
Assignment 4 – Expression Parser
CAP6938

Due: 10/25/08 11:59pm

The focus of this fourth assignment is to learn the intricacies of creating a 2D parsing
system for recognizing mathematical expressions. This is the second part of a two part
assignment where you will be creating a simple pen-based calculator. This assignment
requires you to take recognized symbols and understand the spatial relationships between
them. This understanding will let you create parse trees for mathematical expressions
that can be evaluated using simple tree traversal.

Requirements
Your expression parser must be able to take a list of recognized symbols and their
bounding boxes and output a parse tree so the expressions you write can be evaluated.

Your parse should support addition, subtraction, multiplication, fractions, superscripts
(one level only), square roots, and the equal sign.

Examples of some expressions your expression recognizer should be able to handle
include:

You should be able to invoke the expression recognizer using a simple equal sign and tap
gesture and you should also be able to use your scribble gesture to erase symbols.

For extra credit, you can support the trig functions tan, cos, and sin. Note that in order
to use these functions you will need to add parentheses to your symbol recognizer.

Strategy
You can utilize any of the parsing strategies we discussed in class. However, I would
recommend you use a 2D coordinate grammar since this is, by far the easiest to design
and implement. If you use this approach, your parsing routine will take, as input, a list of
recognized strokes along with their bounding boxes. I would also write down a simple
grammar for your parsing engine. This will help you get started in thinking about the
problem and how to design your algorithm. I would also recommend using a
parse/process strategy where you have a set of parse functions that act on your grammar
and a set of process functions that perform spatial relationship tests.

Once you have a parse tree for a given expression, it is straightforward to perform an
evaluation. You simply have to traverse the tree and use a switch statement on the
operators. Note you do not need to write a piece of code to evaluate expressions that
must be compiled and run in real time. You can simply have a compute function that gets
called when you want to evaluate an expression.

Things you should keep in mind.

1. You once again can run in real time or in batch mode (for ex. lassoing the symbol or
symbols and taping to invoke the recognizer).

2. For evaluating expressions you can perform the operation right after recognition, or
with a specific command. I have always preferred the equal/tap approach since is so
intuitive from the user’s perspective.

3. You will need to show recognition results to the user. A simple text box is fine but if
you want to be more elaborate feel free to do so. You will also show the output of the
any expression evaluations. You can put the result to the right of the equal sign.

Deliverables

You must submit a zip file containing your source and any relevant files needed to
compile and run your application. Also include a README file describing what works
and what does not in your application, any known bugs, and any problems you
encountered. Please include a file I can open in your application that has the
mathematical expressions you used to test the recognizer written down in ink. To submit,
you can email me your zip file.

Grading

Grading will be loosely based on the following:

80% correct functionality
20% documentation

