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Abstract. A new probabilistic background model based on a Hidden Markov
Model is presented. The hidden states of the model enable discrimination between
foreground, backgroundandshadow. This model functions as a low level process
for a car tracker.A particle filter is employed as a stochastic filter for the car tracker.
The use of a particle filter allows the incorporation of the information from the
low level process via importance sampling. A novel observation density for the
particle filter which models the statistical dependence of neighboring pixels based
on a Markov random field is presented. The effectiveness of both the low level
process and the observation likelihood are demonstrated.

1 Introduction

The main requirement of a vision system used in automatic surveillance is robustn-
ess to different lighting conditions. Lighting situations which cast large shadows are
particularly troublesome (see figure 1) because discrimination between foreground and
background is then difficult. As simple background subtraction or inter-frame differen-
cing schemes are known to perform poorly a number of researchers have addressed the
problem of finding a probabilistic background model [6,17,10,13,20]. Haritaogluet al.
[6] only learn the minimal and maximal grey-value intensity for every pixel location. The
special case of a video camera mounted on a pan-tilt head is investigated in [17]. Here a
Gaussian mixture model is learnt. Paragios and Deriche [13] demonstrate that a backgro-
und foreground/segmentation based on likelihood ratios can be elegantly incorporated
into a PDE Level Set approach. In order to acquire training data for these methods it
is necessary to observe a static background without any foreground objects. Toyamaet
al. [20] address the problem of background maintenance by using a multi-layered ap-
proach. The intensity distribution over time is modelled as an autoregressive process of
order 30. This seems to be an unnecessarily complex model for a background process.
None of the above models are able to discriminate between background, foreground,
and shadow regions. In the present paper we propose a probabilistic background model
based on a Hidden Markov Model (HMM). This model has two advantages. Firstly it is
no longer necessary to select training data. The different hidden states allow the learning
of distributions for foreground and background areas from a mixed sequence. By adding
a third state it is possible to extend the model so that it can discriminate shadow regions.
The background model is introduced in section 2.

In addition to the low level process it is necessary to build a high level process that
can track the vehicles. Probabilistic trackers based on a particle filters [7] are known to
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be robust and can be extended to tracking multiple objects [11]. The benefit of using
a particle filter is that the tracker can recover from failures [7]. But very importantly
the use of a particle filter also allows a way to utilise the information of the low level
process modelled by the HMM. The propagated distribution for the previous time-step
t − 1 is effectively used as a prior for timet. It is very difficult to fuse two sources of
prior information. However, importance sampling, as introduced in [8], can be used to
incorporate the information obtained from the low level process. Instead of applying the
original algorithm an importance sampling scheme which is linear in time [16] is used
here. The importance function itself is generated by fitting a rectangle with parameters
XI to the pixels which are classified as foreground pixels (see figure 5) and using a
normal distribution with fixed variance and meanXI as the importance function. The
remaining challenge is to build an observation likelihood for the particle filter which
takes account of spatial dependencies of neighbouring pixels. The construction of this
observation likelihood is discussed in in section 3. We demonstrate that by employing a
Markov random field it is possible to model these statistical dependencies.

Such a car tracking system has to be able to compete with existing traffic monitoring
systems. Beymeret al. [2] built an very robust car tracker. Their tracking approach is
based on feature points and works in most illumination conditions. The disadvantage
of the system is that it is necessary to run a complex grouping algorithm in order to
solve the data association problem. The use of additional algorithms would be necessary
to extract information about the shape of the cars. By modelling cars as rectangular
regions it would be possible to infer about their size and allow classification into basic
categories. Kolleret al.[10] as well as Ferrier [4]et al.already demonstrated applications
of contour tracking to traffic surveillance. [10] extracts a contour extraction from features
computed from inter-frame difference images as well as the grey value intensity images
themselves. In the case of extreme lighting conditions as shown in figure 1 this system
is likely to get distracted. Approaches which model vehicles as three dimensional wire
frame objects [18,12,15] are of course less sensitive to extreme lighting conditions. The
main drawback of modelling vehicles as three dimensional objects is that the tracking is
computationally expensive. The challenge is to design a robust real-time system which
allows the extraction shape information.

2 A Probabilistic Background Model

In addition to being able to discriminate between background and foreground it is also
necessary to detect shadows. Figure 2 clearly shows that the grey-value distributions of
the shadow differs significantly from the intensity distributions in the foreground and
background regions. This is the motivation for treating the shadow region separately.
Since all three distributions have a large overlap it is of course not possible to construct
a background model which is purely based on intensity values. However another source
of information is available: the temporal continuity. Once a pixel is inferred to be in a
foreground region it is expected to be within a foreground region for some time. An sui-
table model to impose such temporal continuity constraints is the Hidden Markov Model
(HMM) [14]. The grey-value intensities over time for one specific pixel location is to be
modelled as a single HMM, independent of the neighbouring pixels. This is of course an
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Fig. 1. A traffic surveillance example.This is a typical camera image from a traffic surveillance
camera. Notice that especially for dark coloured cars intensity differences between foreground
and background are small. In order to track the cars robustly it is necessary to detect the shadows
as well as the cars.

unrealistic independence assumption. The spatial dependencies of neighbouring pixel
locations will be modelled by the higher level process (see section 3). The reader should
note that the specific traffic surveillance situation (see figure 1) is particularly suited to
investigate this class of model because the speed of the cars does not vary greatly. It
is therefore possible to learn parameters which will determine the expected duration a
pixel belongs to a foreground, shadow or background region.
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Fig. 2. Intensity histograms of the different regions.Intensity values for single pixel positions
were collected from a 30 seconds long video sequence and manually classified into the regions:
foreground, shadow or background. The intensity histograms of the different regions clearly show
a large amount of overlap. A method which is purely based on grey-value intensities is therefore
inadequate for this problem.

The model parameters of the HMM with N states are the initial state distribution
π = {πi}, the state transition probability distributionA = {ai,j}, and the emission
or observation probability for each statepf (z), pb(z) andps(z). The set of parameters
defining the HMM model will be abbreviated asω := (A, π, pf , ps, pb). Standard texts
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include [14,9]. Based on the intensity histograms of figure 2 the emission models of the
background and shadow regions are modelled as Gaussian densities. Since very little
about the distribution of the colours of vehicles is known, the observation probability of
the foreground region is taken to be uniform. Hence

pf (z) =
1

256
, ps(z) =

1√
2πσ2

s

e
− (z−µs)2

2σ2
s , and pb(z) =

1√
2πσ2

b

e
− (z−µb)2

2σ2
b .

(1)

It is of course possible to employ more complex emission models. In section 2.2 it will
be shown that is in fact necessary to use a more complex model for the observations.

2.1 Parameter Learning

For a given training sequence the model parameters are estimated by using a maximum
likelihood approach. Because the model has hidden parameters an expectation maximi-
sation (EM) type approach is used. In this particular case the Baum Welch algorithm [9]
is applied as a learning algorithm. Because EM-type algorithms are not guaranteed to
find the global maximum and are very sensitive to initialisation it is necessary to explain
how the initialisation is done. In order to find an initialisation method the following time
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Fig. 3. Learnt emission models.Shown is a set of emission models for one pixel location. The
distributionspf , ps andpb model the intensity distributions for all three states foreground, shadow
and background. It should be noted that the emission models can vary between pixel locations.

constants are defined:τb - the typical time duration a pixel belongs to the background, and
τs, τf the typical duration for shadow and foreground. Letλb, λs, andλf be the propor-
tion of the time spent in background, shadow and foreground, withλf + λs + λb = 1.
All these parameters are determined empirically. Using these definitions an intuitive
transition matrix can be chosen as

A =


1− τ−1

b τ−1
b Λsf τ−1

b Λfs

τ−1
s Λbf 1− τ−1

s τ−1
s Λbs

τ−1
f Λbs τ−1

s Λsb 1− τ−1
f


 , (2)

where Λij = λi/(λi + λj). The initial state distributionπ is chosen to beπ =
{λb, λs, λf}. The mean of the observation density for the background stateµb can be
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estimated to be the mode of the intensities at a given pixel sinceλb � λs andλb � λf .
The varianceσ2

b is determined empirically. The initial parameters of the observation
density for the shadow region are based on the assumption that the shadow is darker
than the background, i.e.

µs =
µf + 2σb

2
, and σs =

µs

2
. (3)

This ensures thatµs < µb in caseµb > 2σb, i.e. the background intensities are not as low
as intensities in the shadow areas. At each iteration of the Baum Welch algorithm, the
backward and forward variables are rescaled for reasons of numerical stability [9]. It is
not necessary to learn a transition probability distributionA for every pixel. By learning
one transition probability distribution for an observation window the complexity of the
learning is reduced considerably. A set of learnt emission models are shown in figure 3.
The corresponding transition probability distribution is of the form

A =


0.986 0.012 0.001

0.013 0.884 0.101
0.033 0.025 0.941


 , (4)

A close inspection of these transition probabilities reveals that during learning dark
cars are mistaken for shadows. As a consequence the expected duration for being in a
foreground state is unrealistically short. For the particular lighting situation (see figure
1) it is possible to solve the problem by adding the constraintafs = 0. This implies
that the transition probability from foreground to shadow should be zero. Of course this
constraint cannot be applied in the general case. It is therefore necessary to find a more
general solution. As a result the parameters of the observation density for the shadow
change. Especially the varianceσS is now smallerσS = 41.95 instead of 44.97. The
corresponding transition matrixA is

A =


0.980 0.015 0.003

0.013 0.897 0.891
0.047 0.000 0.952


 , (5)

notice that the values ofaff is increased.

2.2 Two Observations Improve the Model

Initial experiments show that by using only one observation, dark cars are not detected
sufficiently well (see figure 4). In order to make the method more robust, it is desirable to
reduce the amount of overlap of the observation densities. In particular it is necessary to
reduce the ambiguity between dark foreground regions and shadows. These ambiguities
can be reduced by introducing a second observation. To be precise the responses of two
different filters will be used. The HMM is no longer modelled for every pixel but for
sites on a lattice such that the filter supports of the different sites do not overlap. As
a first observation a simple3 × 3 average is used. It can be observed that background
and shadow regions are more homogeneous than foreground regions. It would therefore
make sense to introduce a second observation which measures the intensity variation in



A Probabilistic Background Model for Tracking 341

a small neighbourhood each pixel. In order to test this approach a simple3 × 3 Sobel
filter mask is used as a second observation. It is possible to show empirically that for this
specific data, the responses of the Sobel filter and the mean intensity response at a pixel
are uncorrelated. Hence the two observations are considered to be independent. The
comparison shown in figure 4 shows that the use of two observations greatly improves
the detection of dark cars. Whereas the choice of the average filter is justified the chosen
Sobel filter is by no means optimal. A filter which implies computing a higher order
derivative of the image data as for example a Laplace filter or even a spatio temporal
filter might be a much better alternative.

Fig. 4. Using two observations improves the model.For each time stept every pixel is classified
to be in a foreground, background, or shadow region. For visualisation purposes the pixels for
which the forward probabilityp(zt, zt−1, Yt = f |ω) is greater than the forward probability for
the alternative states are marked in black. The image on the left shows the raw data. The black
box indicates the area in which the model is tested. The two images on the right show the sets
of pixels which are classified as foreground pixels. It shows that the classification based on two
observations (right) is superior to the method based on only one measurement (middle).

2.3 Practical Results

In order to test the performance of the model the forward probabilitiesp(zt, zt−1, Yt|ω)
are evaluated for the three different statesYt ∈ {f, b, s} for each time-stept. The discrete
stateYt for which the forward probability is maximal is taken as a discrete label. By
determining discrete labels this classification method discards information which could
be used by a higher level process. But for now this should be sufficient to discuss the
results obtained with the method. Two typical results are shown in figure 5. A movie
which demonstrates the performance of this process can be found in the version of this
paper on our web site (http://www.robots.ox.ac.uk/∼vdg). The interior of the car is not
detected perfectly. But there is clearly enough information to detect the boundaries of the
vehicle. In order to illustrate the importance of the state transition probability the matrix
A was altered by hand. The results are presented in figure 6 and display clearly that the
transition probability plays an important role. The effect is of course most evident when
the discrimination based on measurements alone is ambiguous.

3 The Car Tracker

The remaining challenge is to build a robust car tracker. Probabilistic trackers based on
a particle filters [7] are known to be robust and can be extended to tracking multiple
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Fig. 5. Results of the background modelling. The discrete labelYt for which the forward
probability p(zt, zt−1, Yt|ω) is maximal is used as a discrete label for visualisation (see text).
Foreground pixels are marked in black, shadow pixels in grey, and background pixels in white. It
should be noted that even for dark coloured cars the results are respectable. The labels will then
be used by a higher level process to locate the vehicles.

Fig. 6. Importance of the temporal continuity constraint. Like in figure 5 the pixels are
assigned a discrete labelYt as which forward probabilityp(zt, zt−1, Yt|ω) is maximal. In this
experiment the transition probability of a model which uses two observations was altered such
that all aij = 1/3 in order to explore the importance of the temporal continuity constraint. Each
pixel is classified (see text) as foreground (in black), shadow (in grey) or background (white). A
comparison with the images shown in figure 5 shows that these results are clearly worse. Obviously
the transition probabilityA plays a crucial role.



A Probabilistic Background Model for Tracking 343

objects [11]. In order to build such a tracker it is necessary to model the observation
likelihood

p(Z|X;ϑ) (6)

for a set of measurementsZ and a hypothesisX. The parameters of the model are
denoted byϑ. For the present purpose it is sufficient to model the outlines of the cars as
a perspectively distorted rectangle which will be parameterised by the state vectorX.
In order to track cars robustly it is not sufficient to take edge measurements as in [7].
[19] showed that detection of the background aids finding the foreground object. The
problem is that in this case the measurementsZ cannot be assumed to be independent
(also see [19]). These conditions lead us to model the likelihood (6) as a conditioned
Markov random field (MRF) (see for example [5,21]). In Gibbs form an MRF can be
written as

P (Z|X;ϑ) =
exp(−Hϑ(Z, X))∑

Z′∈Z exp(−Hϑ(Z ′, X))
. (7)

The denominator of the fraction is known as the partition function of the MRF. The
difficulty is now to find a model which is tractable yet still captures the spatial dependence
of neighbouring measurements.

2-dim. lattice vertical scan-lines horizontal scan-lines

Fig. 7. Neighbourhood structure of the MRF. The set of sites on a latticeS is marked by circles.
The neighbourhood structure at one particular sites (marked as a filled black circle) is different
in each case. The neighboursr ∈ δ(s) of the sites are marked by black circles which are filled
grey. The set of cliques are indicated by lines connecting neighbouring sites.

3.1 Modelling the Observation Likelihood

As mentioned in the previous section, one difficult problem is to find an energy function
H for which the likelihoodP (Z|X;ϑ) can be evaluated efficiently. The energy function
H will depend on a latticeS and a correspondingneighbourhood systemδ := {δ(s) : s ∈
S} (see figure 7). The set of cliques will be denoted byC. In order to take the distribution
of the measurementz at a given site and the statistical dependence of measurements at
neigbouring sites into account we let the energy function

Hϑ
A(Z, X) =

∑
s∈AX

gA(zs) +
∑

(s,r)∈C∩A2
X

ϑA · (zs − zr)2 , (8)
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whereAX denotes an area which is either in the foreground or background, i.e.X ∈
{B, F}. Since the functiongA models the distribution of the measurement at a given
site it would be ideal if one could make use of the emission models which were learnt
for the different states of the HMM (see section 2.1). But as it will be shown later the
energy function needs to be translational invariant (13) so thereforegA cannot depend
on a particular sites. And in order to compute the partition function efficiently (section
3.3) it is necessary that the functionsgf andgb are normal distributions. The foreground
distributiongf is therefore chosen to be a normal distribution with a large variance. The
background distributiongf is taken to be the normal with meanµf and varianceσf such
that it approximates the the mixture of the background and shadow emission models (1)
learnt by the HMM.

The set of sites which belong to a given areaAX depends of course on the hypothesis
X. Because the partition function depends also onX it will be necessary to evaluate it
for every hypothesisX. It turns out that if the latticeS is two dimensional, the partition
function is too expensive to compute. In the following it is explained that it is not possible
to approximate the observation likelihood (7). It is therefore necessary to find a simpler
model. It is known that under certain conditions the pseudolikelihood function [1,21],
defined as ∏

s∈S

p(zs|zS\s;ϑ) (9)

can be used for parameter estimation instead of the Maximum Likelihood approach ba-
sed on the MRF (7). It can be shown [21] that estimators obtained by maximizing the
pseudolikehood can compete in terms of statistical properties with maximum likelihood
estimators. Although some authors state that when the variables are weakly correlated,
the pseudolikehood is a good approximation to the likelihood [3] it seems to be an open
problem under which conditions precisely it can be used as an approximation to the
likelihood function. In section 3.2 it will also become clear why the pseudolikehood
method cannot be used to estimateX. An alternative is to restrict the MRF to measure-
ments on scan lines taken out of the image. This will simplify the model considerably.
The observation likelihoods of the different scan lines will be treated as independent.
Based on the grid in figure 11 it is possible to formulate a random field for each of the
horizontal{hi} and vertical lines{vi}. The likelihood is now of the following form:

p(Z|X;ϑ) =
∏

l

exp(−(Hϑ
B + Hϑ

F )(Z, X))∑
Z∈Z exp(−(Hϑ

B + Hϑ
F )(Z, X))

, (10)

where{l} is the set of lines on the grid. The energiesHϑ
B andHϑ

F are defined as in (8)
except that the neighbourhood system has changed (see figure 7). The partition function
for the set of lines can be written as∑

Z∈Z
exp(−(Hϑ

B + Hϑ
F )(Z, X)) =

∏
i

∑
Z∈Zi

exp(−Hϑ
A(i)(Z, X)) (11)

where for everyi 6= j one hasZi ∩Zj = ∅. SoZ is union of mutually disjoint setsZi.
Therefore it is now possible to compute the partition function because it only depends
on line segments which are entirely in the foreground or background.
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3.2 Learning the Parameters of the Random Field

Learning the model parameters by a maximum likelihood method is computationally
expensive [21]. And as mentioned above, maximising the pseudeolikelihood (9) with
respect toϑ leads to an effective estimator forϑ. For reasons which will be apparent
later we consider the pseudolikelihood for a observation windowT ⊂ S which is entirely
in the foreground or background. That implies that the conditioning on the hypothesisX
can be ignored for this analysis. The energy function ofp(zs|zδ(s);ϑ) is in this case equal
to the neighbourhood potential. The logarithm of the pseudolikelihood for an observation
windowT ⊂ S has the form

PLT (Z;ϑ) =
∑
s∈T

[
g(zs) + ϑVs(zszδ(s))− ln

∑
zs

exp(−ϑVs(zszδ(s)))

]
, (12)

whereV is defined asVs :=
∑

r∈δ(s)(zs − zr)2. The neighbourhood potential must
satisfy a special spatial homogeneity condition. The potential isshift or translational
invariant if for all s, t, u ∈ S

t ∈ δ(s)←→ t + u ∈ δ(s + u) and VC+u(zs−u) = VC(zs) . (13)

Furthermore a parameterϑ is said to beidentifiable if for every ϑ′ ∈ θ there is a
configurationZ such that

p(Z;ϑ) 6= p(Z;ϑ′) . (14)

The maximum pseudolikelihood estimator for the observation windowT maximises
PLT (Z, ·). If the potential is translational invariant and the parameterϑ is identifiable
Winkler [21] (Theorem 14.3.1 on page 240) proves that this estimator is asymptotically
consistent when the size of the observation window increases. Winkler also proves that
that the log of the pseudolikelihoodPLT is concave. In the present setting it is of course
necessary to learn the parameters for the foreground and background energiesHϑ

F and
Hϑ

B separately. Since thePLT is concave it is possible to use a standard gradient decent
algorithm to find the maximum of the log pseudolikelihood. In order to compute the
gradient of the log pseudolikelihood it is desirable that the potential only depends on the
parameters linearly. The gradient of the log pseudolikelihood can be written as

∇PLT (Z;ϑ) =
∑
s∈T

[
V (zszδ(s))− E(V (Zszδ(s))|zδ(s);ϑ)

]
, (15)

whereE(V (Zszδ(s)))denotes the conditional expectation with respect to the distribution
p(zs|zδ(s);ϑ) onZs. The graphs of the pseudolikelihood can be found in figure 8.

3.3 Computing the Partition Function

The main reason for adapting a one dimensional model was the problem of computing the
partition function of the observation likelihood (10). Due to equation (11) it is possible
to to compute the partition function by precomputing
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Fig. 8. Pseudolikelihood of training data. The pseudolikelihood (12) is plotted for different
values ofϑ. The distance between neighbouring sitesd is set bed = 4 for horizontal andd = 2
for the vertical lines. Because we work on fields, d differs for horizontal and vertical lines. It should
be noted that there is a difference between the models. The functions are concave, as expected.

BN :=
∑
Z∈Z
− exp(Hϑ

B(Z)) and FN :=
∑
Z∈Z
− exp(Hϑ

B(Z)) , (16)

where vector of measurementsZ has lengthN . Rather than computing the value of the
partition function for a particular hypothesisX it is desirable to compute a factorα(X)
such that ∑

Z∈Z
exp(−(Hϑ

B + Hϑ
F )(Z, X)) = α(X)C , (17)

whereC is some constant. Now the problem of computingBN andFN needs to be
addressed. The energy functionsHϑ

B can be written as a quadratic form, i.e.Hϑ
B(Z) =

ZtMZ. The matrixM is of the form


(λ + ϑ) −ϑ 0 · · · 0

−ϑ (λ + 2ϑ) −ϑ · · · ...

0 0
...

... 0
...

... −ϑ (λ + 2ϑ) −ϑ
0 0 · · · −ϑ (λ + ϑ)




(18)

The matrixM is symmetric so it is possible to approximateBN as

BN =
∑
Z∈Z

exp(−ZtMZ) ≈
∫
RN

exp(−ZtMZ) dZ = (2π)N/2 det(M)− 1
2 . (19)

Sincegf andgb are normal distributions this approximation holds forBN as well asFN .

3.4 Results

The observation likelihoodp(Z|X) as defined in (8) was tested on a set of single images.
The results are summarised in figure 9. Whereas the results for horizontal and vertical
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Fig. 9. Log-likelihood for horizontal translation and scaling. The horizontal translation and
scaling of the shape template is illustrated in figure 11. For both the horizontal translation and the
scaling the log-likelihood for the independent model (ϑ = 0) (left) and the MRF with the learnt
parametervartheta (see figure 8). The parameters for the intensity distributionsgf andgs are
σ2

b = 25, µb = 102, σ2
f = 600, µb = 128. The results obtained for the scaling clearly need to be

improved. See text for discussion.

translation are good the results obtained for the scaling of the foreground window are
poor. In order to test whether the MRF has any effectϑF andϑB are set to zero which
is equivalent to assuming that two neighbouring measurements are independent. The
graphs in figure 9 show that the modelling the statistical dependence of neighbouring
measurement using the MRF does have an effect.As a first step to improve the model the
neighbourhood structure was changed hoping that the interaction termsVs (12) would
have a greater effect. Now every pixel location on a scan lines is a site for the MRF. The
resulting energy function is

Hϑ
A(Z, X) =

∑
s∈AX

gs
A(zs) +

∑
δ(s)∈AX

ϑA · (zs − zs+d)2 . (20)

Only the distance between neighbours depends on a predefined spacingd. The results of
this improved method are shown in figures 10 and 11. The fact that the results obtained
with the new observation likelihood (20) are better shows that the MRF is very sensitive
to the chosen neighbourhood structure. This raises the question if there is any way to
determine an optimal neighbourhood structure automatically. The hand-picked MRF we
chose might not be the best after all.

A more ambitious step would be to construct a observation likelihood which makes
use of the forward probabilitiesp(zt, zt−1, Yt = f | ω). This would complicate the
computation of the partition function. But based on the encouraging results we obtained
from the HMM (see figure 5) this could lead to a far more powerful model. It can be
concluded that the MRF does the right thing but needs to be improved so it can be used
in a tracker.

4 Conclusion

Both a new probabilistic background model as well as a observation likelihood for
tracking cars are presented. Although the background model is particularly suited to the
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Fig. 10. Log-likelihoods for the improved model.Similar to figure 9 the log-likelihoods are
shown for horizontal and vertical translation as well as scaling using the improved model defined
in (20). The model parameters itself are chosen as in figure 9. Although the maximum for the
horizontal translation is not at zero figure 11 demonstrates that the most likely hypothesis leads
to a correct localisation.

traffic surveillance problem it can be used for a wide range of application domains. The
results presented in figure 5 show that the use of this background model could lead to a
robust tracker. The observation likelihood itself however still needs to be improved. The
contribution this paper makes can be summarised as follows.

Probabilistic background model.Unlike many other background models the model
presented here is capable of modelling shadow as well as foreground and background
regions. Another considerable advantage of this model is that it is no longer necessary
to select the training data. HMMs are a suitable model for this problem as they impose
temporal continuity constraints. Although using two observation did improve the results
significantly the choice of filters is not optimal. The results presented in figure 6 support
the claim that it is crucial to model the transition probabilities correctly.

Car tracker. In order to build a robust car tracker it is necessary to model the inside of the
vehicles as well as the background and the statistical dependence of neighbouring pixels.
This is possible by modelling an observation density used in a particle filter which is
based on an MRF. However it has to be noted that the MRF is very sensitive to the choice
of the neighbourhood system. It remains an open problem which neighbourhood system
is optimal. The formulation of the MRF based on scan-lines leads to a model which is
computationally tractable. It should be noted that the presented observation likelihood
is consistent with a Bayesian framework since the measurements do not depend on the
hypothesised position of the vehicle. The use of importance sampling makes it possible
to feed the information of the low level process into the car tracker in a consistent fashion.

Future work. Since the illumination changes throughout the day it is necessary to derive
a criterion when the the parameters of the background model need to be updated. It is
furthermore necessary to investigate how the observation density can be improved.
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Fig. 11. Observation window and scan lines of the car tracker.The right image illustrates the
grid used by the algorithm. The observation window is marked in black. The measurements are
taken on scan-lines (in white). The hypothesised position of the car is shown in dark grey. The
other two images illustrate how well the improved model localises. The most likely hypothesis is
shown as a solid black line. The dashed lines illustrate the minimal and maximal configurations
of the variation. See figures 10 and 9 for the corresponding log-likelihood functions.
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