOF natural
feature tracking system on mobile phones so far. Previous
work can be categorized into three main areas: General
natural feature tracking on PCs, natural feature tracking on
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phone outsourcing the actual tracking task to a PC, and
marker tracking on phones.

Point-based approaches use interest point detectors and
matching schemes to associate 2D locations in the video
image with 3D locations. The location invariance afforded
by interest point detectors is attractive for localization
without prior knowledge and wide baseline matching.
However, computation of descriptors that are invariant
across large view changes is usually expensive. Skrypnyk
and Lowe [16] describe a classic system based on the SIFT
descriptor [12] for object localization in the context of AR.
Features can also be selected online from a model [2] or
mapped from the environment at runtime [5], [9]. Lepetit
et al. [10] recast matching as a classification problem using a
decision tree and trade increased memory usage with
avoiding expensive computation of descriptors at runtime.
A later improvement described by Ozuysal et al. [14] called
Ferns improves the classification rates while further redu-
cing necessary computational work. Our work investigates
the applicability of descriptor-based approaches like SIFT
and classification like Ferns for use on mobile devices, which
are typically limited in both computation and memory.
Other, potentially more efficient descriptors such as SURF
[1] have been evaluated in the context of mobile devices [3],
but also have not attained real-time performance yet.

One approach to overcome the resource constraints of
mobile devices is to outsource tracking to PCs connected via
a wireless connection. All of these approaches suffer from
low performance due to restricted bandwidth as well as the
imposed infrastructure dependency, which limits scalability
in the number of client devices. The AR-PDA project [6]
used digital image streaming from and to an application
server, outsourcing all processing tasks of the AR applica-
tion reducing the client device to a pure display plus
camera. Hile and Borriello report a SIFT-based indoor
navigation system [8], which relies on a server to do all
computer vision work. Typical response times are reported
to be �10 seconds for processing a single frame.

Naturally, first inroads in tracking on mobile devices
themselves focused into fiducial marker tracking. Never-
theless, only few solutions for mobile phones have been
reported in the literature. In 2003, Wagner and Schmalstieg
ported ARToolKit to Windows CE, and thus, created the
first self-contained AR application [19] on an off-the-shelf
embedded device. This port later evolved into the AR-
ToolKitPlus tracking library [18]. In 2005, Henrysson et al.
[7] created a Symbian port of ARToolKit, partially based on
the ARToolKitPlus source code. TinyMotion [21] tracks in
real time using optical flow, but does not deliver any kind
of pose estimation. Takacs et al. recently implemented the
SURF algorithm for mobile phones [17]. They do not target
real-time 6DOF pose estimation, but maximum detection
quality. Hence, their approach is two orders of magnitude
slower than the work presented here.

3 NATURAL FEATURE MATCHING

3.1 Scale Invariant Feature Transform (SIFT)

The SIFT [12] approach from Lowe combines three steps:
keypoint localization, feature description, and feature
matching. In the first step, Lowe suggests smoothing the

input image with Gaussian filters at various scales and then
locating keypoints by calculating scale-space extrema
(minima and maxima) in the Difference of Gaussians
(DoGs). Creating the Gauss convolved images and search-
ing the DoG provide scale invariance but are computation-
ally expensive. The keypoint’s rotation has to be estimated
separately: Lowe suggests calculating gradient orientations
and magnitudes around the keypoint, forming a histogram
of orientations. Peaks in the histogram assign one or more
orientations to the keypoint. The descriptor is again based
on gradients. The region around the keypoint is split into a
grid of subregions: Gradients are weighted by distance from
the center of the patch as well as by the distance from the
center of their subregion. The length of the descriptor
depends on the quantization of orientations (usually 4 or 8)
as well as the number of subregions (usually 3� 3 or 4� 4).
Most SIFT implementations use eight orientations and 4� 4
subregions, which provide the best results but create a large
feature vector (128 elements).

3.2 Ferns: Tracking by Classification

Feature classification for tracking [14] learns the distribu-
tion of binary features F ðpÞ of a set of model points mc

corresponding to the class C. The binary features are
comparisons between image intensities IðpÞ in the neigh-
borhood of interest points p, parameterized by a pair of
offsets ðl; rÞ : F ðpÞ is defined as 1 if Iðpþ lÞ < Iðpþ rÞ, and 0
otherwise. At runtime, interest points are detected and their
response F to the features is computed. Each point is
classified by maximizing the probability of observing the
feature value F as C ¼ argmaxCP ðCijF Þ and the corre-
sponding model point mC is used for pose estimation.
Different from feature matching, the classification approach
is not based on a distance measure, but trained to optimize
recognition of features in the original model image.

For a set of N features Fi, the probability of observing it
given class C is represented as an empirical distribution
stored in a histogram over outcomes for the class C. Many
different example views are created by applying changes in
scale, rotation, and affine warps, and adding pixel noise, as
a local approximation to viewpoint changes. The response
for each view is computed and added to the histogram.

To classify an interest point p as a class C, we compute
F ðpÞ, combining the resulting 0s and 1s into an index
number to lookup the probabilities in the empirical
distribution. In practice, the size of the full joint distribu-
tion is too large and it is approximated by subsets of
features (Ferns) for which the full distribution is stored.
For a fixed Ferns size of S;M ¼ N=S, Ferns FS are created.
The probability P ðFijCÞ is then approximated as
PðFijCÞ ¼

Q
PðFSjCÞ. Probability values are computed as

log probabilities and the product in the last equation is
replaced with a sum.

4 MAKING NATURAL FEATURE TRACKING FEASIBLE

ON PHONES

In the following, we describe our modified approaches of
the SIFT and Ferns techniques. Since the previous section
already gave an overview on the original design, we
concentrate on changes that made them suitable for mobile
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phones. Four major steps make up the pipeline of a feature-
based pose tracking system (see Fig. 1) as follows:

1. feature detection,
2. feature description and matching,
3. outlier removal, and
4. pose estimation.

If the PatchTracker is available (details in Section 3), the
system can switch to tracking mode until the target is lost
and must be redetected.

Our implementations of the SIFT and Ferns techniques
share the first and last steps: Both use the FAST [15] corner
detector to detect feature points in the camera image, as
well as Gauss-Newton iteration to refine the pose originally
estimated from a homography.

4.1 PhonySIFT

In the following, we present our modified SIFT algorithm,
describing all steps of the runtime pipeline and then
presenting the offline target data acquisition.

4.1.1 Feature Detection

The original SIFT uses DoGs for a scale-space search of
features. This approach is inherently resource intensive and
not suitable for real-time execution on mobile phones. We
replaced it with the FAST corner detector with nonmax-
imum suppression, known to be one of the fastest detectors,
still providing high repeatability. Since FAST does not
estimate a feature’s scale, we reintroduce scale estimation
by storing feature descriptors from all meaningful scales
(details in Section 4.1.5). By describing the same feature
multiple times over various scales, we trade memory for
speed to avoid a CPU-intensive scale-space search. This
approach is reasonable because of the low memory required
for each SIFT descriptor.

4.1.2 Descriptor Creation

Most SIFT implementations adopt 4� 4 subregions with
eight gradient bins each (128 elements). For performance
and memory reasons, we use only 3� 3 subregions with
four bins each (36 elements) that, as Lowe outlines [12],
perform only �10 percent worse than the best variant with
128 elements.

Since we have fixed-scale interest points, we fix the SIFT
kernel to 15 pixels. To gain robustness, we blur the patch

with a 3� 3 Gaussian kernel. Like in the original imple-
mentation, we estimate feature orientations by calculating
gradient direction and magnitude for all pixels of the
kernel. The gradient direction is quantized to 36 bins and
the magnitude, weighted using a distance measure, is
added to the respective bin. We compensate for each
orientation by rotating the patch using subpixel accuracy.
For each rotated patch, gradients are reestimated, weighted
by distance to the patch center and the subregion center,
and finally, written into the four bins of their subregion.

4.1.3 Descriptor Matching

The descriptors for all features in the new camera image are
created and matched against the descriptors in the
database. The original SIFT uses a k-d Tree with the Best-
Bin-First strategy, but our tests showed that some (usually
1-3) entries of the vectors vary strongly from those in the
database, tremendously increasing the required tolerance
for searching in the k-d Tree, making the approach
infeasible on mobile phones. A Spill Tree [11] is a variant
of a k-d Tree that uses an overlapping splitting area: Values
within a certain threshold are dropped into both branches.
Increasing the threshold, a Spill Tree can tolerate more error
at the cost of growing larger. Unfortunately, errors of
arbitrary amount show up in our SIFT vectors, rendering
even a Spill Tree unsuitable. We discovered that multiple
trees with randomized dimensions for pivoting allow for a
highly robust voting process, similarly to the randomized
trees [10]: instead of using a single tree, we combine a
number of Spill Trees into a Spill Forest. Since only a few
values of a vector are expected to be wrong, a vector has a
high probability of showing up in the “best” leaf of each
tree. We only visit a single leaf in each tree and merge the
resulting candidates. Descriptors that show up in more than
one leaf are then matched.

4.1.4 Outlier Removal

Although SIFT is known to be a very strong descriptor, it
still produces outliers that have to be removed before doing
pose estimation. Our outlier removal works in three steps.
The first step uses the feature orientations. We correct all
relative feature orientations to absolute rotation using the
feature orientations in the database. Since the tracker is
limited to planar targets, all features should have a similar
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Fig. 1. State chart of combining the PhonySIFT/PhonyFerns trackers and the PatchTracker. The numbers indicate the sections in which the

respective techniques are described.



orientation. We estimate a main orientation and use it to
filter out all features that do not support this hypothesis.
Since feature orientations are already available, this step is
very fast, yet very efficient in removing most of the outliers.
The second step uses simple geometric tests. All features are
sorted by their matching confidence, and starting with the
most confident features, we estimate lines between two of
them and test all other features to lie on the same side of the
line in both camera and object space. The third step removes
final outliers using homographies in an RANSAC fashion
allowing a reprojection error of up to 5 pixels. Our tests
have shown that such a large error boundary creates a more
stable inliers set, while the errors are effectively handled by
the M-Estimator during the pose refinement stage.

4.1.5 Target Data Acquisition

SIFT is a model-based approach and requires a feature
database to be prepared beforehand. The tracker is
currently limited to planar targets, therefore, a single
orthographic image of the tracking target is sufficient. Data
acquisition starts by building an image pyramid, each level
scaled down with a factor of 1=

ffiffiffi
2
p

from the previous one.
The largest and smallest pyramid levels define the range of
scales that can be detected at runtime. In practice, we
usually create 7-8 scale levels that cover the expected scale
range at runtime. Different from Lowe, we have clearly
quantized steps rather than estimating an exact scale per
keypoint. We run the FAST detector on each scale of the
pyramid. Features with more than three main orientations
are discarded.

4.2 PhonyFerns

This section describes the modifications to the original
Ferns [14] to operate on mobile phones.

4.2.1 Feature Detection

The original Ferns approach uses an extrema of Laplacian
operator to detect interest points in input images. This was
replaced by the FAST detector [15] with nonmaximum
suppression on two octaves of the image. At runtime, the
FAST threshold is dynamically adjusted to yield a constant
number of interest points (300 for a 320� 240 input image).

4.2.2 Feature Classification and Training

The runtime classification is straightforward and the
original authors provide a simple code template for it.
Given an interest point p, the features Fi for each Fern FS are
computed, used to look up log probabilities that are summed
to give the final log of probability for each class. The original
work used parameters for Fern sizes leading to databases
with up to 32 Mb, exceeding by far available application
memory on mobile phones. We experimented with smaller
Ferns of sizes S ¼ 6-10 with about 200 questions, leading to
database sizes of up to 2 Mb.

The original Ferns stored probabilities as 4-byte floating-
point values. We found that 8-bit values yield enough
numerical precision. We use a linear transformation between
the original range and the range [0..255] because it preserves
the order of the resulting scores. However, reducing the block
sizeS of the Ferns empirical distribution severely impacts the
classification performance. Therefore, we improved the

distinctiveness of the classifier by actively making it rotation
invariant. For every interest point p, we compute a dominant
orientation by evaluating the gradient of the blurred image,
quantize it into [0..15], and use a set of prerotated questions
associated with each bin to calculate the answer sets. The
same procedure is also applied in the training phase to
account for errors in the orientation estimation.

FAST typically shows multiple responses for interest
points detected with more sophisticated methods. It also does
not allow for subpixel accurate or scale-space localization.
These deficiencies are counteracted by modifying the
training scheme to use all FAST responses within the 8-
neighborhood of the model point as training examples.
Except for this modification, the training phase (running on
the PC) is performed exactly as described in [14].

4.2.3 Matching

At runtime, interest points are extracted, their dominant
orientation is computed, and the points are classified
yielding a class and score as the log probability of being
generated by that class.

For each class—and therefore, model point—the top
ranking interest point is retained as a putative match. These
matches are furthermore culled with a threshold against the
matching score to remove potential outlier matches quickly.

The choice of threshold is typically a uniform threshold
across all classes, yielding a simple cutoff. However, the
probability distributions in the individual classes have
different shapes with probability mass concentrated in
larger or smaller regions resulting in peak probabilities
varying for different classes. Consequently, this leads to
different distributions of match scores. A uniform threshold
may either penalize classes with broad distributions if too
high, or allow more outliers in peaked distributions if too
low. In turn, this affects the outlier removal stage, which
either receives only a few putative matches or large sets of
matches with high outlier rates.

To reduce this effect, we also train a per-class threshold.
Running evaluation of the classification rates on artificially
warped test images with ground truth, we record the match
scores for correct matches and model the resulting distribu-
tion as a normal distribution with mean mc and standard
deviation sc for class c. Then we use the threshold mc � tsc
as the per-class threshold (the log probabilities are negative,
therefore, we shift the threshold toward negative infinity).
Fig. 2 shows the average number of inliers versus the inlier
rate for recorded video data using either a range of uniform
thresholds or a range of per-class thresholds parameterized
by t ¼ ½0 . . . 3�. Ideally, we want to improve both inlier rate
and absolute numbers of inliers. In practice, we chose t ¼ 2
as a good compromise.

Depending on the difference in individual class distribu-
tions, the per-class thresholds can critically improve the
performance of the matching stage. For data with very
similar looking model points as in Fig. 2b, per-class
thresholds perform not above uniform ones.

4.2.4 Outlier Rejection

The match set returned by the classification still contains a
significant fraction of outliers and a robust estimation step
is required to compute the correct pose. In the first outlier
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removal step, we use the orientation estimated for each
interest point and compute the difference to the stored
orientation of the matched model point. Differences are
binned in a histogram and the peaks in the histogram are
detected. As differences should agree across inlier matches,
we remove all matches in bins with less matches than a
fraction (66 percent) of the peaks.

The remaining matches are used in a PROSAC scheme
[4] to estimate a homography between the model points of
the planar target and the input image. A simple geometric
test quickly eliminates wrong hypotheses including colinear
points. Defining a line from two points of the hypothesis
set, the remaining two points must lie on their respective
sides of the line in the template image as in the current
frame. Thus, testing for the same sign in the signed distance
from the line in both images is a simple check for a
potentially valid hypothesis. The final homography is
estimated from the inlier set and used as starting point in
a 3D pose refinement.

4.3 PatchTracker

Both the PhonySIFT and the PhonyFerns trackers perform
tracking-by-detection: For every image they detect key-
points, match them, and estimate the camera pose. Frame-
to-frame coherence is not considered.

Additionally to the PhonySIFT and PhonyFerns tracker,
we developed a PatchTracker that purely uses active search:
based on a motion model, it estimates exactly what to look
for, where to find it, and what locally affine transformation
to expect. In contrast to SIFT and Ferns, this method does
not try to be invariant to local affine changes, but actively

addresses them. Such an approach is more efficient than
tracking-by-detection because it makes use of the fact that
both the scene and the camera pose change only slightly
between two successive frames, and therefore, the feature
positions can be successfully predicted.

The PatchTracker uses a reference image as the only data
source. No keypoint descriptions are prepared. Keypoints
are detected in the reference image during initialization
using a corner detector. The image is stored at multiple
scales to avoid aliasing effects during large-scale changes.

Starting with a coarsely known camera pose (e.g., from

the previous frame), the PatchTracker updates the pose by

searching for known features at predicted locations in the

camera image. The new feature locations are calculated by

projecting the keypoints of the reference image into the

camera image using the coarsely known camera pose. We

therefore do not require a keypoint detection step. This

makes the tracker faster: Its speed is largely independent of

the camera resolution and it does not suffer from typical

weaknesses of corner detectors such as blur.
After the new feature positions have been estimated, they

are searched within a predefined search region of constant

size. Using the camera pose, we can create an affinely

warped representation of the feature using the reference

image as source (a similar approach has been reported in

[13]). This warped patch of 8� 8 pixels closely resembles

the appearance in the camera image and its exact location is

estimated using normalized cross correlation (NCC) [22]

over a predefined search area. Once a good match is found,
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we perform a quadratic fit into the NCC responses of the
neighboring pixels to achieve subpixel accuracy.

Template matching over a search window is fast as long
as the search window is small enough. However, a small
search window limits the speed of the camera motion that
can be detected. We employ two methods to track fast
moving cameras despite small search regions.

First, we use a multiscale approach. Similar to [9], we
estimate the new pose from a camera image of 50 percent
size. Only few interest points are searched at this level, but
with a large search radius. If a new pose has been found, it
is refined from the full resolution camera image using a
larger number of interest points, but with a smaller search
radius. We typically track 25 points a half resolution with a
search radius of 5 pixels and 100 points at full resolution
with a search radius of 2 pixels only. Searching at half
resolution effectively doubles the search radius.

Second, we use a motion model to predict the camera’s
pose in the next frame. Our motion model is linear,
calculating the difference between the poses of the current
and previous frames in order to predict the next pose. This
model works well as long as the camera’s motion does not
change drastically. Since our tracker typically runs at 20 Hz
or more, this is rarely the case.

The combination of a keypoint-less detector, affinely
warped patches and normalized cross correlation for
matching results in unique strengths: Due to using NCC
(see above), the PatchTracker is robust to global changes in
lighting, while the independent matching of many features
increases the chance of obtaining good matches, even under
extreme local lighting changes and reflections. Because of
the affinely warped patches, it can track under extreme tilts
close to 90 degree. The keypoint-less detector makes it
robust to blur and its speed is mostly independent of the
camera resolution. Finally, it is very fast, requiring only
�1 ms on an average PC and �8 ms on a fast mobile phone
in typical application scenarios.

4.4 Combined Tracking

Since the PatchTracker requires a previously known coarse
pose, it cannot initialize or reinitialize. It therefore requires

another tracker to start. The aforementioned strength and
weaknesses are orthogonal to the strengths and weaknesses
of the PhonyFerns and PhonySIFT trackers. It is therefore
natural to combine them to yield a more robust and faster
system. In our combined tracker, the PhonySIFT or
PhonyFerns tracker is used only for initialization and
reinitialization (see Fig. 1). As soon as the PhonySIFT or
PhonyFerns tracker detects a target and estimates a valid
pose, it hands over tracking to the PatchTracker. The
PatchTracker uses the pose estimated by the PhonySIFT or
PhonyFerns tracker as starting pose to estimate a pose for
the new frame. It then uses its own estimated poses from
frame to frame for continuous tracking. In typical applica-
tion scenarios, the PatchTracker works for hundreds or
thousands of frames before it loses the target and requires
the PhonySIFT or PhonyFerns tracker for reinitialization.

5 EVALUATION

To create comparable results for tracking quality as well as
tracking speed over various data sets, tracking approaches,
and situations, we implemented a frame server that loads
uncompressed raw images from the file system rather than
from a live camera view. The frame server and all three
tracking approaches were ported to the mobile phone to
also compare the mobile phone and PC platform.

5.1 Ferns Parameters

To explore the performance of the PhonyFerns classification
approach under different Fern sizes, we trained a set of
Ferns on three data sets and compared robustness, defined
to be the number of frames tracked successfully (defined as
finding at least eight inliers), and speed. The total number
of binary features was fixed to N ¼ 200 and the size of Ferns
was varied between S ¼ 6-12. The corresponding number of
blocks was taken as M ¼ ½N=S�. The number of model
points was also varied between C ¼ 50-300 in steps of 50.

Fig. 3 shows the speed and robustness for different
values of S and C for the Cars data set. To compare the
behavior of the Ferns approach to the SIFT implementation,
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we ran the SIFT with optimized parameters on the same
data sets. The resulting SIFT performance is given as black
dashed line in the graphs in Fig. 3. The runtime perfor-
mance seems the best for the middle configurations, while
small S appears to suffer from the larger value of M,
whereas for large S, the bad cache coherence of large
histogram tables seems to impact performance.

5.2 Matching Rates

To estimate how our modifications affected the matching
rates, we compared PhonySIFT and PhonyFerns against
their original counterparts using images from the Miko-
lajczyk and Schmid framework.1 We tested all four methods
on three data sets (Zoom+rotation, Viewpoint, and Light)
with one reference image and five test images each. The
homographies provided with the data sets were used as
ground truth. We allowed a maximum reprojection error of
5 pixels for correspondences to count as inliers. Although 5
pixels is a seemingly large error, our tests show that these
errors can be handled effectively using an M-Estimator,
while at the same time, the pose jitter is reduced due to a
more stable set of inliers.

For each data set, we report the percentage of inliers of
the original approach without any outlier removal, our

approach without outlier removal, and our approach with
outlier removal (see Fig. 4).

In the first data set, the original SIFT works very well for
the first four images, while the matching rate suffers clearly
in the fifth image. Although the matching rate of the
PhonySIFT without outlier removal is rather low, with
outlier removal, it is above 80 percent for all images and
even surpasses the original SIFT for the final image. The
matching rate of the original Ferns works very well on the
first two images, but quickly becomes worse after that,
while PhonyFerns works well except for the last image,
where it breaks, because our training set was not created to
allow for such high scale changes.

The second data set mostly tests tolerance to affine
changes. Both the original and the modified versions (with
outlier removal) work well for the first two images. The
performance decreases considerably with the third image
and only PhonyFerns is able to detect the fourth image. The
third data set tests robustness to changes in lighting. All
methods work very well on this data set.

The matching tests show a clear trend: The outlier rates
of the modified methods are considerably higher than those
of the original approaches. Yet, even very high numbers of
outliers can be successfully filtered using our outlier
removal techniques so that the modified approaches work
at similar performance levels like the original approaches.
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5.3 Tracking Targets

The optimized configurations for both PhonySIFT and
PhonyFerns from the last sections were used to test
robustness on seven different tracking targets (see Fig. 5)
in stand-alone mode as well as in combination with the
PatchTracker. The targets were selected to cover a range of
different objects that might be of interest in real applications.
We created test sequences for all targets at a resolution of
320� 240 pixels. The sequences have a length of 501-
1,081 frames. We applied all four combinations to all test
sequences and measured the number of frames in which the
pose was estimated successfully. We defined a pose to be
found successfully if the number of inliers is 8 or greater.
This definition of robustness is used for all tests in the paper.

As can be seen in Fig. 6, the Book and Cars data sets (first
and third pictures in Fig. 5) performed worst. The Book
cover consists of few, large characters and a low contrast,
blurred image, making it hard for the keypoint detector to
find keypoints over large areas. In the Cars data set, the sky
and road are of low contrast, therefore, also respond badly
to corner detection. Same as for the Book data set, these
areas are hard to track with our current approaches.

The Advertisement, Map, and Panorama data sets show
better suitability for tracking. Both the Advertisement and
the Panorama consist of areas with few features, but they
are better distributed over the whole target than in the Cars
or Book targets. The Map target clearly has well-distributed
features, but robustness suffers from the high frequency of
these features, which create problems when searching at
multiple scales. The Photo and Vienna data sets work
noticeably better than the other targets because the features
are well distributed, of high contrast and more unique than
the features of the other data sets.

We therefore conclude that drawings and text are less
suitable for our tracking approaches. They suffer from high
frequencies, repetitive features, and typically few colors
(shades). Probably, a contour-based approach is more
suitable in such cases. Real objects or photos, on the other
hand, have often features that are more distinct, but can

suffer from poorly distributed features creating areas that
are hard to track.

5.4 Tracking Robustness

Based on the Vienna data set, we created five different test
sequences with varying number of frames at a resolution of
320� 240 pixels, each showcasing a different practical
situation: Sequence 1 resembles a smooth camera path,
always pointing at the target (602 frames); Sequence 2 tests
partial occlusion of a user interacting with the tracking
target (1,134 frames). Sequence 3 checks how well the
trackers work under strong tilt (782 frames). Sequence 4
imitates a user with fast camera movement as it is typical
for mobile phone usage (928 frames). Finally, sequence
5 checks how well the trackers cope with pointing the
camera away from and back to the target (601 frames).

All five sequences were tested with four different
trackers: PhonySIFT, PhonyFerns, PatchTracker in combi-
nation with PhonySIFT (only for re/initialization), and
PatchTracker in combination with PhonyFerns (only for re/
initialization). The results of all tests are shown in Fig. 7. For
each sequence and tracker, we coded the tracking success
(defined as finding at least eight correspondences) as a
horizontal line. The line is broken at those points in time,
where tracking failed.

All four trackers are able to work very well with the
“simple sequence.” While PhonySIFT and PhonyFerns lose
tracking for a few frames during the sequence, the
PatchTracker takes over after the first frame and never
loses it.

The four variants perform differently at the occlusion
sequence, where large parts of the tracking target are
covered by the user’s hand. Here, both the PhonySIFT and
the PhonyFerns tracker break. The PhonySIFT tracker
works better because the PhonySIFT data set for this target
contains more features, and it is therefore able to better find
features in the small uncovered regions. The PatchTracker
again takes over after the first frame and does not lose track
over the complete sequence.
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Fig. 5. The seven test sets (a)-(g): book cover, advertisement, cars movie poster, printed map, panorama picture, photo, and Vienna satellite image.

Fig. 6. Robustness results over different tracking targets.



Both PhonySIFT and PhonyFerns are known to have
problems with strong tilts, which results from the fact that
they were designed to tolerate tilt, but not actively take it
into account. Generally, the PhonyFerns tracker does better
than the PhonySIFT, which fits the expectations on these
two methods. Since the PatchTracker directly copes with
tilt, it does not run into any problems with this sequence.

The fast camera movements, and hence, strong motion
blur of the fourth sequence create a severe problem for the
FAST corner tracker used for both the PhonySIFT and the
PhonyFerns trackers. The PhonyFerns tracker performs
better because it automatically updates the threshold for
corner detection, while the PhonySIFT tracker uses a
constant threshold. By lowering the threshold, the Phony-
Ferns tracker is able to find more keypoints in the blurred
frames than the PhonySIFT tracker does. The PatchTracker
has no problems even with strong blur.

The last sequence tests coping with a target moving out
of the camera’s view and coming back in, hence, testing for
tracking from small regions as well as fast reinitialization
from an incomplete tracking target. In this sequence, the
dynamic corner threshold becomes a weakness for the
PhonyFerns tracker: The empty table has only very few

features, making the PhonyFerns tracker to strongly
decrease the threshold and requiring many frames to
increase it again until it can successfully track a frame.
Consequently, it takes the PhonyFerns tracker longer to find
the target again than it does for the PhonySIFT tracker. The
PatchTracker loses the target much later than PhonySIFT
and PhonyFerns. The combined PatchTracker/PhonySIFT
reinitializes exactly at the same time as the stand-alone
PhonySIFT tracker. The PatchTracker/PhonyFerns combi-
nation behaves differently: Since the PatchTracker loses the
target much later than PhonyFerns only does, the Phony-
Ferns part of the combined tracker has less frames for
lowering the corner threshold too much, and therefore,
reinitializes faster than when working alone.

Fig. 8 analyzes in depth, how well each tracker operates
on the five test sequences. The left column of charts shows
the distribution of reprojection errors in pixels for each
tracker on successfully tracked frames, while the right
column of charts shows the distribution of inliers per
frames—including failed frames with 0 inliers. The repro-
jection error distribution shows that the PatchTracker
combinations have the smallest reprojection errors with
only the “Fast Movement” sequence producing significantly
larger errors. However, on this sequence, the PatchTracker
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Fig. 7. Robustness tests of the four trackers on five test cases (a)-(e): (a) simple, (b) occlusion, (c) tilt, (d) fast movement, and (e) loss of target. The
horizontal bars encode tracking success over time, defined as estimating a pose from at least eight keypoints. The reference image and test
sequences can be downloaded from http://studierstube.org/handheld_ar/vienna_dataset.



tracks many more frames successfully, even with reduced
accuracy than the pure localization-based approaches as
seen in the inlier distribution. The seemingly better behavior
of the SIFT tracker comes from the fact that it did not track
the difficult frames of this sequence, whereas the Patch-
Tracker combinations continued to track at lower quality.

The Inlier count charts show that the PatchTracker
combinations usually track at either full keypoint count
(defined to be a maximum of 100) or not at all. Hence, for

the “Simple,” “Occlusion,” and “Fast Movement” se-
quences, there is only a single peak at 100 inliers, whereas
in the “Tilt” and “Lose Target,” there is another peak at 0.
Naturally, the maximum keypoint count per frame could be
increased for the PatchTracker but would not change the
picture drastically. The Ferns and SIFT trackers show
different performances. Ferns tends to track much less
points than SIFT, mostly due to its smaller data set, which
was reduced to save memory. The larger number of
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Fig. 8. Analysis of reprojection errors and inliers count for the five test sequences.



keypoints in the SIFT case lead to more stable poses, which
was confirmed visually.

5.5 Breaking the PatchTracker

The robustness tests in the previous section showed that the
PatchTracker strongly improves the overall tracking robust-
ness of the other systems, resulting in almost 100 percent
tracked frames in most of the tests. We therefore created an
extra series of tests that was not designed to resemble
practical situations, but instead, each image sequence
makes the tracking increasingly more difficult allowing us
to analyze when exactly the tracking breaks.

We created five different test sequences at a resolution of
320� 240 pixels and a varying number of frames, each one
looking at a different aspect. All tests were run with the
PhonySIFT/PatchTracker combination. The sequences were
designed so that the PhonySIFT tracker detects the pose in
the first frame and then hands over tracking to the
PatchTracker until it loses the target.

Fig. 9 shows a typical good frame for each test, the first
frame when tracking degrades and the first frame that made
the PatchTracker break. As before, the PatchTracker was
configured to find 100 keypoints per frame. Degrading was
defined as finding fewer than 100 keypoints.

The first sequence tests at which point the tracker loses
the target that moves out of the screen. Tracking begins
degrading when the target covers only 17 percent of the
camera image (�63� 206 pixels) and breaks when it goes
down to 8 percent (�30� 204 pixels). The second sequence
tests partial occlusion of the tracking target. As can be seen
in the 2nd column, tracking works well even under large
occlusions and breaks only when the target is hardly visible
anymore (�6 percent of the field of view).

The tilt test checks how strong the camera can be tilted
with respect to the tracking target. Due to the affine
warping of patches, very strong tilts can be tolerated and
tracking works without degradation until it suddenly
breaks. The motion blur sequence tests how fast the camera
can be moved despite long exposure times, which is a
typical problem of mobile phones, which are not very

tolerant to low lighting conditions. Tracking degrades only
when there is severe blur and breaks at a point when the
target can be hardly recognized anymore (last image in
fourth column). Finally, we estimated how well the NCC is
able to compensate for reflections on the tracking target.
The second image in the fifth column of Fig. 9 shows that
tracking starts degrading at a point, where the camera
image is already poor in contrast, and then loses the target
quickly (last image in fifth column).

5.6 Performance

Finally, the overarching challenge of natural feature
tracking on mobile phones is speed. To explore the
operational speed of our approaches, we evaluated Phony-
SIFT, PhonyFerns, and both in combination with the
PatchTracker on a mobile phone and a PC. As reported in
[20], performance scales linearly with the CPU clock rate on
mobile phones and is independent of the operating system.
We therefore benchmarked on a single mobile phone only.
The mobile we used is an Asus P552W, which has a Marvell
PXA930 running at 624 MHz and a screen resolution of
240� 320. The P552W does not have a floating point unit or
hardware 3D acceleration. Hence, the trackers ran in fixed-
point mode on this device. The PC is a Dell Notebook with
an Intel Core 2 running at 2.5 GHz. Although the notebook’s
CPU has multiple cores, the trackers ran single-threaded
only. On the PC, we activated the floating-point mode for
all methods.

We tested all trackers against the “simple” sequence 1 of
the robustness tests of Section 5.4, since we wanted to
prevent tracking failures as much as possible to measure full
frames only. During the first frame, several lookup tables are
created. Some of these tables are for our fixed-point
mathematics implementation (e.g., sine/cosine tables);
others are specific to PhonySIFT. The PhonyFerns and the
PatchTracker do not use custom lookup tables. Creating the
fixed-point math tables takes 38 ms on the mobile phone and
far below 0.1 ms on the PC (it is not possible to measure this
reliably, since it is executed only once per application call).
The PhonySIFT lookup tables require 121 ms to fill on the
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Fig. 9. Testing the PatchTracker against losing target, occlusion, tilt, motion blur, and reflections. The first image of each column shows a typical
frame of the test sequence that was tracked well. The second image shows when the tracking quality starts to degrade. The third image shows the
first frame that breaks tracking.



mobile phone and 0.3 ms on the PC. Fig. 10 shows the
performance results on both mobile phone and PC. These
measurements do not include the timings for the first frame.

The mobile phone runs both stand-alone versions of
PhonySIFT and PhonyFerns in roughly 40 ms per frame.
Adding typical overhead of AR applications (camera image
retrieval, rendering, application overhead), this perfor-
mance allows running an AR application at about 15 frames
per second. Considering that the mobile phone we ran on
the benchmarks represents the top of what is currently
available, faster tracking is required to be sufficient for
average devices. When activating the PatchTracker, the per
frame time decreases to �8 ms, reducing the performance
requirements to a level that even average smart phones are
capable of tracking at high frame rates. On the PC,
PhonySIFT and PhonyFerns require 3.8 ms and 3.2 ms per
frame when running in stand-alone mode. In combination
with the PatchTracker, the tracking time goes down to 1 ms.

Comparing the per frame times of the mobile phone and
the PC shows that even software that is highly optimized
for mobile phones runs about 10 times slower on a high-end
mobile phone than on an average single-core PC. Since all
four methods could be made to run in multiple threads, the
real performance gap between current mobile phones and
PCs is even higher.

5.6.1 Detailed Speed Analysis for SIFT

Looking in more detail into what PhonySIFT spends its
computation time for (see Fig. 11) on the mobile phone
shows that the relatively simple task of corner detection
requires �14 percent of the overall time. This is not
surprising since the corner detector has to look at almost
all 76,800 pixels (320� 240, except for those pixels close to
the image border, where features cannot be described).

Feature describing and matching together require
74 percent of the overall time. It starts with describing
the features, which includes blurring a patch, estimating
its orientation, rotating to compensate for the orientation,
and finally, creating one or more description vectors.

Outlier removal costs �9 percent of the overall time per
image. Most of the time is spent for creating and testing
homographies, which is the last inlier test after orientation

checks, removing duplicates and line tests. Finally, pose
refinement takes �3 percent frame time.

The timings on the PC are similar: Corner detection
requires 20 percent. Same as on the mobile phone,
describing and matching require 73 percent. Yet, outlier
removal and pose refinement benefit from native floating
point, requiring 4 and 3 percent only.

5.6.2 Detailed Speed Analysis for Ferns

The Ferns algorithm is simpler than the SIFT algorithm and
consequently consists of only a few blocks (see Fig. 12). A
set of operations is performed on the whole image
consisting of corner detection (22 percent), downsampling
(2 percent) to create a second octave, and blurring the input
octave images (15 percent). The remaining time is spent in
the classification (59 percent) which is linear both in number

of interest points and classes, and finally, outlier detection
(2 percent).

The impact of active search can be observed both in the
reduction of time spent in classification as fewer classes
are visited, as well as in the dramatically reduced time
spent in the RANSAC outlier detection stage. Here, the
increased inlier rate pays off as a large set of inliers can be
established quickly.

5.6.3 Detailed Speed Analysis for PatchTracker

The PatchTracker is made up of three main blocks: down-
sampling, level 1, and level 0 estimations. Downsampling
(using averaging) from 320� 240 to 160� 120 is a very fast
operation and requires only 6 percent (0.5 ms) of the overall
time on the mobile phone. Searching at level 1 takes
21 percent (1.6 ms) and pose estimation of these search
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Fig. 10. Performance measurements on mobile phone and PC.

Fig. 11. Relative timings of the SIFT tracker on the mobile phone.



results 22 percent (1.7 ms). The resulting pose is then used as
starting point for level 0 search (34 percent, 2.6 ms) and pose
estimation (17 percent, 1.3 ms). The level 1 pose is estimated
from 20 points only compared to the 100 points at level 0.
Still pose estimation at level 0 is faster, which is probably a
result of the good starting pose forwarded from level 1.

Timings on the PC differ a bit from those on the mobile
phone: Downsampling takes only 3 percent (0.03 ms),
probably due to larger caches. Searching level 1 and level
0 takes the majority of time: 28 percent (0.27 ms) and
48 percent (0.46 ms), which is partially due to fixed-point
usage on the PC. Pose estimation is very fast requiring only
7 percent (0.07 ms) and 13 percent (0.13 ms) again taking
advantage of native floating point. Reasoning why the
percentages for pose estimation are opposite to those on the
mobile phone would require further investigation.

6 CONCLUSIONS AND FUTURE WORK

We have presented three approaches for natural feature
trackers that allow robust pose estimation from planar
targets in real time on mobile phones.

The two original techniques, SIFT and Ferns, are very
different in their approach—while SIFT is engineered
around a highly sophisticated feature descriptor, Ferns
recasts detection as classification and relies on Bayesian
statistics of large quantities of simple binary tests.

We originally assumed that the simplicity of PhonyFerns
would let it outperform the more complex PhonySIFT on a
constrained platform such as a phone. However, it turned
out that in order to deliver a high level of quality, Ferns
requires significant amounts of memory (for a phone) and
computational bandwidth to use the consumed memory.
Moreover, the very simple structure of Ferns descriptors
requires more sophisticated outlier management, which
consumes further computational resources.

The approach finally adopted for both shows interesting
aspects of convergence: In both approaches, Laplacian/
Gaussian feature detection was replaced by simple FAST
detector at the expense of losing scale independence.
PhonyFerns adopted a regularization using the dominant
orientation from SIFT, while PhonySIFT adopted a search
forest approach from Ferns. Two of the three steps of outlier
management, namely orientation check, and homography

check, are shared by both approaches. A major weakness of
bothapproaches is therather limitedtilt angle (�40-50degree)
they can tolerate. This limit is strongly reduced by combining
PhonySIFT andPhonyFernswith the PatchTracker, which can
still track at close to 90 degree tilt.

We observe that the level of CPU performance on phones
has not increased very much in the last three years,
probably because of a certain market saturation and the
very tight power budget afforded by cell phone batteries.
Instead, it is very likely that programmable GPUs will be
embedded in multicore phone CPUs very soon. This may
enable more expensive per-pixel processing, allowing to
reintroduce operations such as Laplacian/Gaussian trans-
forms again. Depending on whether CPU or GPU enhance-
ments become available, the choice of next generation of
tracking technique may be different.

A natural future step is to extend the presented work in
order to support 3D tracking targets. In the case of 3D
targets, estimating a homography would not suffice any-
more. Furthermore, it would be necessary to cope with self-
occlusions of the tracking target.
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