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Abstract

Scienti�c visualization is the process of using graphical images to form

succinct and lucid representations of numerical data. Visualization has

proven to be a useful method for understanding both learning and com-

putation in arti�cial neural networks. While providing a powerful and

general technique for inductive learning, arti�cial neural networks are dif-

�cult to comprehend because they form representations that are encoded

by a large number of real-valued parameters. By viewing these parame-

ters pictorially, a better understanding can be gained of how a network

maps inputs into outputs. In this article, we survey a number of visu-

alization techniques for understanding the learning and decision-making

processes of neural networks. We also describe our work in knowledge-

based neural networks and the visualization techniques we have used to

understand these networks. In a knowledge-based neural network, the

topology and initial weight values of the network are determined by an

approximately-correct set of inference rules. Knowledge-based networks

are easier to interpret than conventional networks because of the syn-

ergy between visualization methods and the relation of the networks to

symbolic rules.
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1 Introduction

Arti�cial neural networks (ANNs) provide an approach to machine learning which is

inspired by the architecture of the brain; ANNs are characterized by large numbers of

simple processing units linked to each other by weighted connections. Neural network

learning algorithms have been successfully applied to a number of real-world problems

as varied as recognizing handwritten digits (LeCun90), �nding important features in

DNA (Noordewier91), and learning to pronounce English text (Sejnowski87). In

addition to these practical successes, several empirical studies have concluded that

neural networks often provide better performance than common symbolic learning

algorithms (Atlas89; Fisher89; Shavlik91; Weiss89). Neural learning algorithms, such

as backpropagation (Rumelhart86), enable an arti�cial neural network to inductively

learn how to solve a problem by exploiting regularities in a set of training examples.

A fundamental problem of ANNs, however, is that the information that they encode

cannot be easily understood by humans because concepts are represented by a large

number of real-valued parameters. A number of researchers have employed the tech-

niques of scienti�c visualization to assist in understanding neural networks. Scienti�c

visualization is a newly-emerging �eld that involves using computer graphics to aid

in understanding complex systems. An underlying premise of visualization is that

people are better at recognizing regularities, anomalies, and trends in images than

in long lists of numbers. The parameters of an ANN can be more easily understood

when they are represented using graphical attributes such as color, size, and spatial

organization.

This article surveys visualization techniques that have been used to understand the

learning and decision-making processes of ANNs. Also discussed are the techniques

that our research group has used to understand knowledge-based neural networks.

In a knowledge-based neural network, the topology and initial weight values of the

network are determined by an approximately-correct set of inference rules.

The next section provides a brief introduction to arti�cial neural networks. The

third section discusses why ANNs are di�cult to comprehend, why it is important to

be able to understand the representations that they form, and how visualization can

help. Section 4 provides a short introduction to visualization and the �fth section

surveys visualization techniques that have been applied to ANNs. The sixth section

provides a brief introduction to knowledge-based neural networks and discusses our

experiences with using visualization methods to understand these networks. Section 7

outlines approaches other than visualization that have been taken to understand the

representations formed in ANNs. The �nal section discusses some of the recurring

issues that arise in visualizing ANNs.
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2 Arti�cial Neural Networks

This section provides a brief overview of computation and learning in arti�cial neural

networks. It is assumed that the reader is already familiar with the basic principles

of ANNs. More comprehensive introductions to the topic can be found elsewhere

(Hertz91; Knight90). This paper will discuss neural network visualization only in the

context of feed-forward ANNs, although many of the techniques presented herein are

applicable or can be generalized to other classes of ANNs. Additionally, we will focus

on the application of ANNs to classi�cation. Classi�cation involves determining, for

each pattern given to a network, whether or not the pattern is a member of one or

more prede�ned classes of interest. Although they have been applied to other types

of problems, most of the work in neural networks has involved classi�cation.

2.1 Computation in ANNs

A feed-forward arti�cial neural network is composed of several layers of simple pro-

cessing units. The state of a unit at any given time is represented by its activation,

which is typically a real-valued number in the range [0, 1]. The input layer of a net-

work contains units whose activations represent feature values of the problem domain

to which the ANN is being applied. The units in the output layer of a network rep-

resent the decisions made by the network. Interposed between the input units and

the output units, there can be a number of hidden layers of units. The units of a

network are related by weighted connections. Figure 1 depicts a simple ANN which

implements the exclusive-or (XOR) function

1

when given input values that are either

0 or 1.

A network which has only input units and a layer of thresholding output units is

capable only of making linear discriminations in its input space (Minsky69). In order

to make more complex discriminations, it it necessary to add hidden units to the

network. The role of hidden units is to transform the input space into another space

in which it is more pro�table for the output units to make linear discriminations.

Computation in a feed-forward network proceeds by setting the activation values

of the input units to represent a particular instance in the problem domain. The

activation of the inputs feeds forward through the weighted connections to the units

at the hidden layers and then to units at the output layer. The answer provided by

the network is the resultant activations on the output units.

The activation of a hidden or an output unit is determined by passing the weighted

input to the unit through a transfer or activation function. The net input to a unit

in a hidden or output layer is given by:

1

Exclusive-or is a boolean function of two inputs that returns true when at least one, but not

both, of the inputs is true.
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Figure 1: A simple arti�cial neural network. When given input values which

are either 0 or 1, this network implements the XOR function. The network can be

thought of as returning true when the activation on the output unit is greater than

0.5.
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where � speci�es the threshold which must be exceeded by the net input in order for

the unit to be active. Threshold transfer functions are usually not used in networks

with hidden units. A more commonly used transfer function, the sigmoid, is a con-

tinuous approximation of the threshold function in which the output is determined

as follows:
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Figure 2: The decision surface formed by a sigmoidal transfer function. The

input space is that of the leftmost hidden unit in Figure 1.
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The bias of each unit is a parameter that has a similar function to � in the threshold

transfer function. Although the sigmoid is a continuous function, its \threshold" can

be thought of as the point at which it is steepest; this occurs where net

pi

= bias

i

.

To understand the role of a unit in an ANN, it is helpful to visualize the activation

value of the unit in terms of its input values. Each unit forms a decision surface in

its N-dimensional input space (where N is the number of connections impinging on

the unit) that determines the activation value. Each dimension of the input space is

de�ned by an incoming connection to the unit. The decision surface is de�ned by the

activation values that would occur for the points in the input space. The nature of

the surface is determined by the transfer function.

Figure 2 and Figure 3 illustrate the decision surfaces formed by the two hidden

units of the network shown in Figure 1. Both surfaces result from a sigmoidal transfer

function. Figure 4 shows the decision surface that would result for the rightmost

hidden unit if a threshold transfer function were to be used. The e�ect of a threshold

unit is to partition the input space with an (N-1)-dimensional hyperplane. The ouput

of the unit depends on which side of the hyperplane the net input to the unit falls:

if the net input is not su�cient to exceed the threshold then the activation of the

unit will be 0, otherwise it will be 1. The e�ect of a sigmoidal unit is similar. The

di�erence, however, is that there is not a hard boundary as in the case of a threshold

unit. Instead, there is a gradation of activation values.
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Figure 3: The decision surface formed by a sigmoidal transfer function. The

input space is that of the rightmost hidden unit in Figure 1.
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Figure 4: The decision surface formed by a threshold transfer function. The

input space is that of the rightmost hidden unit in Figure 1. The bias value is treated

as a threshold in this �gure.
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2.2 Learning in ANNs

Learning in a neural network involves modifying the weights and biases of the network

so that the network produces the correct response for each of a number of training

examples. The weights and biases can be adjusted after each presentation of the

entire set of training examples, or they may be modi�ed after each individual training

example has been presented. We assume the latter approach for our description of

the learning process. Learning for a given training example proceeds as follows:

� The activations of the input units are set according to the feature values of the

example.

� Activations are propagated through the network to the output units.

� The activations of the output units are compared to the desired (or target)

activations for the example and the amount of error at the output units is

calculated.

� An error signal is propagated backward through the net to the hidden units,

and the weights of the network are slightly modi�ed to reduce the error at each

unit.

Since only small changes are made to the weights on each iteration of this process, it

is typically repeated numerous times for each training example.

There are several learning algorithms for feed-forward ANNs, e.g., (Barnard89;

Moody89; Rumelhart86). The most common of these is the backpropagation algo-

rithm (Rumelhart86). In backpropagation, the change to each weight is determined

as follows:

�w
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= ��
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(4)

where w
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is the weighted connection from unit j to unit i, �

pi

represents the error

signal for pattern p at unit i, o

pj

is the activation at unit j in response to pattern p,

and � is a parameter called the learning rate that determines the size of the weight

change. The error signals are calculated by a recursive process. First the error at the

output units is calculated by:
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where t
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The process of backpropagating errors is one of \blame" assignment. The activa-

tions of the output units are determined by the activations of hidden units, which are

in turn determined by the activations of the input units (or a lower level of hidden

units). Error at the output units may be due, not only to the weights directly con-

nected to the outputs, but also to weights farther down in the network (the weights

impinging on the hidden units). In order to adjust the weights farther down, it is

necessary to backward-propagate error values down to the lowest hidden units which

contributed to erroneous output unit activations.

The biases of units must also be adjusted during learning. This is done by treating

the biases as weights. A unit's bias can be thought of as just another weight feeding

into the unit. This special weight (the bias) is treated as if it were connected to a

unit whose activation is always -1.

3 Representations Learned in ANNs

An important criterion by which any machine learning algorithm should be judged

is the comprehensibility of the representations formed by the algorithm. That is,

does the algorithm encode the information it learns in such a way that it may be

inspected and understood by humans? There are four reasons why this is an important

criterion. First, if the designers and end-users of a learning system are to be con�dent

in the performance of the system, then they must understand how it arrives at its

decisions. Second, learning algorithms may discover important features in the input

data whose importance was not previously recognized. If the representations formed

by the algorithm are comprehensible, then these discoveries can be made accessible to

human review. Third, if the representations are understandable, then an explanation

of the classi�cation made by a network on a particular case can be garnered. Finally,

some researchers use neural networks to re�ne an existing body of knowledge (Pratt91;

Towell90). When a network is being used in this way, it is important to understand

the changes to the knowledge that have been imparted during the training process.

In order to understand how a network is making decisions { that is, how it is

mapping input activations into output activations { it is necessary to answer two

broad questions. First, what intermediate concepts are being constructed by the

hidden units? Intermediate concepts are higher-level features which are derived from

the input features in order to solve the problem at hand. Second, how do the output

units use these intermediate concepts to reach their activations, the �nal answers of

the network?

There are three primary reasons why these questions are di�cult to answer:

� information is encoded by real-valued parameters;

� concept representations tend to be distributed across many units;

� network units typically have many incoming connections.
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Each of these will be discussed in turn.

As mentioned previously, neural network algorithms learn to solve a particular

problem by adjusting the weights and biases in the network; it is these weights and

biases that capture the concepts learned. Networks for solving real-world problems

typically have several thousand connections. Hence, understanding the representa-

tions formed during learning requires making sense out of this multitude of real-valued

parameters.

Moreover, ANNs tend to form representations which are distributed (Hinton86).

This means that each concept represented may be encoded by the activations of many

network units, and each unit may play a part in representing many di�erent concepts.

Thus, understanding the representation for some concept is usually more di�cult than

understanding the decision surface of a single unit.

A further di�culty in understanding ANNs is that network units typically have

many incoming connections. It is easy enough to graphically represent decision sur-

faces for units with a two-dimensional input space. Even three-dimensional input

spaces can be depicted, especially when the decision surface is (or can be approxi-

mated by) a two-dimensional hyperplane. In cases where the input unit has more

than three incoming connections, however, the dimensionality of the input space is

too large to be clearly displayed.

This article focuses on scienti�c visualization as an approach to understanding

ANNs. A neural network's real-valued parameters, distributed representations, and

high-dimensionality can be made more perspicuous by graphically depicting salient

aspects of the network's activity.

4 Scienti�c Visualization

Scienti�c visualization involves transforming numeric data into visual forms which

can be more readily understood (Brown87; DeFanti89; Tufte83). Many scienti�c

disciplines involve the analysis of large bodies of numeric data. The numeric form

and sheer quantity of the data make it a painstaking and often intractable process to

make sense of it. Visualization involves communicating these vast quantities of data

to users in a qualitatively di�erent form, one in which regularities and anomalies

are often much more apparent. The value of visualization derives from the highly-

developed visual pattern-recognition abilities of humans.

Visualization techniques transform the values of variables into visual forms in

which color, shading, size, thickness, shape, and spatial arrangement communicate

information about the variables. Additionally, dynamic characteristics of the data

can be conveyed through animation. Visualization of two-dimensional data usually

involves charts and graphs. For three-dimensional data, surface and volume models

can be used. For higher-dimensional data, two-dimensional projections are chosen for

viewing. These projections can be either planar cross-sections or non-linear subspaces

of the higher-dimensional space.
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Visualization can assist the scientist in a number of ways. Global and local pat-

terns in the data may become more evident. The e�ects of changes in parameters

can be readily grasped. Errors and anomalies in the data can often be easily detected

since they appear as visual anomalies. Additionally, visualization techniques can pro-

vide interactive mechanisms which enable a user to adjust parameters and quickly

see the e�ects of such changes.

5 ANN Visualization Methods

In this section, we describe a number of visualization techniques that have been

used to understand ANNs. These techniques provide insight into both the decision-

making process and the learning process of neural networks. Although many of the

techniques discussed in this section were originally described in terms of understand-

ing the decision-making processes of trained networks, all of the methods described

below can be (or have been) generalized so that they dynamically depict a network's

evolution during learning.

5.1 Hinton Diagrams

One of the �rst methods developed to visualize ANNs was the Hinton diagram (Hin-

ton86). The Hinton diagram provides a compact visual display of the weights and

biases related to a particular unit in a network. Figure 5 shows a set of Hinton di-

agrams for the network shown in Figure 1. The diagram for a unit shows the signs

and magnitudes of all of the incoming and outgoing weights as well as the sign and

magnitude of the unit's bias. Each weight is represented by a box drawn on the

diagram. The area of the box represents the weight's magnitude while the color of

the box indicates the sign of the weight. Typically, white boxes indicate positive

weights and black boxes indicate negative weights. The diagram is organized so that

each unit in the network has an assigned position in the diagram. Typically, output

units occupy positions at the top of the diagram, hidden units occupy positions in the

middle of the diagram, and input units have positions at the bottom of the diagram.

Therefore the position of a box in a diagram indicates the unit at the other end of

the weight. A bias for a given unit is drawn in that unit's diagram in the position

where weights to and from the unit are shown in the other diagrams. In other words,

a bias is illustrated as a weight from a unit to itself.

Hinton diagrams help in understanding an ANN by providing a concise visual

representation of the network's weights and biases. Each diagram makes it easy to

see the signs and magnitudes of the weights that contribute to a unit's activation,

and the relative in
uence of the unit's activation on the units at the next level in the

network. For some problems, the global weight picture provided by the diagram can

o�er a readily-understood depiction of the features being measured by hidden units.

For example, Pomerleau (Pomerleau89) uses such a diagram to help understand an
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Figure 5: Hinton diagrams. These diagrams depict, from left to right, the two

hidden units and the output unit of the network depicted in Figure 1. The boxes

in the lower part of each diagram depict weights from input units, the boxes in the

middle of each diagram depict weights from (to) hidden units, and the box at the top

of each diagram depicts a weight to the output unit. A unit's bias is drawn in the

position in the unit's diagram where weights to and from the unit are shown in the

other diagrams.

ANN that guides an autonomous land vehicle in following a road. The diagram for

a hidden unit in this network is able to clearly depict the patterns that the unit has

learned to recognize in the video images which serve as input. Similarly, Tesauro

and Sejnowski (Tesauro89) employ a Hinton diagram to gain insight into a network

that learns to play backgammon. They are able to identify several types of board

con�gurations that the network has learned to emphasize in making its decision. Still,

for most problems, the Hinton diagram is a rather weak method for visualization. The

topology of a network is not readily apparent from a set of diagrams. Furthermore,

the diagram does not clearly show how a unit partitions its input space.

5.2 Bond Diagrams

Wejchert and Tesauro developed a visualization method that they call the bond dia-

gram (Wejchert90). The bond diagram, like the Hinton diagram, illustrates the sign

and magnitude of each weight and bias in a network. The primary strength of the

diagram, however, is that the topology of the network is explicitly displayed in the

diagram. Figure 6 shows the bond diagram of the network in Figure 1. Each unit is

represented by a disk. For hidden and output units, the size of the disk indicates the

magnitude of the unit's bias; weights are represented by bonds linking the disks. The

amount of the bond that is displayed indicates the magnitude of the weight. Di�erent

colored bonds are used to distinguish positive and negative weights. Bonds can also

be used to represent the rate of change of the weights.
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Figure 6: A bond diagram. The diagram depicts the network shown in Figure 1.

The size of a unit indicates the magnitude of its bias. Positive and negative weights

are shown as light and dark shaded bonds, respectively. The magnitude of a weight

is indicated by the amount of the bond which is shaded.

Like the Hinton diagram, the bond diagram graphically depicts the values of the

network weights and biases. Unlike the Hinton diagram, the bond diagram makes

the topology of the network explicit in its graphics. A criticism of the diagram is

that, although it depicts both weights and biases, it is di�cult to gauge the relative

magnitudes of the weights versus the biases. Since di�erent geometric forms are used

to depict weights and biases, it is not easy to see how the weights stack up against a

bias. This is not a problem with Hinton diagrams since both weights and biases are

represented with the same graphical object (boxes). It is important to be able to see

the relative magnitudes of weights and biases so that questions such as \which input

units need to be active in order for the net input to exceed the threshold (bias) of

this hidden unit?" can be readily answered.

5.3 Hyperplane Diagrams

As mentioned previously, a neural network unit with a thresholding activation func-

tion partitions itsN-dimensional input space into two regions with an (N-1)-dimensional

hyperplane. This e�ect can be seen in Figure 4; the hyperplane in the two-dimensional

input space is de�ned by the vertical face of the decision surface. A unit with a sig-

moidal transfer function has a similar e�ect. One way to visualize the learning process

is to graphically display the movement of a hyperplane in the input space of the unit

that the hyperplane represents (Munro91; Pratt91).
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Figure 7: A hyperplane diagram. The diagram shows the hyperplanes de�ned by

the two hidden units in Figure 1. HU1 refers to the leftmost hidden unit in Figure

1, HU2 refers to the rightmost hidden unit.

Units which are in the same layer of the network, and hence have the same (or

nearly the same) input space, can have their hypeplanes depicted in one diagram.

A hyperplane diagram can show how hidden units make decisions in an input space

de�ned by input units, or it can show how output units make decisions in an input

space de�ned by hidden units. Figure 7 shows the hyperplanes de�ned by the two

hidden units in Figure 1. The axes of a hyperplane diagram denote the range of

activations that may be propagated to the units through their incoming connections.

Data points that a network is learning to classify may be plotted in the space. Each

hidden unit of the network is represented by a hyperplane (or in this case a line)

which indicates how the unit is partitioning its input space. The learning process is

animated by showing the movement of the hyperplanes as the weights and biases of

the network are changed.

It is important to note that a unit with a continuous transfer function (such as

a sigmoid) does not neatly partition its input space into two regions. Instead of a

sharp dividing hyperplane, there is a gradual boundary. In many cases, however, a
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Figure 8: Response-function plots. The plots show the response of, from left to

right, the leftmost hidden unit in Figure 1, the rightmost hidden unit, and the output

unit. The vertical axes for all three plots represent the activation of INPUT 1; the

horizontal axes represent the activation of INPUT 2. Lighter shades represent higher

activation values than darker shades. Note that the output unit is highly active when

either INPUT 1 or INPUT 2, but not both, is active.

hyperplane is a close approximation to the gradual boundary.

A fundamental limitation of the hyperplane technique is that only a two-dimensional

or three-dimensional input space can be depicted. When the actual input space of a

set of units has higher dimensionality, two-dimensional or three-dimensional projec-

tions of the space can be selected for viewing. Still, there is the problem of choosing

which projections to view: there is an in�nite number of N-dimensional projections

of a space of dimensionality N+1. Furthermore, even if informative projections are

selected, it is still problematic to mentally put the individual projections together to

gain a uni�ed picture of the input space. Statistical techniques, such as principal com-

ponents analysis (Dennis91; Elman89) or canonical discriminant analysis (Dennis91;

Wiles90) may be useful in choosing the projections that will provide the most infor-

mation. These techniques are brie
y described in Section 7.

5.4 Response-Function Plots

A technique which is similar to the hyperplane diagram is the response-function plot

(Lang88). Like the hyperplane diagram, the response-function plot depicts the de-

cision surfaces formed by hidden and output units. Unlike the hyperplane diagram,

however, this technique does not require that the transfer function be approximated

by a threshold function. Another di�erence between the two methods is that each

response-function plot depicts the decision surface at only a single unit. The axes

of the plot represent the range of activations for two of the network's inputs. The

plot for each unit uses shading (or color) to indicate the resultant activations for each

combination of input values.



Craven & Shavlik
14

Figure 8 shows response-function plots for the network shown in Figure 1. The

plots display the activations of the two hidden units and the single output unit as

a function of the activations that the two input units can assume. Of course it is

not necessary to generate the plots for all layers of the network in terms of input-

level activations. It could also be useful to generate a plot for a hidden unit in

terms of inputs from the layer immediately below it. This is a general issue in ANN

visualization: should (does) a given visualization technique describe things in terms

of features from the previous level, or in terms of input-level features?

Lang and Witbrock show the plots the hidden and output units of a network

that learns to distinguish two intertwined spirals in a two-dimensional plane. Since

they are dealing with two-dimensional spatial data, the plots provide a very lucid

description of the patterns being captured by each unit in the network.

A particularly nice aspect of the response-function plot is that it illustrates the

gradation of activation values that result from using a continuous transfer function.

The user can clearly see how close the hyperplane approximation is for a range of

input values.

The primary limitation of the response-function plot is that it is able to display

activation values for a unit only over a range of two or three inputs. Just as with

hyperplane diagrams, to use this technique in high-dimensional spaces, it is necessary

to take two-dimensional or three-dimensional projections. In the case of response-

function plots, this means \clamping" the activation of some inputs and allowing

only two or three inputs to vary.

5.5 Trajectory Diagrams

Another visualization method developed by Wejchert and Tesauro is the trajectory

diagram (Wejchert90). This diagram shows the trajectory of a unit through its weight

space, and the error of the unit along the trajectory. In order to fully understand this

method, we �rst need to revisit our discussion of backpropagation.

The usual function performed by the backpropagation algorithm is to move the

weights of a network toward a state in which the value of the error function (over all of

the training examples) is at a local minimum. A network with a given set of weights

can be thought of as a point in a multidimensional space where each dimension is

de�ned by one of the connections in the network. The coordinates of the point are

speci�ed by the value of the weight on each connection (dimension); this is a weight

space. If we now think of a space which has one more dimension than the weight

space, we can conceptualize an error hypersurface; the hypersurface de�ned over each

point in the weight space. The value of each point in the hypersurface is the error

value that would result from a network with the weights given by the coordinate

in the weight space. The backpropagation algorithm performs gradient descent in

this weight space. In other words, when the network is in a given state (i.e., at a

given point in the weight space), backpropagation changes the weights so that the
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4.2

6.0

WINPUT 1

WINPUT 2

Figure 9: A trajectory diagram. The diagram depicts the trajectory, over a hypo-

thetical training sesssion, of the rightmost hidden unit in Figure 1. The trajectory is

plotted in the space de�ned by the two weights impinging on this hidden unit. The

thickness of the trajectory line indicates the network error along the trajectory.

movement in weight space is in the direction in which the error is decreasing the

fastest.

The trajectory diagram is designed to provide some insight into the nature of the

weight space for a given problem. A trajectory diagram depicts the movement of

a given unit through its weight space. Figure 9 shows a trajectory diagram for the

rightmost hidden unit in Figure 1. The axes of the trajectory diagram are de�ned by

the incoming weights to a unit; this is the weight space of the unit. A network unit

at a given point in time is plotted as a point in the diagram, where the coordinates of

the point are speci�ed by the values of the weights feeding into the unit. As learning

progresses, the point is replotted to re
ect the updated values of its incoming weights.

Additionally, the color of each point in the trajectory diagram shows the error

of the network during learning. A common technique in scienti�c visualization is to

simultaneously depict several aspects of a problem by using a di�erent graphical at-

tribute for each aspect. By relating several di�erent parameters in one representation,

the relationships among the parameters are made more apparent. This technique is

employed in the trajectory diagram, where color is used to indicate error values and
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position is used to indicate weight values. The motivation for incorporating color

into the trajectory diagram is that the color values along the trajectory provide some

indication of the contours present in the error hypersurface over the weight space.

That is, the color values indicate the steepness of the error hypersurface at various

points in the weight space, as well as the presence of local minima in the surface.

2

As with the hyperplane technique, an inherent weakness of the trajectory diagram

is the inability to visualize high-dimensional weight spaces. Wejchert and Tesauro

provide some examples where they radially project

3

the axes of a six-dimensional

weight space onto a two-dimensional plane. The problem with this approach is that

the resultant projections of six-dimensional points are not unique. It is not clear

what kind of useful information can be inferred from such diagrams. Furthermore,

many networks for real-world problems have units with tens or hundreds of incoming

connections. Radial projections are simply not feasible in these cases.

Another problem with the trajectory diagram arises in trying to interpret the

error values of a trajectory. The error of the network is a function of all of the

weights in a network, but a trajectory diagram represents error as a function of only

some of the weights. Therefore error values along a given trajectory for a unit might

be signi�cantly di�erent depending upon the trajectories of the other units in the

network.

6 Visualizing Knowledge-Based Neural Networks

At the University of Wisconsin, we have developed a graphical interface for visualizing

neural networks. We are using this tool to support our research in knowledge-based

neural networks. In this section we �rst describe theKbann algorithm for initializing

knowledge-based neural networks. We then describe the functionality provided by our

visualization tool, and discuss how we have used it to gain a better understanding of

knowledge-based neural networks.

We have successfully applied knowledge-based neural networks to a several real-

world problems including: �nding promoters in DNA (Towell90), determining splice-

junctions in DNA (Noordewier91), predicting the secondary structure of proteins

(Maclin91), and re�ning process controllers (Scott91). In this section, however, we

will discuss knowledge-based neural networks and our visualization system in the

context of a \toy" problem { learning to recognize cups.

2

Although the gradient descent process does not itself avoid local minima, the backpropagation

algorithm is commonly augmented with a momentum term which helps the network to avoid them.

3

A radial projection of an N-dimensional space involves a space in which the N axes all lie in

the same plane, and emanate from the origin such that the separations between adjacent axes are

equiangular.
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Table 1: An approximately-correct domain theory for recognizing cups.

cup : - stable, liftable, open-vessel.

stable :- 
at-bottom.

liftable :- graspable, light.

graspable :- has-handle.

open-vessel :- has-concavity, concavity-up.

6.1 Knowledge-based Neural Networks

Although neural network learning has proven to be an e�ective and general method,

it su�ers from several weaknesses. One weakness is that conventional neural networks

do not provide a way to exploit existing knowledge about the problem to be solved.

The Kbann algorithm (Towell90) provides an approach to incorporating existing

knowledge into a neural network.

The Kbann algorithm uses a knowledge base of domain-speci�c inference rules (a

domain theory), in the form of Prolog-like clauses, to determine the topology and

initial weights of a neural network. The domain theory need be neither complete nor

correct; it need only support approximately-correct reasoning. Kbann translates a

domain theory into a neural network in which units and links correspond to parts of

the domain theory.

A brief explanation of the procedure used by Kbann to translate rules into an

ANN follows; a detailed description can be found in (Towell90).

Consider the Prolog rules in Table 6.1, which de�ne a roughly-correct domain

theory for recognizing cups. Figure 10 depicts the hierarchical structure of this domain

theory. The hierarchical structure of the domain theory determines the topology of

the knowledge-based neural network generated by Kbann: the input units of the

network represent the base-level facts of the domain theory, hidden units represent

intermediate conclusions, and the output unit represents the �nal conclusion (whether

or not an object is a cup). The units representing the antecedents of a rule are

connected to the unit representing the consequent by heavily-weighted connections.

Lightly-weighted connections are added to the network to facilitate re�nement of the

domain theory. Additional input units may be added to the network to incorporate

features which do not appear in the domain theory, but nevertheless may be relevant.

The Kbann algorithm sets link weights and unit biases so that units have sig-

ni�cant activation only when the corresponding deduction could be made using the

knowledge base. For example, assume there exists a rule in the knowledge base with

n positive antecedents (i.e., antecedents which must be true in order to derive the

consequent using this rule), and m negative antecedents (i.e., antecedents which must

not be true to derive the consequent using this rule). Kbann sets the weights on

links corresponding to positive and negative antecedents to ! and �!, respectively.

The bias on the unit corresponding to the rule's consequent is set to (n� 1=2) � !.
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light has
concavity

concavity
up

has
handle

flat
bottom

stable graspable open−vessel

liftable

cup

Figure 10: The hierarchical structure of the cup domain theory. This structure

is mapped to a neural network by the Kbann algorithm.

To handle disjunctions (i.e., multiple rules with the same consequent), Kbann

maps each disjunct separately as described above, and then introduces another unit

to represent the disjunction. The links which connect the units representing the

disjuncts to the unit representing the disjunction are given a weight of !, and the

bias of the disjunction unit is set to !� 1=2. The disjuncts cannot be represented by

a single unit for their shared consequent because there is no way to set the bias of

the consequent unit such that unintended combinations of antecedents cannot make

the unit signi�cantly active.

After the network topology and initial weights have been determined by Kbann,

the network is trained using the backpropagation algorithm and a set of training

examples. The e�ect of this training phase is to re�ne the approximately correct

domain theory so that it is consistent with empirical evidence (i.e., , the training

examples). After training, re�ned rules can be extracted from the network (Towell91).
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6.2 Lascaux : A Tool for Visualizing Neural Networks

In order to support our research in knowledge-based neural networks, we have devel-

oped a neural network visualization tool, called Lascaux,

4

that enables us to view

certain aspects of networks both during and after learning. In this section, we describe

some of the capabilities of Lascaux.

6.2.1 Depicting A Network

Figure 11 shows the interface provided by Lascaux. Like Wejchert and Tesauro's bond

diagram, the interface clearly displays the topology of the network. Each network unit

is represented by a box. A label below each hidden and output unit indicates the

concept putatively represented by the unit (if the putative concept is not known,

then the label may simply be something like \hidden5"). Labels below the input

units indicate the problem-domain features that they measure. Network weights are

represented by lines which connect the units. The thickness of each line indicates its

magnitude. Positive weights are drawn as solid lines and negative weights are drawn

as dashed lines. In Figure 11 it can be seen that the weights that are speci�ed by the

domain theory are drawn as thick lines, whereas the lightly-weighted links that are

added to the network to facilitate re�nement are drawn as thin lines. Some of these

added weights are positive and hence drawn as solid lines, while some are negative

and are drawn as dashed lines.

6.2.2 Visualizing Learning

Lascaux enables visualization of the learning process by depicting the forward propa-

gation of activations, the backward propagation of error, and changes to the weights

and biases of the network. The activation of each unit is illustrated by a thermometer-

like display. In Figure 11 these activation meters occupy the top portion of each box

representing a hidden or output unit, and the entirety of each box representing an

input unit. The level to which a meter is �lled with black indicates the activation

at the corresponding unit. A unit that is completely active (i.e., activation = 1) will

be completely �lled. A unit that is completely inactive (activation = 0) will not be

�lled at all. Thus, in Figure 11 the activation at the output unit indicates that the

network has decided that the current example is not a cup. Although the stable

and open-vessel units have fairly high activations, the unit representing the other

necessary condition for being a cup, liftable, has a small activation value. The

activations of the hidden units can, in turn, be explained in terms of the activations

of the input units that feed into the hidden units.

4

Our visualization tool is named after the caves in Southern France which contain some of the

earliest known paintings. The paintings at Lascaux, which depict animal and human �gures as well

as geometric signs, represent state-of-the-art visualization in the Paleolithic period.
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Figure 11: A knowledge-based neural network as depicted by Lascaux. Units

are represented by boxes and weights are represented by lines connecting the boxes.

The top part of each hidden and output unit box shows the activation of the unit. The

lower part of each box shows the net input (horizontal bar) relative to the \threshold"

(vertical bar) of the unit. For input units, all of the box is used to show the activation.

In addition to showing the activation of each unit, Lascaux can display the error

at each hidden or output unit for a particular pattern during learning. When error

values are being shown, the activation-meter for each hidden or output unit is halved

so that it occupies only the top-left portion of the boxes representing these units, and

a similar thermometer-like display is located in the top-right part of each box to depict

error. When the error value at a unit is positive, the error bar is drawn emanating

from the bottom of the error display upward; when the error value is negative, the

bar is drawn emanating downward from the top of the display. Sample error bars are

shown in Figure 12. Backward-propagated error signals can be displayed as lines. As

with weights, the thickness of the lines indicates the magnitude of the signals.

Lascaux includes mechanisms for �ltering the information that is to be displayed.
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Figure 12: The backward-propagation of error signals as depicted byLascaux.

The error at each output and hidden unit is shown on the left side of the unit. The

interface allows the available information to be �ltered. For example, none of the

weights or forward-propagated signals are shown here.

For example, a user-settable threshold enables the user to view only a subset of

the weights in the network { weights with magnitudes less than the threshold are not

displayed. During learning, weights are drawn and undrawn as their magnitudes cross

this threshold. Another mechanism allows the user to select (unselect) units for which

the incoming weights are to be displayed. Mechanisms such as these are important

for visualization tools because they allow the user to inspect selected portions and

aspects of the system of interest, without being overwhelmed by the quantity of data

available for display.



Craven & Shavlik
22

6.2.3 Visualizing Computing

In addition to displaying the activation of each unit, the interface can depict the

forward propagation of signals from unit to unit. A signal from unit j to unit i on

pattern p is de�ned as:

signal

pij

= w

ij

o

pj

(7)

The activation signals are viewed by changing the mode of the interface. In the signal

mode, the lines connecting units represent activation signals, instead of weights. As

with the weight mode, the thickness of a line indicates the magnitude of the signal.

The value of the signal mode is that it can provide an explanation for a particular

training example. The activation of each unit in the network can be explained by

noting the signals that are being propagated to the unit. This explanation capability

can be seen in Figure 13.

Another feature of the interface which assists in understanding the propagation

of activations is a diagram that relates the net input and activation of a unit (i.e., it

depicts the activation function). This diagram is shown for both a hidden unit and

the output unit in Figure 13. The diagram plots the activation function for a unit on

a scale that is de�ned by the range of net input values that the unit could have. Thus,

the rightmost edge of the diagram shows the activation value that would result if the

unit were to receive its maximum net input. The leftmost edge shows the activation

that would result if the unit were to receive its minimum net input. The diagram can

be thought of as plotting the e�ective activation function. The actual net input that

results for a given pattern is displayed as a solid vertical line in the diagram. The

dashed line marks the point where the net input is 0.

The e�ective activation diagram is valuable for two reasons. First, it describes the

nature of the activation function relative to its weight space. The degree of nonlin-

earity and the likelihood of various activation values for a unit are made apparent.

When the weights impinging on a unit are small, the activation function is relatively

linear, whereas when the weights are large, it approximates a threshold function. Sec-

ond, the relative in
uence of the weights and the bias can be determined from the

diagram. When the bias is large, the unit takes much more net input to \turn on",

and likewise when the bias is small it takes much less net input. Below the activation

meter of each hidden and output unit there is a compact version of this diagram. This

compact version is also scaled by the range of possible net input values for a given

unit. The vertical line represents the value of the bias. The horizontal line shows the

actual net input for a given pattern. Thus, when the net input exceeds the bias, the

horizontal line will cross the vertical line.

In order to control the rate at which information is displayed by Lascaux there is a

mechanism that enables the user to specify when to \freeze" the display. This mech-

anism is a threshold against which the activations of the output units are compared.

Whenever, the activation of one of the output units is equal to or exceeds this thresh-
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Figure 13: Activation signals and e�ective activation functions as depicted by

Lascaux. The lines connecting units represent forward-propagated signals. The e�ec-

tive activation functions are shown for the STABLE and CUP units.

old, the interface stops drawing newly-generated information until the user presses a

\continue" button. Thus, by setting this threshold to zero, the user can single-step

through a set of input patterns. When the threshold is set to a value greater than one,

Lascaux will continuously update the display without stopping (or until the threshold

is changed to a lower value).

6.2.4 Implementation

Lascaux is implemented using the X Window System (Gettys89), the Athena Wid-

get set (Peterson89), and the C programming language. It runs in concert with a

separate program which implements a neural network and the backpropagation algo-

rithm (McClelland89). The Lascaux process and the network process communicate

via UNIX sockets. The visualization process sends user-selected commands to the



Craven & Shavlik
24

backpropagation process. The backpropagation process sends back such information

as activations and weights, sending information as fast as it generates it. The user

controls, through the interface, the rate at which the information is displayed. By

separating the network implementation from the interface, we were able to keep Las-

caux highly responsive to user interaction without commingling user-event handling

code with the backpropagation routines. Additionally, this architecture enables Las-

caux to be extended to maintain simultaneous connections to more than one network

process.

6.3 Visualizing Knowledge-Based Neural Networks

Although Lascaux provides the same functionality whether it is used with conven-

tional ANNs or with knowledge-based neural networks, we believe that there is a

synergistic relationship that arises between knowledge-based neural networks and our

visualization techniques. This relationship makes it much more practicable to under-

stand the classi�cations made by trained networks, and to understand the changes

to the networks that occur during learning. With a knowledge-based neural network,

the network is initially in a comprehensible state; the graph-like structure inherent in

a domain theory is mapped into a neural network. Therefore, when Lascaux depicts a

network before learning, it is essentially depicting the domain theory in a graph-like

representation. Each of the units corresponds to an antecedent or a consequent in

one or more of the rules of the domain theory. The heavily-weighted links indicate

how the antecedents relate to the consequents.

The process of learning in a knowledge-based neural network is essentially a pro-

cess of theory re�nement. The initial domain theory is adjusted to account for the

training data. Lascaux enables us to understand the re�nements that occur during

learning by animating the weight changes. If the revision process results in a partic-

ular antecedent of a rule gaining (losing) importance, then the weight representing

the antecedent's role in a rule will increase (decrease) and this change is made visible

by Lascaux. By setting the weight visibility threshold to an appropriate value, the

re�nement process can even be visualized as the addition and deletion of antecedents.

Another valuable result of the synergy between knowledge-based neural network

and visualization is that the activation patterns shown by Lascaux can provide an

explanation of why the network has made a particular decision. This is illustrated

in Figure 13. An explanation is described by a combination of unit activations and

forward-propagated signals. The explanation can be elicited by tracing signals from

the output unit of interest back to the hidden units that propagated these signals. The

activation of each hidden unit indicates the degree to which the concept represented by

the hidden unit was satis�ed. An explanation for each hidden unit can be constructed

in the same way, by following forward-propagated signals backward. Relatively small

signals can be �ltered from the display so that only the salient parts of an explanation

are recovered.
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7 Other Approaches to Understanding ANNs

There are several varied approaches to understanding the representations formed in

ANNs in addition to visualization. They include: statistical analysis; interpretation

of ANNs as �nite-state automata; and extraction of symbolic rules. These approaches

have di�erent strengths, weaknesses, and ranges of applicability. The task of under-

standing ANNs is su�ciently di�cult that no single approach is usually adequate.

In our research, we have found a number of these approaches, in addition to visu-

alization, to be useful in understanding networks. We provide an overview of the

approaches below.

A variety of statistical techniques can provide insight into how a neural network

classi�es its input. Hierarchical cluster analysis (Elman89; Sejnowski87), principal

components analysis (Dennis91; Elman89), and canonical discriminant analysis (Den-

nis91; Wiles90) have been employed to gain insight into the classi�cations made by

ANNs. All of these methods take a set of data points as input. In order to understand

the discriminations made by hidden units, each data point can be a vector of hidden

unit activations for a particular training example. Hierarchical clustering involves

constructing a tree that relates vectors of hidden unit activations. Similar vectors are

closely related in the tree, while dissimilar vectors are distantly related. Each leaf

of the tree is labelled with the name of the input pattern that generated the vector

represented by the leaf. The value of this approach is that it provides some sense

of the discriminations being performed by the hidden units. Principal components

analysis (PCA) calculates the major directions of variance for the given data points.

Canonical discriminant analysis (CDA) requires that the category of each data point

be supplied along with the values de�ning the point. CDA then �nds the directions

along which the points within a group are tightly clustered. Both PCA and CDA

can be used to derive a useful low-dimensional projection of a high-dimensional input

space.

Another approach to understanding ANNs involves interpreting networks as �nite-

state automata (Giles90). This approach is applicable to a class of networks, called

recurrent networks (Jordan86; Williams89), which have connections from output units

to input units. These connections serve to supply the previous state of the network,

as expressed by the output units, as an input to be used in computing the next state

of the network.

A recent approach to understanding ANNs is to translate the representations

formed by a network into symbolic rules (Fu91; Towell91). A decided advantage of

many symbolic machine learning algorithms is that the representations they form

are often humanly-comprehensible. Arti�cial neural networks, on the other hand, are

better at learning some problems, but the representations they form are impenetrable.

With a rule-translation mechanism, however, one can employ the learning power of

an ANN, and in the end still have a comprehensible representation for the knowledge

learned. The challenge of this approach is to extract rules which are comprehensible
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while still accurately modelling the network.

8 Conclusions

In this article, we have described a number of visualization techniques that have been

applied to the problem of understanding neural networks. Visualization can provide

insight into the workings of a network by transforming the parameters into more

easily understood visual representations. We have described our system for network

visualization and its application to knowledge-based neural networks. When applied

to knowledge-based neural networks, visualization techniques can help to understand

how neural learning re�nes a domain theory, and can assist in providing explanations

of the decisions made by a network.

Although visualization techniques can help to clarify the workings of neural net-

works, the problem of visually inspecting a network is still problematic. One of the

most di�cult aspects of visualizing neural networks is the high-dimensionality of the

spaces that need to be understood. One of the challenges of network visualization

work in the future is to develop methods that are able to succinctly compress these

high-dimensional spaces into easily understood representations.

Another important issue for visualization tools is user control over the data to be

visualized. There are at least three aspects of user control that should be incorporated

into visualization tools. First, the user should be able to change important network

parameters and immediately see the e�ects of such a change. Second, the user should

be able to perform projections on and select portions of the available data in order

to view selected aspects of a network at a time. Third, the user should be able to

control the rate at which information is depicted.

Although arti�cial neural networks have demonstrated impressive performance

in a wide variety of machine learning tasks, they possess a signi�cant limitation in

that the representations they form are di�cult to understand. An important area

for research is the development of techniques to aid in the comprehension of neural

networks. Visualization has proven to be one such technique; it has been useful for

understanding both the dynamics of neural networks, and the representations they

form. There are still many open problems in neural network visualization, however,

and it should continue be an important �eld of study.
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