Features Extraction for SketchBased Recognition

Lecture \#8: Feature Extraction

Joseph J. LaViola Jr.
Fall 2008

Recall Pen-Based Interface Dataflow

Feature Extraction and Analysis

- What came first, the feature or the machine learning algorithm?
- Want to distinguish sketch components from one another
- Good features are critical
- Extract important information
- geometrical, statistical, contextual
- Examples include
- arc length, histograms, cusps, aspect ratio
- self-intersections, stroke area, etc...

Finding Features

- Challenging problem
- need fast algorithms for gathering information
- features must be good discriminators
- Often trial and error
- Can be domain specific

Geometric Features (1)

- Number of strokes
- if you know how many strokes a symbol has, you can break up your recognizer into pieces (i.e., recognizer for 1 stroke symbols, recognizer for 2 stroke symbols ...)
- Cusps
- smooth vs. jagged strokes
- distance between cusps
- useful for when cusps are
 close together/far apart

Geometric Features (2)

- Aspect ratio (width / height)
- tall vs. flat
- Self Intersections

- loops vs. no loops
- strokes with write over
- distance between self intersections also useful
- use line segment intersection algorithm

Geometric Features (3)

- First and last distance
- Strokes where first and last points are close together vs. far apart
- simple computation $-\left\|p_{n}-p_{1}\right\|$

- Arc length
- many different symbols have varying arc lengths
- simple computation as well -

$$
l=\sum_{i=2}^{n}\left\|p_{i}-p_{i-1}\right\|
$$

Geometric Features (4)

- Stroke area
- area defined by the vectors created with the initial stroke point and consecutive stroke points.
- good discriminator for straight vs. curved lines

Given $\overrightarrow{\mathrm{u}}_{\mathrm{i}}=p_{i+1}-p_{1}$ and $\vec{v}_{i}=p_{i+2}-p_{1}$
$S_{\text {area }}=\sum_{i=1}^{n-2} \frac{1}{2}\left(\overrightarrow{\mathrm{u}}_{\mathrm{i}} \times \vec{v}_{i}\right) \cdot \operatorname{sgn}\left(\overrightarrow{\mathrm{u}}_{\mathrm{i}} \times \vec{v}_{i}\right)$
where $\overrightarrow{\mathrm{u}}_{\mathrm{i}} \times \vec{v}_{i}$ is a scalar

Geometric Features (5)

- Fit line feature
- sophisticated approach to finding how close a stroke is to a straight line
- finds a least-squares approximation to a line using principal components and then uses this approximation to find the distance of the projection of the stroke points onto the approximated line
- outputs a value in $[0,1]$
- What is another name for this approach?

Fit Line Feature Implementation

Input: A set of stroke points P.	
Outp	ut: A distance measure
FitLine (P)	
(1)	$x_{1} \leftarrow \sum_{i=1}^{n} X\left(P_{i}\right)$
(2)	$y_{1} \leftarrow \sum_{i=1}^{n} Y\left(P_{i}\right)$
(3)	$x_{2} \leftarrow \sum_{i=1}^{n} X\left(P_{i}\right)^{2}$
(4)	$y_{2} \leftarrow \sum_{i=1}^{n} Y\left(P_{i}\right)^{2}$
(5)	$x y_{1} \leftarrow \sum_{i=1}^{n} X\left(P_{i}\right) Y\left(P_{i}\right)$
(6)	$x_{3} \leftarrow x_{2}-x_{1}^{2} / n$
(7)	$y_{3} \leftarrow y_{2}-y_{1}^{2} / n$
(8)	$x y_{2} \leftarrow x y_{1}-\left(x_{1} y_{1}\right) / n$
(9)	$\mathrm{rad} \leftarrow \sqrt{\left(x_{3}-y_{3}\right)^{2}+4 x y_{2}^{2}}$
(10)	error $\leftarrow\left(x_{3}+y_{3}-\mathrm{rad}\right) / 2$
(11)	$\mathrm{rms} \leftarrow \sqrt{\text { error } / n}$
(12)	if $x_{3}>y_{3}$
(13)	$a \leftarrow-2 x y_{2}$
(14)	$b \leftarrow x_{3}-y_{3}+\mathrm{rad}$
(15)	else if $x_{3}<y_{3}$
(16)	$a \leftarrow y_{3}-x_{3}+\mathrm{rad}$
(17)	$b \leftarrow-2 x y_{2}$

else
if $x y_{2}=0$
$a \leftarrow b \leftarrow c \leftarrow 0$
eтtor $\leftarrow+\infty$
else
$a \leftarrow 1$
$b \leftarrow-1$
$m a g \leftarrow \sqrt{a^{2}+b^{2}}$
$c \leftarrow \frac{\left(-a x_{1}-b y_{1}\right) / n}{m a g}$
$a \leftarrow \frac{a}{m a g}$
$b \leftarrow \frac{b}{m a g}$
$\min _{1} \leftarrow+\infty$
$\max _{1} \leftarrow-\infty$
for $\mathrm{i}=1$ to n
$\operatorname{err} \leftarrow a X\left(P_{i}\right)+b Y\left(P_{i}\right)+c$
$p X \leftarrow X\left(P_{i}\right)-a \cdot e r r$
$p Y \leftarrow Y\left(P_{i}\right)-b \cdot$ ert
ploc $\leftarrow-b \cdot p X+b \cdot p Y$
$\min _{1} \leftarrow \min \left(\right.$ min $_{1}$, ploc $)$
$\max _{1} \leftarrow \max \left(\right.$ max $_{1}$, ploc $)$
return $\frac{100 \cdot r m s}{\max -\min }$

Statistical Features (1)

- Side ratios
- first and last point of strokes have variable locations with respect to the bounding box
- Approach
- take the x coordinates of the first and last point of a stroke
- subtract them from the left side of the symbol's bounding box (i.e., the bounding box's leftmost x value)
- divide by the bounding box width.

Statistical Features (2)

- Top and Bottom ratios

- similar to side ratios except we are dealing with y coordinate
- approach
- take y coordinate of the first and last point of a stroke
- subtract from the top of the symbol's bounding box (i.e., the bounding box's topmost y value)
- these values are divided by the bounding box height.

Statistical Features (3)

- Point Histogram

- distribution of point locations in stroke bounding box
- discrimination where point concentrations are high
- approach
- break up box into $n \times m$ grid
- Count number of points in each sub box
- divide by total number of points

Statistical Features (4)

- Angle Histogram
- similar to point histogram except dealing with angles
- Approach

$$
\begin{aligned}
& \text { Given } \overrightarrow{\mathrm{v}}_{\mathrm{j}}=p_{i}-p_{i-1} \text { for } 2 \leq i \leq n \text { and } \vec{x}=(1,0) \\
& \alpha_{j}=\arccos \left(\vec{x} \cdot \frac{\overrightarrow{\mathrm{v}}_{\mathrm{j}}}{\left\|\overrightarrow{\mathrm{v}}_{\mathrm{j}}\right\|}\right)
\end{aligned}
$$

- put angles into bins of n degrees

The Rubine Feature Set (Rubine 1991)

- Part of Rubine's gesture recognition system
- we will see this next class
-

Stroke

- $P=$ total number of points
- $p=$ middle point
- first point $\left(x_{0}, y_{0}, t_{0}\right)$
- last point $\left(x_{P_{-1}}, y_{P_{-1}}, t_{P_{-1}}\right)$
- compute $x_{\text {min }}, y_{\text {min }}, x_{\text {max }}, y_{\text {max }}$

Feature f_{1}

- Cosine of starting angle

$$
f_{1}=\cos (\alpha)=\frac{\left(x_{2}-x_{0}\right)}{\sqrt{\left(x_{2}-x_{0}\right)^{2}+\left(y_{2}-y_{0}\right)^{2}}}
$$

Feature f_{2}

- Sine of starting angle

$$
f_{2}=\sin (\alpha)=\frac{\left(y_{2}-y_{0}\right)}{\sqrt{\left(x_{2}-x_{0}\right)^{2}+\left(y_{2}-y_{0}\right)^{2}}}
$$

Feature f_{3}

$$
f_{3}=\sqrt{\left(x_{\max }-x_{\min }\right)^{2}+\left(y_{\max }-y_{\min }\right)^{2}}
$$

- Length of diagonal of bounding box (gives an idea of the size of the bounding box)

Feature f_{4}

- Angle of diagonal
- gives an idea of the shape of the bounding box (long, tall, square)

$$
f_{4}=\arctan \left(\frac{y_{\max }-y_{\min }}{x_{\max }-x_{\min }}\right)
$$

Feature f_{5}

$$
f_{5}=\sqrt{\left(x_{P-1}-x_{0}\right)^{2}+\left(y_{P-1}-y_{0}\right)^{2}}
$$

- Distance from start to end of stroke

Feature f_{6}
- Cosine of ending angle

$$
f_{6}=\cos (\beta)=\frac{\left(x_{P-1}-x_{0}\right)}{f_{5}}
$$

Feature f_{7}

- Sine of ending angle
$f_{7}=\sin (\beta)=\frac{\left(x_{P-1}-x_{0}\right)}{f_{5}}$

More Definitions (before we continue)

Let $\Delta \mathrm{x}_{\mathrm{p}}=x_{p+1}-x_{p}$ and $\Delta y_{p}=y_{p+1}-y_{p}$

Let $\theta_{p}=\arctan \frac{\Delta x_{p} \Delta y_{p-1}-\Delta x_{p-1} \Delta y_{p}}{\Delta x_{p} \Delta x_{p-1}+\Delta y_{p} \Delta y_{p-1}} \quad \begin{aligned} & \text { Directional } \\ & \text { angle }\end{aligned}$

Let $\Delta t_{p}=t_{p+1}-t_{p} \quad$ Time deta

Feature f_{8}

- Total stroke length

$$
f_{8}=\sum_{p=0}^{P-2} \sqrt{\Delta x_{p}^{2}+\Delta y_{p}^{2}}
$$

Feature f_{9}

- Total rotation (from start to end point)
- (not the same as $\beta-\alpha$ - think of spirals)

$$
f_{9}=\sum_{p=1}^{P-2} \theta_{p}
$$

Feature f_{10}

- Absolute rotation
- How much does it move around

$$
f_{10}=\sum_{p=1}^{P-2}\left|\theta_{p}\right|
$$

Feature f_{11}

- Rotation squared
- How smooth are the turns?
- Measure of sharpness

$$
f_{11}=\sum_{p=1}^{P-2} \theta_{p}^{2}
$$

Feature f_{12}

- The maximum speed reached (squared)
$f_{12}=\max _{p=0}^{P-2} \frac{\Delta x_{p}^{2}+\Delta y_{p}^{2}}{\Delta t_{p}^{2}}$

Feature f_{13}

- Total time of stroke

$$
f_{13}=t_{P-1}-t_{0}
$$

Next Class

- Start discussing machine learning algorithms
- linear classifiers (e.g., Rubine)
\square template matching
- SVM
- AdaBoost
- etc...

